Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Cheng-Hsien

Cheng-Hsien Chang, Taichung City TW

Patent application numberDescriptionPublished
20090230773Scanner with battery - Power is provided to a scanning device. Power supplied by an attached bus is used to power the scanning device when power requirements for the scanning device can be met by the power supplied by the attached bus. Power is drawn from a rechargeable battery to supply power to the scanning device when power requirements for the scanning device cannot be met by the power from the attached bus. When the scanning device is in a stand-by mode, the power from the attached bus is used to recharge the rechargeable battery.09-17-2009

Cheng-Hsien Cheng, Hsinchu TW

Patent application numberDescriptionPublished
20110079840MEMORY CELL AND MANUFACTURING METHOD THEREOF AND MEMORY STRUCTURE - A memory cell is provided. The memory cell includes a substrate, an isolation layer, a gate, a charge storage structure, a first source/drain region, a second source/drain region and a channel layer. The isolation layer is disposed over the substrate. The gate is disposed over the isolation layer. The charge storage structure is disposed over the isolation layer and the gate. The first source/drain region is disposed over the charge storage structure at two sides of the gate. The second source/drain region is disposed over the charge storage structure at top of the gate. The channel layer is disposed over the charge storage structure at sidewall of the gate and is electrically connected with the first source/drain region and the second source/drain region.04-07-2011
20120326222MEMORY STRUCTURE AND FABRICATING METHOD THEREOF - A memory structure including a memory cell is provided, and the memory cell includes following elements. A first gate is disposed on a substrate. A stacked structure includes a first dielectric structure, a channel layer, a second dielectric structure and a second gate disposed on the first gate, a first charge storage structure disposed in the first dielectric structure and a second charge storage structure disposed in the second dielectric structure. At least one of the first charge storage structure and the second charge storage structure includes two charge storage units which are physically separated. A first dielectric layer is disposed on the first gate at two sides of the stacked structure. A first source and drain and a second source and drain are disposed on the first dielectric layer and located at two sides of the channel layer.12-27-2012
20130092997NON-VOLATILE MEMORY AND MANUFACTURING METHOD THEREOF - A non-volatile memory and a manufacturing method thereof are provided. A first oxide layer having a protrusion is formed on a substrate. A pair of doped regions is formed in the substrate at two sides of the protrusion. A pair of charge storage spacers is formed on the sidewalls of the protrusion. A second oxide layer is formed on the first oxide layer and the charge storage spacers. A conductive layer is formed on the second oxide layer.04-18-2013
20130134498MEMORY DEVICE AND METHOD FOR FABRICATING THE SAME - A memory device is described, including a tunnel dielectric layer over a substrate, a gate over the tunnel dielectric layer, at least one charge storage layer between the gate and the tunnel dielectric layer, two doped regions in the substrate beside the gate, and a word line that is disposed on and electrically connected to the gate and has a thickness greater than that of the gate.05-30-2013
20130240975ROM FOR CONSTRAINING 2nd-BIT EFFECT - A read only memory including a substrate, a source region and a drain region, a charge storage structure, a gate, and a local extreme doping region is provided. The source region and the drain region are disposed in the substrate, the charge storage structure is located on the substrate between the source region and the drain region, and the gate is configured on the charge storage structure. The local extreme doping region is located in the substrate between the source region and the drain region and includes a low doping concentration region and at least one high doping concentration region. The high doping concentration region is disposed between the low doping concentration region and one of the source region and the drain region, and a doping concentration of the high doping concentration region is three times or more than three times a doping concentration of the low doping concentration region.09-19-2013
20140187032METHOD FOR FABRICATING MEMORY DEVICE - A method for fabricating a memory device of this invention includes at least the following steps. A tunnel dielectric layer is formed over a substrate. A gate is fowled over the tunnel dielectric layer. At least one charge storage layer is formed between the gate and the tunnel dielectric layer. Two doped regions are formed in the substrate beside the gate. A word line is formed on and electrically connected to the gate, wherein the word line having a thickness greater than a thickness of the gate.07-03-2014
20140306282MULTI LEVEL PROGRAMMABLE MEMORY STRUCTURE - A memory structure includes a memory cell, and the memory cell includes following elements. A first gate is disposed on a substrate. A stacked structure includes a first dielectric structure, a channel layer, a second dielectric structure and a second gate disposed on the first gate, a first charge storage structure disposed in the first dielectric structure and a second charge storage structure disposed in the second dielectric structure. The first charge storage structure is a singular charge storage unit and the second charge storage structure comprises two charge storage units which are physically separated. A channel output line physically connected to the channel layer. A first dielectric layer is disposed on the first gate at two sides of the stacked structure. A first source or drain and a second source or drain are disposed on the first dielectric layer and located at two sides of the channel layer.10-16-2014
20140308791MANUFACTURING METHOD OF NON-VOLATILE MEMORY - A non-volatile memory and a manufacturing method thereof are provided. In this method, a first oxide layer having a protrusion is formed on a substrate. A pair of doped regions is formed in the substrate at two sides of the protrusion. A pair of charge storage spacers is formed on the sidewalls of the protrusion. A second oxide layer is formed on the first oxide layer and the pair of charge storage spacers. A conductive layer is formed on the second oxide layer, wherein the conductive layer is located completely on the top of the pair of charge storage spacers.10-16-2014

Patent applications by Cheng-Hsien Cheng, Hsinchu TW

Cheng-Hsien Chou, Zhonghe City TW

Patent application numberDescriptionPublished
20110225816METHOD OF MANUFACTURING A MULTILAYER PRINTED CIRCUIT BOARD WITH A BUILT-IN ELECTRONIC DEVICE - A method of manufacturing a multilayer printed circuit board of a built-in electronic device provides a substrate having a copper clad laminate and a first dielectric layer. The first dielectric layer is laminated onto the copper clad laminate and has a cavity for accommodating the electronic device. A second dielectric layer is laminated onto the substrate and electronic device to produce a base circuit board with an embedded electronic device. A build-up circuit layer is formed on the base circuit board. The first and second dielectric layers are made of a plastic material.09-22-2011

Cheng-Hsien Chung, Taipei County TW

Patent application numberDescriptionPublished
20100311880MODIFIED LAYERED MATERIAL AND UNSATURATED POLYESTER NANOCOMPOSITE COMPRISING THE SAME - A modified layered material is provided, which includes a layered inorganic material intercalated with an organic modifier. The organic modifier includes12-09-2010
20120010360MODIFIED LAYERED MATERIAL AND UNSATURATED POLYESTER NANOCOMPOSITE COMPRISING THE SAME - A modified layered material is provided, which includes a layered inorganic material intercalated with an organic modifier. The organic modifier includes01-12-2012

Cheng-Hsien Hsieh, Taipei City TW

Patent application numberDescriptionPublished
20150130666ASSEMBLED WEARABLE ELECTRONIC DEVICE - An assembled wearable electronic device includes a first body, a second body and an engaging assembly. The first body has a primary system for providing the independent operation of the first body and producing a related first data. The second body has a secondary system and a fixing assembly. The secondary system is for providing the independent operation of the second body and producing a related second data. The engaging assembly is disposed at one of the first and second bodies. When the engaging assembly is located at a first position, the first and second bodies contact each other to be combined through the engaging assembly. When the engaging assembly moves to a second position, the first and second bodies are configured to be separated from each other. When the first and second bodies are connected to each other, the second data is read by the primary system.05-14-2015

Cheng-Hsien Hsieh, Yunlin TW

Patent application numberDescriptionPublished
20140087937Catalytic Article for Decomposing Volatile Organic Compound and Method for Preparing the Same - A catalytic article for decomposition of a volatile organic compound includes a porous support body, a plurality of active centers formed on the support body and adapted for catalytic decomposition of the volatile organic compound, and a plurality of capture centers bound to the support body. Each of the active centers is composed of one of a noble metal, a transition metal oxide, and the combination thereof. Each of the capture centers includes at least one functional group that is adapted for attracting or binding the volatile organic compound. A method for preparing the catalytic article is also disclosed.03-27-2014
20140274669Catalytic Article and Method for Preparing the Same - A catalytic article for destruction of a volatile organic compound includes a porous carrier body, a plurality of catalyst units formed on the carrier body and adapted for destruction of the volatile organic compound, and a plurality of trapping molecules bound to the carrier body. Each of the catalyst units is composed of one of a noble metal, a transition metal oxide, and the combination thereof. Each of the trapping molecules includes at least one functional group that is adapted for attracting or binding the volatile organic compound. A method for preparing the catalytic article is also disclosed.09-18-2014

Cheng-Hsien Hsieh, Kaohsiung City TW

Patent application numberDescriptionPublished
20150061118Three-Dimensional Chip Stack and Method of Forming the Same - A three-dimensional chip stack includes a first chip bonded to a second chip to form a bonded interconnection therebetween. The bonded interconnection includes a first conductive pillar overlying a first substrate of the first chip, a second conductive pillar overlying a second substrate of the second chip, and a joint structure between the first conductive pillar and the second conductive pillar. The joint structure includes a first IMC region adjacent to the first conductive pillar, a second IMC region adjacent to the second conductive pillar, and a metallization layer between the first IMC region and the second IMC region.03-05-2015

Cheng-Hsien Huang, New Taipei City TW

Patent application numberDescriptionPublished
20140171154HANDHELD ELECTRONIC APPARATUS AND INCOMING CALL PROCESSING METHOD THEREOF - A handheld electronic apparatus and an incoming call processing method of the handheld electronic apparatus are provided. When an incoming call is received, a type of an operating interface displayed on a touch display screen is determined; according to the type of the operating interface, it is decided whether to display a sub-call window interface on the operating interface.06-19-2014

Cheng-Hsien Hung, Hsinchi TW

Patent application numberDescriptionPublished
20090166872Memory Word lines with Interlaced Metal Layers - A memory device with improved word line structure is disclosed. The memory device includes a plurality of polysilicon strips substantially parallel to each other on the substrate, the plurality of polysilicon strips arranged in two interleaved groups of a first group and a second group. The memory device further includes a first layer of conductive strips forming a plurality of bit lines and a second layer of meal strips, the second layer of conductive strips overlying the polysilicon strips and coupled to the first group of polysilicon strips. In addition, the memory device includes a third layer of conductive strips forming one or more power line, and a fourth layer of metal strips, the fourth layer of conductive strips overlying the second layer of conductive strips and coupled to the second group of polysilicon strips to form a new word line structure having a low resistance.07-02-2009

Cheng-Hsien Kuo, New Taipei City TW

Patent application numberDescriptionPublished
20120188707SLIDINGLY-ENGAGED HEAT-DISSIPATING ASSEMBLY FOR MEMORY AND MEMORY DEVICE HAVING THE SAME - A heat-dissipating assembly includes a first heat-dissipating body and a second heat-dissipating body adhered to two sides of the memory. The bottom edge of the first heat-dissipating body has a first supporting piece and first engaging pieces comprising a first stopping section and a first insertion section. The bottom edge of the second heat-dissipating body has a second supporting piece and second engaging pieces comprising a second stopping section and a second insertion section. The second insertion section extends toward the first insertion section. The first insertion section is slidingly disposed inside the second stopping section. The second insertion is slidingly disposed inside the first stopping section. The first stopping section abuts against the second stopping section, so that the first engaging piece and the second engaging piece are slidingly engaged with each other.07-26-2012
20120250271STRUCTURE OF ANTI TAMPER CASE FOR SOLID STATE DISK - A structure of an anti tamper case for the solid state disk includes an upper housing and a lower housing. The upper housing has an extending portion formed respectively on the two sides of the flange. The extending portion has at least one opening. The lower housing corresponds to the upper housing and a space is formed there-between for receiving the solid state disk. The lower housing has a hook formed at the flange corresponding to the opening. The hook and the opening are buckled to each other. The hook will be broken by the flange in the opening when the upper and lower housings are separated, thus prevent the user from forcefully opening the case for self maintenance or internal component replacement.10-04-2012

Cheng-Hsien Lee, Xizhi City TW

Patent application numberDescriptionPublished
20110279927LOCKED WARNING APPARATUS USED FOR HANDLE OF HARD DISK DRIVE BRACKET - A locked warning apparatus used for a handle of a hard disk drive bracket is described. The locked warning apparatus includes a locking base, a locking device, an upper cover assembly, and a pressing unit. The locking base has a clasping portion and an elastic protrusion. The locking device has a blocking portion. The clasping portion of the locking base is fastened to the locking device in a form of line-surface interface contact. The blocking portion reciprocates a back and forth motion on the elastic protrusion of the locking base to allow the locking device to retain either a lock status or an unlock status correspondingly. When the locking device retains the lock status, the locking device buckles the upper cover assembly. When the locking device retains the unlock status, the upper cover assembly can be ejected from the locking base by pushing the pressing unit.11-17-2011

Cheng-Hsien Li, Hsinchu TW

Patent application numberDescriptionPublished
20130313596LIGHT-EMITTING DEVICE HAVING PATTERNED INTERFACE AND THE MANUFACTURING METHOD THEREOF - The present disclosure provides a light-emitting device having a patterned interface composed of a plurality of predetermined patterned structures mutually distinct, wherein the plurality of predetermined patterned structures are repeatedly arranged in the patterned interface such that any two neighboring patterned structures are different from each other. The present disclosure also provides a manufacturing method of the light-emitting device. The method comprises the steps of providing a substrate, generating a random pattern arrangement by a computing simulation, forming a mask having the random pattern arrangement on the substrate, and removing a portion of the substrate thereby transferring the random pattern arrangement to the substrate.11-28-2013
20140374779LIGHT-EMITTING DEVICE AND LIGHT-EMITTING ARRAY - A light-emitting device includes a light-emitting stack including a first semiconductor layer, a second semiconductor layer, and an active layer between the first semiconductor layer and the second semiconductor layer, wherein the first semiconductor layer includes a first surface, a second surface opposite to the first surface, a first portion connecting to the first surface, and a second portion connecting to the first portion; an opening penetrating the first portion from the first surface and having a first width; a depression connecting to the opening and penetrating the second semiconductor layer, the active layer, and the second portion of the first semiconductor layer, wherein the depression includes a second width greater than the first width, and the depression includes a bottom to expose the second surface, and an electrode located in the depression and corresponding to the opening.12-25-2014

Cheng-Hsien Tsai, Yongkang City TW

Patent application numberDescriptionPublished
20110143313DENTAL IMPLANT DEVICE - A dental implant device is adapted for use in dental implant operations to engage the dental prosthesis. The dental implant device includes a hollow main body and an external thread. The hollow main body has top and bottom ends, an inner peripheral surface disposed between the top and bottom ends and defining a through hole extending through the top and bottom ends, and an outer peripheral surface disposed between the top and bottom ends and surrounding the inner peripheral surface. The external thread is provided on the outer peripheral surface of the main body.06-16-2011

Cheng-Hsien Wang, Lujhou City TW

Patent application numberDescriptionPublished
20110235847Sideways extending speaker apparatus and methods - Sideways-extending speaker apparatus and methods that include a speaker box that is adjustable to fit within given information handling system or electronic device chassis form factor constraints, while also being selectably extendable and expandable to provide increased speaker box volume to achieve improved sound quality performance both in terms of increased speaker spatial separation and wider dynamic range.09-29-2011

Cheng-Hsien Wu, Taipei TW

Patent application numberDescriptionPublished
20110117730Growing III-V Compound Semiconductors from Trenches Filled with Intermediate Layers - A method of forming an integrated circuit structure includes forming an insulation layer over at least a portion of a substrate; forming a plurality of semiconductor pillars over a top surface of the insulation layer. The plurality of semiconductor pillars is horizontally spaced apart by portions of the insulation layer. The plurality of semiconductor pillars is allocated in a periodic pattern. The method further includes epitaxially growing a III-V compound semiconductor film from top surfaces and sidewalls of the semiconductor pillars.05-19-2011
20110180846Method for Forming Antimony-Based FETs Monolithically - An integrated circuit structure includes a substrate and a first and a second plurality of III-V semiconductor layers. The first plurality of III-V semiconductor layers includes a first bottom barrier over the substrate; a first channel layer over the first bottom barrier; and a first top barrier over the first channel layer. A first field-effect transistor (FET) includes a first channel region, which includes a portion of the first channel layer. The second plurality of III-V semiconductor layers is over the first plurality of III-V semiconductor layers and includes a second bottom barrier; a second channel layer over the second bottom barrier; and a second top barrier over the second channel layer. A second FET includes a second channel region, which includes a portion of the second channel layer.07-28-2011
20110304021Epitaxial Growth of III-V Compound Semiconductors on Silicon Surfaces - A device includes a silicon substrate, and a III-V compound semiconductor region over and contacting the silicon substrate. The III-V compound semiconductor region has a U shaped interface with the silicon substrate, with radii of the U shaped interface being smaller than about 1,000 nm.12-15-2011
20110306179MOCVD for Growing III-V Compound Semiconductors on Silicon Substrates - A device includes providing a silicon substrate; annealing the silicon substrate at a first temperature higher than about 900° C.; and lowering a temperature of the silicon substrate from the first temperature to a second temperature. A temperature lowering rate during the step of lowering the temperature is greater than about 1° C./second. A III-V compound semiconductor region is epitaxially grown on a surface of the silicon substrate using metal organic chemical vapor deposition (MOCVD).12-15-2011

Cheng-Hsien Wu, Guanmiao Township TW

Patent application numberDescriptionPublished
20090189419Folding Chair - A folding chair includes two side boards, a foldable paper beehive structure, and a positioning device. The foldable paper beehive structure includes a plurality of paper boards interconnected with one another. The paper beehive structure includes two sides to which the side boards are mounted to form a chair body. A plurality of polygonal holes are formed between two paper boards adjacent to each other. The polygonal holes extend perpendicularly to a ground on which the paper beehive structure is placed. The positioning device is made of rigid material and coupled with the side boards when the paper beehive structure is in an extended state to fix a width of the chair body.07-30-2009

Cheng-Hsien Wu, Taipei City TW

Patent application numberDescriptionPublished
20120025201Inverted Trapezoidal Recess for Epitaxial Growth - A semiconductor device having an epitaxial layer a method of manufacture thereof is provided. The semiconductor device has a substrate with a trench formed therein and a recess formed below the trench. The recess has sidewalls with a (111) crystal orientation. The depth of the trench is such that the depth is greater than or equal to one-half a length of sidewalls of the recess. An epitaxial layer is formed in the recess and the trench. The depth of the trench is sufficient to cause dislocations formed between the interface of the semiconductor substrate and the epitaxial layer to terminate along sidewalls of the trench.02-02-2012
20120094467SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD WITH IMPROVED EPITAXIAL QUALITY OF III-V COMPOUND ON SILICON SURFACES - Stacking faults are reduced or eliminated by epitaxially growing a III-V compound semiconductor region in a trench followed by capping and annealing the region. The capping layer limits the escape of atoms from the region and enables the reduction or elimination of stacking faults along with the annealing.04-19-2012
20120211803SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD WITH IMPROVED EPITAXIAL QUALITY OF III-V COMPOUND ON SILICON SURFACES - Stacking faults are reduced or eliminated by epitaxially growing a III-V compound semiconductor region in a trench followed by capping and annealing the region. The capping layer limits the escape of atoms from the region and enables the reduction or elimination of stacking faults along with the annealing.08-23-2012
20130001591FINFET DESIGN AND METHOD OF FABRICATING SAME - An integrated circuit device and method for manufacturing the same are disclosed. An exemplary device includes a semiconductor substrate having a substrate surface and a trench isolation structure disposed in the semiconductor substrate for isolating an NMOS region of the device and from a PMOS region of the device. The device further includes a first fin structure comprising silicon or SiGe disposed over a layer of III-V semiconductor material having a high band gap energy and a lattice constant greater than that of Ge; a second fin structure comprising silicon or SiGe disposed over a layer of III-V semiconductor material having a high band gap energy and a lattice constant smaller than that of Ge; and a gate structure disposed over and arranged perpendicular to the first and second fin structures.01-03-2013

Cheng-Hsien Wu, Hsin-Chu TW

Patent application numberDescriptionPublished
20120329254Method for Forming Antimony-Based FETs Monolithically - An integrated circuit structure includes a substrate and a first and a second plurality of III-V semiconductor layers. The first plurality of III-V semiconductor layers includes a first bottom barrier over the substrate; a first channel layer over the first bottom barrier; and a first top barrier over the first channel layer. A first field-effect transistor (FET) includes a first channel region, which includes a portion of the first channel layer. The second plurality of III-V semiconductor layers is over the first plurality of III-V semiconductor layers and includes a second bottom barrier; a second channel layer over the second bottom barrier; and a second top barrier over the second channel layer. A second FET includes a second channel region, which includes a portion of the second channel layer.12-27-2012
20130171792Methods for Semiconductor Regrowth - A treatment is performed on a surface of a first semiconductor region, wherein the treatment is performed using process gases including an oxygen-containing gas and an etching gas for etching the semiconductor material. An epitaxy is performed to grow a second semiconductor region on the surface of the first semiconductor region.07-04-2013
20130228875Apparatus and Method for FinFETs - A FinFET comprises an isolation region formed in a substrate, a cloak-shaped active region formed over the substrate, wherein the cloak-shaped active region has an upper portion protruding above a top surface of the isolation region. In addition, the FinFET comprises a gate electrode wrapping the channel of the cloak-shaped active region.09-05-2013
20130234147Semiconductor Structures and Methods with High Mobility and High Energy Bandgap Materials - An embodiment is a structure comprising a substrate, a high energy bandgap material, and a high carrier mobility material. The substrate comprises a first isolation region and a second isolation region. Each of first and second isolation regions extends below a first surface of the substrate between the first and second isolation regions. The high energy bandgap material is over the first surface of the substrate and is disposed between the first and second isolation regions. The high carrier mobility material is over the high energy bandgap material. The high carrier mobility material extends higher than respective top surfaces of the first and second isolation regions to form a fin.09-12-2013
20130240836FinFET Having Superlattice Stressor - A fin field effect transistor (FinFET) device is provided. The FinFET includes a superlattice layer and a strained layer. The superlattice layer is supported by a substrate. The strained layer is disposed on the superlattice layer and provides a gate channel. The gate channel is stressed by the superlattice layer. In an embodiment, the superlattice layer is formed by stacking different silicon germanium alloys or stacking other III-V semiconductor materials.09-19-2013
20130248948Source/Drain Profile for FinFET - An embodiment is a FinFET device. The FinFET device comprises a fin, a first source/drain region, a second source/drain region, and a channel region. The fin is raised above a substrate. The first source/drain region and the second source/drain region are in the fin. The channel region is laterally between the first and second source/drain regions. The channel region has facets that are not parallel and not perpendicular to a top surface of the substrate.09-26-2013
20140033981MOCVD for Growing III-V Compound Semiconductors on Silicon Substrates - A device includes providing a silicon substrate; annealing the silicon substrate at a first temperature higher than about 900° C.; and lowering a temperature of the silicon substrate from the first temperature to a second temperature. A temperature lowering rate during the step of lowering the temperature is greater than about 1° C./second. A III-V compound semiconductor region is epitaxially grown on a surface of the silicon substrate using metal organic chemical vapor deposition (MOCVD).02-06-2014
20140151819Semiconductor Device Having SiGe Substrate, Interfacial Layer and High K Dielectric Layer - The invention relates to integrated circuit fabrication, and more particularly to a semiconductor device with an interfacial layer. An exemplary structure for a semiconductor device comprises a Si06-05-2014
20140183645Complimentary Metal-Oxide-Semiconductor (CMOS) With Low Contact Resistivity and Method of Forming Same - An embodiment complimentary metal-oxide-semiconductor (CMOS) device and an embodiment method of forming the same are provided. The embodiment CMOS device includes an n-type metal-oxide-semiconductor (NMOS) having a titanium-containing layer interposed between a first metal contact and an NMOS source and a second metal contact and an NMOS drain and a p-type metal-oxide-semiconductor (PMOS) having a PMOS source and a PMOS drain, the PMOS source having a first titanium-containing region facing a third metal contact, the PMOS drain including a second titanium-containing region facing a fourth metal contact.07-03-2014
20140217499Methods for Forming Semiconductor Regions in Trenches - A structure includes a semiconductor substrate including a first semiconductor material. A portion of the semiconductor substrate extends between insulation regions in the semiconductor substrate. The portion of the semiconductor substrate has a (111) surface and a bottom surface. The (111) surface is slanted and has a top edge and a bottom edge. The bottom surface is parallel to a top surface of the insulation regions, and is connected to the bottom edge. A semiconductor region overlaps the portion of the semiconductor substrate, wherein the semiconductor region includes a second semiconductor material different from the first semiconductor material. The top edge and the bottom edge of the (111) surface are at a first depth and a second depth, respectively, relative to a top surface of the semiconductor region. A ratio of the first depth to the second depth is smaller than about 0.6.08-07-2014
20140220751Methods for Forming Semiconductor Regions in Trenches - A method includes recessing a portion of a semiconductor substrate between opposite isolation regions to form a recess. After the step of recessing, the portion of the semiconductor substrate includes a top surface. The top surface includes a flat surface, and a slant surface having a (111) surface plane. The slant surface has a bottom edge connected to the flat surface, and a top edge connected to one of the isolation regions. The method further includes performing an epitaxy to grow a semiconductor material in the recess, wherein the semiconductor material is grown from the flat surface and the slant surface, and performing an annealing on the semiconductor material.08-07-2014
20140220753Apparatus and Method for FinFETs - A FinFET comprises an isolation region formed in a substrate, a cloak-shaped active region formed over the substrate, wherein the cloak-shaped active region has an upper portion protruding above a top surface of the isolation region. In addition, the FinFET comprises a gate electrode wrapping the channel of the cloak-shaped active region.08-07-2014
20140235040Growing III-V Compound Semiconductors from Trenches Filled with Intermediate Layers - A method of forming an integrated circuit structure includes forming an insulation layer over at least a portion of a substrate; forming a plurality of semiconductor pillars over a top surface of the insulation layer. The plurality of semiconductor pillars is horizontally spaced apart by portions of the insulation layer. The plurality of semiconductor pillars is allocated in a periodic pattern. The method further includes epitaxially growing a III-V compound semiconductor film from top surfaces and sidewalls of the semiconductor pillars.08-21-2014
20140239402FinFETs with Strained Well Regions - A device includes a substrate and insulation regions over a portion of the substrate. A first semiconductor region is between the insulation regions and having a first conduction band. A second semiconductor region is over and adjoining the first semiconductor region, wherein the second semiconductor region includes an upper portion higher than top surfaces of the insulation regions to form a semiconductor fin. The semiconductor fin has a tensile strain and has a second conduction band lower than the first conduction band. A third semiconductor region is over and adjoining a top surface and sidewalls of the semiconductor fin, wherein the third semiconductor region has a third conduction band higher than the second conduction band.08-28-2014
20140246695ISOLATION STRUCTURE OF SEMICONDUCTOR DEVICE - The invention relates to an isolation structure of a semiconductor device. An exemplary isolation structure for a semiconductor device comprises a substrate comprising a trench; a strained material in the trench, wherein a lattice constant of the strained material is different from a lattice constant of the substrate; an oxide layer of the strained material over the strained material; a high-k dielectric layer over the oxide layer; and a dielectric layer over the high-k dielectric layer filling the trench.09-04-2014
20140252469FinFETs with Strained Well Regions - A device includes a substrate and insulation regions over a portion of the substrate. A first semiconductor region is between the insulation regions and having a first conduction band. A second semiconductor region is over and adjoining the first semiconductor region, wherein the second semiconductor region includes an upper portion higher than top surfaces of the insulation regions to form a semiconductor fin. The second semiconductor region also includes a wide portion and a narrow portion over the wide portion, wherein the narrow portion is narrower than the wide portion. The semiconductor fin has a tensile strain and has a second conduction band lower than the first conduction band. A third semiconductor region is over and adjoining a top surface and sidewalls of the semiconductor fin, wherein the third semiconductor region has a third conduction band higher than the second conduction band.09-11-2014
20140284726Apparatus and Method for FinFETs - A FinFET device comprises an isolation region in a substrate, wherein the isolation region comprises a plurality of non-vertical sidewalls, a first V-shaped groove, a second V-shaped groove and a third V-shaped groove formed in the substrate, a first cloak-shaped active region over the first V-shaped groove, wherein a top surface of the first cloak-shaped active region comprises a first slope, a second cloak-shaped active region over the second V-shaped groove, wherein a top surface of the second cloak-shaped active region is triangular in shape and09-25-2014
20140357049Semiconductor Structures and Methods with High Mobility and High Energy Bandgap Materials - An embodiment is a structure comprising a substrate, a high energy bandgap material, and a high carrier mobility material. The substrate comprises a first isolation region and a second isolation region. Each of first and second isolation regions extends below a first surface of the substrate between the first and second isolation regions. The high energy bandgap material is over the first surface of the substrate and is disposed between the first and second isolation regions. The high carrier mobility material is over the high energy bandgap material. The high carrier mobility material extends higher than respective top surfaces of the first and second isolation regions to form a fin.12-04-2014
20150123144Semiconductor Structures and Methods with High Mobility and High Energy Bandgap Materials - An embodiment is a structure comprising a substrate, a high energy bandgap material, and a high carrier mobility material. The substrate comprises a first isolation region and a second isolation region. Each of first and second isolation regions extends below a first surface of the substrate between the first and second isolation regions. The high energy bandgap material is over the first surface of the substrate and is disposed between the first and second isolation regions. The high carrier mobility material is over the high energy bandgap material. The high carrier mobility material extends higher than respective top surfaces of the first and second isolation regions to form a fin.05-07-2015

Patent applications by Cheng-Hsien Wu, Hsin-Chu TW

Cheng-Hsien Wu, Hsinchu City TW

Patent application numberDescriptionPublished
20130049068FINFET DEVICE HAVING A CHANNEL DEFINED IN A DIAMOND-LIKE SHAPE SEMICONDUCTOR STRUCTURE - The present disclosure provides a FinFET device. The FinFET device comprises a semiconductor substrate of a first semiconductor material; a fin structure of the first semiconductor material overlying the semiconductor substrate, wherein the fin structure has a top surface of a first crystal plane orientation; a diamond-like shape structure of a second semiconductor material disposed over the top surface of the fin structure, wherein the diamond-like shape structure has at least one surface of a second crystal plane orientation; a gate structure disposed over the diamond-like shape structure, wherein the gate structure separates a source region and a drain region; and a channel region defined in the diamond-like shape structure between the source and drain regions.02-28-2013
20130119370STRAINED STRUCTURES OF SEMICONDUCTOR DEVICES - A strained structure of a semiconductor device is disclosed. An exemplary structure for a semiconductor device comprises a substrate comprising a major surface; a gate stack on the major surface of the substrate; a shallow trench isolation (STI) disposed on one side of the gate stack, wherein the STI is within the substrate; and a cavity filled with a strained structure distributed between the gate stack and the STI, wherein the cavity comprises one sidewall formed by the STI, one sidewall formed by the substrate, and a bottom surface formed by the substrate, wherein the strained structure comprises a SiGe layer and a first strained film adjoining the sidewall of the STI.05-16-2013
20130119405SEMICONDUCTOR DEVICE WITH ENHANCED STRAIN - The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor substrate. The semiconductor device includes a gate that is disposed over the substrate. The substrate has a recess. The semiconductor device includes a trench liner that is coated along the recess. The trench liner contains a semiconductor crystal material. The trench liner directly abuts the source/drain stressor device. The semiconductor device also includes a dielectric trench component that is disposed on the trench liner and filling the recess. The semiconductor device includes a source/drain stressor device that is disposed in the substrate. The source/drain stressor device is disposed between the gate and the trench liner.05-16-2013
20130168771Method of Forming CMOS FinFET Device - A CMOS FinFET device and method for fabricating a CMOS FinFET device is disclosed. An exemplary CMOS FinFET device includes a substrate including a first region and a second region. The CMOS FinFET further includes a fin structure disposed over the substrate including a first fin in the first region and a second fin in the second region. The CMOS FinFET further includes a first portion of the first fin comprising a material that is the same material as the substrate and a second portion of the first fin comprising a III-V semiconductor material deposited over the first portion of the first fin. The CMOS FinFET further includes a first portion of the second fin comprising a material that is the same material as the substrate and a second portion of the second fin comprising a germanium (Ge) material deposited over the first portion of the second fin.07-04-2013
20130248927CONTACT STRUCTURE OF SEMICONDUCTOR DEVICE - A contact structure for a semiconductor device includes a substrate comprising a major surface and a cavity. A bottom surface of the cavity is lower than the major surface. The contact structure also includes a strained material in the cavity, and a lattice constant of the strained material is different from lattice constant of the substrate. The contact structure also includes a first metal layer over the strained material, a dielectric layer over the first metal layer, and a second metal layer over the dielectric layer. The dielectric layer has a thickness ranging from 1 nm to 10 nm.09-26-2013
20130256799CMOS FINFET DEVICE AND METHOD OF FORMING THE SAME - A CMOS FinFET device and method for fabricating a CMOS FinFET device is disclosed. An exemplary CMOS FinFET device includes a substrate including a first region and a second region. The CMOS FinFET further includes a fin structure disposed over the substrate including a first fin in the first region and a second fin in the second region. The CMOS FinFET further includes a first portion of the first fin comprising a material that is the same material as the substrate and a second portion of the first fin comprising a III-V semiconductor material deposited over the first portion of the first fin. The CMOS FinFET further includes a first portion of the second fin comprising a material that is the same material as the substrate and a second portion of the second fin comprising a germanium (Ge) material deposited over the first portion of the second fin.10-03-2013
20140206167CONTACT STRUCTURE OF SEMICONDUCTOR DEVICE - A method of fabricating a semiconductor device comprises epitaxially-growing a strained material in a cavity of a substrate comprising a major surface and the cavity, the cavity being below the major surface. A lattice constant of the strained material is different from a lattice constant of the substrate. The method also comprises forming a first metal layer over the strained material, and forming a dielectric layer over the first metal layer, wherein the dielectric layer has a thickness ranging from 1 nm to 10 nm. The method further comprises forming a dummy poly-silicon over the dielectric layer, and forming an interlayered dielectric layer (ILD) surrounding the dummy poly-silicon. The method additionally comprises removing the dummy poly-silicon over the dielectric layer, and forming a second metal layer over the dielectric layer.07-24-2014
20150076558SEMICONDUCTOR STRUCTURE AND THE MANUFACTURING METHOD THEREOF - The present disclosure provides a FinFET. The FinFET includes a silicon-on-insulator (SOI) with an insulator; a plurality of fin structures on the insulator; an isolation on the insulator, and between two adjacent fin structures in the plurality of fin structures; and an oxide layer between each of the plurality of fin structures and the insulator, wherein the insulator comprises silicon germanium oxide. A method for manufacturing the FinFET includes forming a plurality of fin structures on a layer having a larger lattice constant than that of the fin structure by a patterning operation; oxidizing the fin structure and the layer to transform the layer into a first oxide layer; filling insulating material between adjacent fin structures; and etching the insulating material to expose a top surface and at least a portion of a sidewall of the fin structure.03-19-2015
20150129979SEMICONDUCTOR DEVICE WITH A STRAINED REGION AND METHOD OF MAKING - A semiconductor device with a strained region is provided. The semiconductor device includes a first dielectric layer, a second dielectric layer disposed over the first dielectric layer, the second dielectric layer having a first fin disposed therein and an interface disposed proximate the first fin. The interface includes a first oxide region disposed in the first dielectric layer and a second oxide region disposed in the second dielectric layer. The interface induces strain in a region of the semiconductor device. A method of making a semiconductor device with a strained region is also provided.05-14-2015

Patent applications by Cheng-Hsien Wu, Hsinchu City TW

Cheng-Hsien Wu, Burlingame, CA US

Patent application numberDescriptionPublished
20140235505RNA ARRAY COMPOSITIONS AND METHODS - Described herein are RNA arrays, and compositions and methods for generating RNA arrays, particularly high density RNA arrays. The disclosed methods for generating RNA arrays utilize template DNA arrays and RNA polymerase to generate RNA arrays. In some embodiments, the disclosed methods use an RNA polymerase and modified ribonucleosides to generate modified RNA arrays for various applications, e.g. RNA arrays having higher nuclease resistance, more conformationally stable RNA arrays, and higher binding affinity RNA aptamer arrays. In some embodiments, the disclosed methods are used to generate RNA bead arrays.08-21-2014

Cheng-Hsien Yang, Hsinchu TW

Patent application numberDescriptionPublished
20100014491SYSTEM AND METHOD FOR REINFORCING WIRELESS COMMUNICATION CAPABILITY WITHIN WIRELESS NETWORK GROUP - A method and system is provided to reinforce wireless communication capabilities between multiple network nodes of an wireless network group. The method and system first detects a wireless transmission capability between a first network node and a second network node. When the wireless transmission capability is lower than a threshold value, one set of reinforcing coordinates will be derived by introducing the first geographic information and the second geographic information. Afterwards, move a third network node to a position with the set of reinforcing coordinates to establish an alternative wireless transmission route between the first network note and second network node. Therefore, when an original wireless transmission route between any two network nodes is abnormal, the alternative wireless transmission route will be available in time and reduce the risks of losing transmission signals.01-21-2010
20100103841SYSTEM AND METHOD FOR WIRELESSLY CONNECTING DIVERSE AD-HOC NETWORK GROUPS - A wireless connection system and method are provided to connect diverse Ad-hoc network groups. A first Ad-hoc network group has a first network node and a first edge node wirelessly connecting with each other. The second Ad-hoc network group has a second network node and a second edge node wirelessly connecting with each other without connecting the first Ad-hoc network group. The first and second edge nodes have multiple wireless modules respectively. One of the wireless modules is used to connect wireless with other network nodes in the same Ad-hoc network group. The rest extra wireless module(s) is used to connect wirelessly with another extra wireless module(s) of the edge node(s) in different Ad-hoc network group(s). Therefore, the independent first and second Ad-hoc network groups are now capable of wirelessly connecting with each other.04-29-2010
20100103909DATA PACKET, SYSTEM AND METHOD FOR MULTIPLE NODES TRANSMITTING UNDER AD-HOC NETWORK ARCHITECTURE - A system and method are provided for multiple nodes to wirelessly transmit in an Ad-hoc network architecture. First of all, an integration module of the system integrates a multi-node transmission protocol into a reservation column of a data packet. Next, an initial node of the system transmits the integrated data packet. Afterwards, according to the multi-node transmission protocol, one or more bridge node of the system receives the integrated data packet transmitted from the initial node. And finally, according to the multi-node transmission protocol, a destination node of the system receives the integrated data packet transmitted from the bridge node. By means of the proposed system and method, data transmission between multiple nodes is achieved under the Ad-hoc network architecture.04-29-2010
20100189083WIRELESS LOCAL NETWORK RECONNECTING SYSTEM AND METHOD - A wireless local network reconnecting system and method is provided. The method detects a connection-lost signal generated when a network node of the wireless local network group lost connection. A reconnecting coordinate is calculated according to the connection-lost signal and transmitted to the connection-lost network node through an external communication network. Afterwards, the method guides the connection-lost network node to move to the reconnecting coordinate and reconnect with the wireless local network group wirelessly. Since the external communication network is used to connect with the connection-lost network node, the connection-lost network node is able to reconnect with the wireless local network group through the proposed method.07-29-2010
Website © 2015 Advameg, Inc.