Patent application number | Description | Published |
20080304601 | METHOD AND APPARATUS FOR PROCESSING SATELLITE POSITIONING SYSTEM SIGNALS TO OBTAIN TIME INFORMATION - A method and apparatus for processing satellite positioning system signals at a mobile receiver is described. In one example, first bit-transitions within satellite navigation data transmitted by at least one satellite are estimated at the mobile receiver. A bit pattern is generated that includes a known preamble and an extended preamble. The extended preamble includes expected data bits within the satellite navigation data. The first bit-transitions are compared with second bit-transitions of the bit pattern to generate match data. | 12-11-2008 |
20090146871 | METHOD AND APPARATUS FOR MANAGING TIME IN A SATELLITE POSITIONING SYSTEM - Method and apparatus for time management in a position location system is described. In one example, a time relation is received at a server. The time relation includes a relationship between an air-interface time of a base station and a satellite time for a satellite constellation from a first satellite positioning system (SPS) receiver. The time relation is then stored in the server. In another example, satellite time is determined at a first time for a satellite constellation at an SPS receiver. A time offset is determined between the satellite time and an air-interface time of a base station. The time offset is stored within the SPS receiver. A position of the SPS receiver is computed at a second time using satellite measurements and the stored time offset. | 06-11-2009 |
20090153399 | METHOD AND APPARATUS FOR PROCESSING SATELLITE POSITIONING SYSTEM SIGNALS - Method and apparatus for processing a satellite positioning system (SPS) signal is described. In one example, a timing reference related to a SPS time of day is obtained from a wireless communication signal received by a mobile receiver. A bias in a local clock of the mobile receiver with respect to a frame timing of a repeating code broadcast by the satellite is compensated for in response to the timing reference. An expected code delay window is obtained for the SPS signal at the mobile receiver. The SPS signal is correlated with a reference code within the expected code delay window. In another example, an expected code delay window is obtained at the mobile receiver. The mobile receiver selects a sampling resolution in response to a size of the expected code delay window. The SPS signal is sampled at the selected sampling resolution and then correlated with a reference code. | 06-18-2009 |
20090201196 | METHOD AND APPARATUS FOR GENERATING AND DISTRIBUTING SATELLITE TRACKING INFORMATION - A method and apparatus for generating and distributing satellite tracking data to a remote receiver is disclosed. The method for includes extracting from satellite-tracking data initial model parameters representing a current orbit of at least one satellite-positioning-system satellite, computing an orbit model using the initial model parameters, wherein a duration of the orbit model is longer than a duration of the satellite-tracking data, comparing, for an overlapping period of time, the orbit model to the satellite-tracking data; and adjusting the orbit model to match the satellite tracking data for the overlapping period of time so as to form an adjusted orbit model. The adjusted orbit model comprises the long-term-satellite-tracking data. | 08-13-2009 |
20090231192 | METHOD AND SYSTEM FOR GENERATING TEMPORARY EPHEMERIS - Aspects of a method and system for generating temporary ephemeris may include determining one or more positions of a satellite receiver based on a plurality of satellite signals received from a plurality of satellites for which complete ephemeris data has been received at the satellite receiver. Temporary ephemeris data may be generated from the determined one or more positions of the satellite receiver and one or more satellite signals from one or more satellites with incomplete ephemeris data. One or more estimated positions of the satellite receiver may be determined based on the generated temporary ephemeris and a second plurality of satellite signals, wherein at least one of the second plurality of satellite signals is associated with the one or more satellites with incomplete ephemeris data. The temporary ephemeris data may be generated by generating a translated satellite position and a rate of change of an associated receiver clock corrected pseudorange. | 09-17-2009 |
20090245167 | METHOD AND APPARATUS FOR PROCESSING LOCATION SERVICE MESSAGES IN A SATELLITE POSITION LOCATION SYSTEM - Method and apparatus for processing location service messages in a satellite position location system is described. In one example, a mobile receiver includes a satellite signal receiver, wireless circuitry, and at least one module. The satellite signal receiver is configured to receive satellite positioning system signals, such as Global Positioning System (GPS) signals. The wireless circuitry is configured to communicate location service messages between the mobile receiver and a server through a cellular communication network. The location service messages may include any type of data related to A-GPS operation, such as assistance data, position data, request and response data, and the like. The at least one module is configured to provide a user-plane interface and a control-plane interface between the satellite signal receiver and the wireless transceiver. The at least one module is capable of processing location service messages communicated using either the control-plane signaling or user-plane signaling mechanisms. | 10-01-2009 |
20090262789 | METHOD AND APPARATUS FOR PERFORMING SIGNAL CORRELATION USING HISTORICAL CORRELATION DATA - A method and apparatus for estimating a satellite signal parameter in a satellite positioning system receiver is described. In an example, a plurality of correlation results between a satellite signal and a reference signal is generated in response to a command from a processor. At least one satellite signal parameter is estimated from the plurality of correlation results using a co-processor integrated within the satellite positioning system receiver. The at least one satellite signal parameter is then provided to the processor. | 10-22-2009 |
20090304051 | METHOD AND APPARATUS FOR REDUCING THE TIME REQUIRED TO ACQUIRE A GPS SIGNAL - A method of correlating a digital communications signal is described. In an example, a window is defined equal to a portion of an epoch of the digital communication signal. The digital communication signal is then correlated across the window. A determination is made as to whether a correlation peak results from the correlating. Timing parameters are then established for receiving additional digital communication signals in response to presence of the correlation peak. | 12-10-2009 |
20090309794 | METHOD AND APPARATUS FOR ENHANCED AUTONOMOUS GPS - Method and apparatus for locating position of a remote receiver is described. In one example, long term satellite tracking data is obtained at a remote receiver. Satellite positioning system (SPS) satellites are detected. Pseudoranges are determined from the remote receiver to the detected SPS satellites. Position of the remote receiver is computed using the pseudoranges and the long term satellite tracking data. SPS satellites may be detected using at least one of acquisition assistance data computed using a previously computed position and a blind search. Use of long term satellite tracking data obviates the need for the remote receiver to decode ephemeris from the satellites. In addition, position of the remote receiver is computed without obtaining an initial position estimate from a server or network. | 12-17-2009 |
20090315768 | METHOD AND APPARATUS FOR PROCESSING A SATELLITE POSITIONING SYSTEM SIGNAL USING A CELLULAR ACQUISITION SIGNAL - Method and apparatus for processing satellite positioning system signals is described. In one example, assistance data is received at a mobile receiver from a first wireless network using a wireless transceiver. The first wireless network may be a non-synchronized cellular network. A time synchronization signal is obtained from a second wireless network at the mobile receiver using a wireless receiver. A time offset is then determined in response to the time synchronization signal. Satellite signals are processed at the mobile receiver using the assistance data and the time offset. The second wireless network may be a synchronized cellular network or may be a non-synchronized cellular network that is externally synchronized to GPS time. | 12-24-2009 |
20090315770 | METHOD AND APPARATUS FOR PROCESSING SATELLITE SIGNALS AT A SATELLITE POSITIONING SYSTEM RECEIVER - Method and apparatus for processing satellite signals in an SPS receiver is described. In one example, the satellite signals are correlated against pseudorandom reference codes to produce correlation results. A determination is made whether the SPS receiver is in a motion condition or a stationary condition. The correlation results are coherently integrated in accordance with a coherent integration period. The coherent integration period is a value that depends upon the motion condition of the SPS receiver. | 12-24-2009 |
20100019960 | Method and Apparatus for Mitigating Multipath Effects at a Satellite Signal Receiver Using a Sequential Estimation Filter - A method and apparatus for mitigating multipath effects in a satellite signal receiver is described. In one example, measured pseudoranges are obtained from the satellite signal receiver to a plurality of satellites. For each measured pseudorange: an expected pseudorange is derived from a sequential estimation filter in the satellite signal receiver. The measured pseudorange and the expected pseudorange are differenced to compute a pseudorange residual. The measured pseudorange is applied to the sequential estimation filter only if the pseudorange residual is within a window. | 01-28-2010 |
20100039321 | METHOD AND SYSTEM FOR CALIBRATING GROUP DELAY ERRORS IN A COMBINED GPS AND GLONASS RECEIVER - Aspects of a method and system for calibrating group delay errors in a combined GPS and GLONASS receiver are provided. The combined GPS and GLONASS receiver may be enabled to receive both GPS signals and GLONASS signals. GPS based navigation information may be calculated based on the received GPS signals. Group delay errors resulted by the received GLONASS signals may be calibrated based on the GPS based navigation information. Respective GLONASS signals may be estimated in responsive to the GPS based navigation information. Corresponding clock information associated with the estimated GLONASS signals may be transferred from the clock information of the GPS based navigation information. A calibration signal may be generated by comparing the estimated GLONASS signals with the received GLONASS signals. The calibration signal may be processed by an error state Kalman filter and may be used to offset the group delay errors in the combined GPS and GLONASS receiver. | 02-18-2010 |
20100066601 | METHOD AND SYSTEM FOR DETERMINING TIME IN A SATELLITE POSITIONING SYSTEM - Method and apparatus for receiving an estimate of time in a satellite signal receiver receives an estimate of time from a server and compensates for error of a clock in the satellite signal receiver using the estimate of time. The output of the compensated clock is used when computing a position of the satellite signal receiver. The estimate of time is received using a network time protocol (NTP), a simple network time protocol (SNTP), or by one-way broadcast from the server. | 03-18-2010 |
20100066605 | METHOD AND SYSTEM FOR DOPPLER ESTIMATION - Aspects of a method and system for Doppler estimation may include generating, in a GNSS receiver operating in a duty-cycle mode, a plurality of lag-m products that may be based on a plurality of correlation coefficients corresponding to one or more received signals, wherein the plurality of correlation coefficients may be generated during an active period of the duty-cycle mode of operation. A Doppler frequency may be estimated based on the plurality of lag-m products. The GNSS receiver may be compliant with one or more standards comprising GALILEO, GLONASS, IRNSS, and BEIDOU. The active period of the duty-cycle mode may be chosen arbitrarily from a range of 1% to 99%. | 03-18-2010 |
20100066606 | MULTI-FUNCTION APPLIANCE FOR A SATELLITE NAVIGATION DATA DISTRIBUTION SYSTEM - A multi-function appliance for use in a satellite navigation data distribution system is described. A computer includes an input/output interface and a memory the computer is configured with a plurality of modules. The plurality of modules includes a satellite signal receiver, a packetizer, a network interface, a concentrator, and a decoder. The satellite signal receiver is configured to obtain satellite navigation data from satellite signals. The packetizer is configured to packetize satellite navigation data to produce a reference packet stream. The network interface is configured to transmit packet streams towards a network. The concentrator is configured to remove duplicate packets within reference packet streams to generate a combined packet stream. The decoder is configured to decode satellite data from packet streams. In this manner, the computer may be configured to perform a reference station function, a hub function, or a server function in the satellite navigation data distribution network. | 03-18-2010 |
20100066607 | METHOD AND APPARATUS FOR PROCESSING SATELLITE SIGNALS AT A SATELLITE POSITIONING SYSTEM RECEIVER - Method and apparatus for processing satellite signals in an SPS receiver is described. In one example, the satellite signals are correlated against pseudorandom reference codes to produce correlation results. A determination is made whether the SPS receiver is in a motion condition or a stationary condition. The correlation results are coherently integrated in accordance with a coherent integration period. The coherent integration period is a value that depends upon the motion condition of the SPS receiver. | 03-18-2010 |
20100117900 | METHOD AND SYSTEM FOR MAINTAINING A GNSS RECEIVER IN A HOT-START STATE - Aspects of a method and system for maintaining a GNSS receiver in a hot-start state are provided. A GNSS receiver in a standby mode may transition from a sleep state to a wakeup state to acquire ephemeris from, for example, GPS signals, GALILEO signals, and/or GLONASS signals. The acquired ephemeris may be stored and utilized for the GNSS receiver to generate a navigation solution in a normal mode. The GNSS receiver may transition from the normal mode to the sleep state or the wakeup state in standby mode. A sleep period and a wakeup period for the full sleep-wakeup cycle in the standby mode may be predetermined or dynamically adjusted based on required QoS, quality of satellite signals, and/or user inputs. The sleep period and the wakeup period may be selected in a way to ensure a valid and complete ephemeris to be acquired. | 05-13-2010 |
20100123623 | Method for adjusting a measurement cycle in a satellite positioning system signal receiver - A method for adjusting a measurement cycle in a satellite signal receiver is described. The method includes adjusting a measurement cycle in a satellite signal receiver by computing a position state comprising at least one of a velocity and a heading of the satellite signal receiver, detecting a change in the position state, and automatically adjusting a frequency of said measurement cycle in response to the change in the position state. | 05-20-2010 |
20100149033 | METHOD AND SYSTEM FOR POWER MANAGEMENT FOR A FREQUENCY SYNTHESIZER IN A GNSS RECEIVER CHIP - A frequency synthesizer in a GNSS receiver chip enables duty cycling operation of the frequency synthesizer. The frequency synthesizer is cycled on to generate required clock signals for the GNSS receiver chip, and cycled off during a measurement duty cycle comprising measurement available intervals and measurement unavailable intervals. A reference clock inputted to the frequency synthesizer is on during the measurement duty-cycle. During the measurement available intervals, the frequency synthesizer is cycled on to generate the required clock based on the reference clock. During the measurement unavailable intervals, the frequency synthesizer is cycled off and clock timing is maintained based on the reference clock. A number of elapsed clock cycles of the reference clock is captured for a measurement unavailable interval and transferred to a clock offset. The GNSS receiver chip processes signals received using the required clock and the clock offset in a following measurement available interval. | 06-17-2010 |
20100151853 | METHOD AND APPARATUS FOR LOCATING POSITION OF A MOBILE DEVICE IN AN ASSISTED SATELLITE POSITIONING SYSTEM - Method and apparatus for locating position of a mobile device in an assisted satellite positioning system is described. In one example, satellite measurement data is obtained from a plurality of satellites at a mobile device. Position of the mobile device is computed using the satellite measurement data. The position is sent to a cellular device via a wireless ad hoc network. In one example, the wireless ad hoc network comprises a BLUETOOTH communication link. In one example, the mobile device is configured to receive assistance data from a position server through the wireless ad hoc network. For example, the mobile device may comprise a housing configured to plug into a cigarette lighter connector of an automobile and the cellular device may comprise a cellular telephone without location-determination capabilities (i.e., the cellular telephone does not include an integrated GPS receiver). | 06-17-2010 |
20100156705 | METHOD AND APPARATUS FOR DETERMINING ABSOLUTE TIME-OF-DAY IN A MOBILE-ASSISTED SATELLITE POSITIONING SYSTEM - A method and apparatus for determining time-of-day in a mobile receiver is described. In one example, expected pseudoranges to a plurality of satellites are obtained. The expected pseudoranges are based on an initial position of the mobile receiver and an initial time-of-day. Expected line-of-sight data to said plurality of satellites is also obtained. Pseudoranges from said mobile receiver to said plurality of satellites are measured. Update data for the initial time-of-day is computed using a mathematical model relating the pseudoranges, the expected pseudoranges, and the expected line-of-sight data. The expected pseudoranges and the expected line-of-sight data may be obtained from acquisition assistance data transmitted to the mobile receiver by a server. Alternatively, the expected pseudoranges may be obtained from acquisition assistance data, and the expected line-of-sight data may be computed by the mobile receiver using stored satellite trajectory data, such as almanac data. | 06-24-2010 |
20100156714 | METHOD AND APPARATUS FOR MONITORING THE INTEGRITY OF SATELLITE TRACKING DATA USED BY A REMOTE RECEIVER - A method and apparatus for monitoring the integrity of satellite tracking data used by a remote receiver is described. In one example, a first set of satellite tracking data is received at a server. Integrity data for a second set of satellite tracking data is generated using the first set of satellite tracking data. The integrity data is then transmitted to at least one remote receiver having the second set of satellite tracking data. | 06-24-2010 |
20100182196 | METHOD AND APPARATUS FOR PROVIDING A GLOBAL SECURE USER PLANE LOCATION (SUPL) SERVICE - A method and apparatus for providing assistance data for satellite positioning system receivers utilizing a secure user plane location (SUPL) service. In one embodiment, the assistance data is supplied by a global secure user plane location center that contains global assistance data. | 07-22-2010 |
20100182455 | METHOD AND APPARATUS FOR TAGGING DIGITAL PHOTOGRAPHS WITH GEOGRAPHIC LOCATION DATA - A method and apparatus for tagging digital photographs with geographic location data is described. In one example, a digital camera includes an imaging unit, a radio frequency/intermediate frequency (RF/IF) front end, and a memory. The imaging unit is configured to generate digital photographs. The RF/IF front end is configured to receive satellite positioning system signals and generate digital samples therefrom. The memory is configured to store a set of digital samples generated by the RF/IF front end with each digital photograph generated by the imaging unit. The digital samples produced by the RF/IF front end may be intermediate frequency samples and may include both in-phase samples and quandrature samples. Notably, the memory stores digital samples of GPS signals, rather than location data. The digital GPS samples may be processed by an off-line processing unit, such as a computer, to produce location data. | 07-22-2010 |
20100182991 | METHOD AND SYSTEM FOR PRESERVING CONTENT TIMING ACROSS FEMTOCELL INTERFACES VIA TIMESTAMP INSERTION - Aspects of a method and system for preserving content timing across femtocell interfaces via timestamp insertion are provided. In this regard, a femtocell may receive a first time-stamped packet via a first interface and transcode the time-stamped packet. The femtocell may buffer the transcoded packet based on a time-stamp recovered from the packet and may transmit the buffered transcoded packet via a second interface. One of the first interface and the second interface may utilize the Internet Protocol. One of the first interface and the second interface may be a non-cellular interface and the other interface may be a cellular interface. The femtocell may be operable to generate a timestamp corresponding to a time instant at which a time-stamped packet arrived via the first interface or the second interface. The timestamp may be referenced to a clock within a cellular enabled communication devices communicatively coupled to the femtocell. | 07-22-2010 |
20100184405 | USER PROFILE BASED CONTENT DELIVERY BETWEEN A STANDARD HANDSET AND A FEMTOCELL DEVICE - An access device receives content from a broadband IP network to be communicated to a wireless handset over a radio access network (RAN). The access device acquires a user profile utilized in the radio network for the wireless handset. Based on the acquired user profile, the access device determines transmission parameters utilized for communicating the received content to the wireless handset using an air interface protocol over the radio access network. A security level and/or a security protocol, a transcoding mechanism, and/or transmission bit rate are determined based on the acquired user profile. A resolution, transmission bit rate, coding structure, security protocol and/or security level for transmitting the received content to the wireless handset are adjusted based on the acquired user profile. Alternately, the access device is enabled to receive content from the wireless handset using a transmission profile determined based on user profile of the wireless handset. | 07-22-2010 |
20100184411 | METHOD AND SYSTEM FOR CONTROLLING DATA DISTRIBUTION VIA CELLULAR COMMUNICATIONS UTILIZING AN INTEGRATED FEMTOCELL AND SET-TOP-BOX DEVICE - Aspects of a method and system for controlling data distribution via cellular communications with an integrated femtocell and set-top-box (IFSTB) device are provided. In this regard, a cellular enabled communication device may detect when it is within cellular communication range of a femtocell. Upon detection of the femtocell, the cellular enabled communication device may communicate instructions to a content source instructing the content source to deliver multimedia content to the femtocell. In instances that multimedia content is already being delivered to the cellular enabled communication device prior to the detection, the instructions from the cellular enabled communication device may instruct the content source to redirect the multimedia content to the femtocell. In this regard, the multimedia content may be delivered from the content source to the cellular enabled communication device via the femtocell. The femtocell may deliver at least a portion of the multimedia content to other communication devices. | 07-22-2010 |
20100184414 | METHOD AND SYSTEM FOR PROCESSING AND DELIVERY OF MULTIMEDIA CONTENT BY AN INTEGRATED FEMTOCELL AND SET-TOP-BOX DEVICE - Aspects of a method and system for processing and delivery of multimedia content by an integrated femtocell and set-top-box device are provided. In this regard, a cellular enabled communication device may communicate its capabilities, preferences, and/or settings to an integrated femtocell and set-top-box device, wherein the integrated femtocell and set-top-box device may processes multimedia content for the cellular enabled communication device based on the capabilities, preferences, and/or settings of the cellular enabled communication device. Additionally, the cellular enabled communication device may receive the processed multimedia content from the integrated femtocell and set-top-box device by the cellular enabled communication device. The capabilities, preferences, and/or settings may comprise multimedia processing capabilities, preferences, and/or settings, communication capabilities, preferences, and/or settings, and/or power conditions, preferences, and/or settings. The integrated femtocell and set-top-box device may process the multimedia content to generate a plurality of subset datastreams. | 07-22-2010 |
20100184423 | METHOD AND SYSTEM FOR INSTALLATION AND CONFIGURATION OF A FEMTOCELL - Aspects of a method and system for installation and configuration of a femtocell are provided. In this regard, information for configuring a femtocell to operate in a specified location may be received by the femtocell and may be utilized to configure one or more parameters of the femtocell. Once the femtocell is operational the parameters may be updated and/or optimized based on one or both of characterizations of cellular signals and/or information received from a femtocell registry. In this manner the femtocell may be reconfigured utilizing the updated and/or optimized parameters. The one or more parameters may be configured based on attributes of the location in which the femtocell is to operate. The one or more parameters may be configured based on a location, number, and/or coverage area of other femtocells. The parameters may comprise one or more of: power levels, frequency of operation, and/or antenna beam pattern. | 07-22-2010 |
20100184431 | Method and System for Registering Femtocells to Provide Service - Aspects of a method and system for registering femtocells to provide service are provided. In this regard, a communication device may be operable to determine a plurality of femtocells within a vicinity of its location. The communication device may be operable to receive information communicated from one or more of the plurality of femtocells, which are managed by a femtocell management entity. One or more of the plurality of femtocells may be selected for transmitting and/or receiving cellular data based on the communicated information. The communicated information may comprise one or more of global navigation system satellite (GNSS) coordinates, an identification number, potential interference, power levels, location, associated communication devices, and/or directionality of antennas of the one or more femtocells. | 07-22-2010 |
20100184450 | METHOD AND SYSTEM FOR CONTROLLING PARAMETERS OF A COMMUNICATION CHANNEL BETWEEN A FEMTOCELL AND A CELLULAR ENABLED COMMUNICATION DEVICE - Aspects of a method and system for controlling parameters of a communication channel between a femtocell and a cellular enabled communication device are provided. In this regard, characteristics of a cellular communication channel established between a cellular enabled communication device and the femtocell may be communicated to a network management entity. The network management entity may determine whether to adjust one or more parameters of the cellular communication channel based on the characteristics. The femtocell and/or the cellular enabled communication device may adjust the one or more parameters based on the determination by the management entity. The characteristics may be determined by the femtocell and/or the cellular enabled communication device. The characteristics may comprise one or more of signal strength, bit error rate, packet error rate, and/or available bandwidth. The parameters may comprise one or more of data rate modulation scheme, error coding scheme, and/or transmitted power levels. | 07-22-2010 |
20100186027 | METHOD AND SYSTEM FOR DATA PROCESSING IN A DEVICE WITH INTEGRATED SET-TOP-BOX AND FEMTOCELL FUNCTIONALITY - Aspects of a method and system for data processing in a device with integrated set-top-box and femtocell functionality are provided. Data may be received via an integrated femtocell and set-top-box device and may be synchronously processed, utilizing a common clock, to perform one or more femtocell functions and/or set-top-box functions. The common clock may be derived from global navigation satellite system signals. The integrated femtocell and set-top-box device may convert the received data from a first to a second format. The converted data may be transmitted to a cellular enabled communication device via a cellular transmitter within said integrated femtocell and set-top-box device and/or to a multimedia device via a multimedia interface within said integrated femtocell and set-top-box device. The received data may comprise multimedia content. The integrated femtocell and set-top-box device may be operable to encode, decode, transcode, encrypt, decrypt, scramble, descramble, and present the received multimedia content. | 07-22-2010 |
20100189084 | METHOD AND SYSTEM FOR OPTIMAL CONTROL OF DATA DELIVERY PATHS FOR A FEMTOCELL NETWORK - A network controller within a femtocell may be operable to control communication of data among devices within a communication system comprising the femtocell and one or more other femtocells, end-point devices, base stations and/or access points and with devices external to the communication system. The network controller may receive and/or analyze status, measurements and/or operating constraints of one or more of the devices. Quality of service constraints, latency constraints, data type constraints and/or security constraints for communication of the data may be determined. The network controller may allocate physical and/or logical resources, may control security and/or quality of service and/or may allocate bandwidth for the communication of the data. The network controller may assign one or more of the devices comprised by the communication system to handle the communication of the data. The data may be communicated via wired, optical and/or wireless interfaces. | 07-29-2010 |
20100189085 | METHOD AND SYSTEM FOR HIGH RELIABILITY DELIVERY OF CONTENT TO A PLURALITY OF USERS VIA A PLURALITY OF FEMTOCELLS - A cellular enabled device may be operable to receive replicas of content that are communicated from a plurality of femtocells via transmit diversity. The content may comprise voice, video and/or data. A location of the cellular enabled device may be determined and/or communicated to each of the plurality of femtocells. Synchronization may enable the transmission of the content replicas based on the location of the cellular enabled device. Transmission times of the content replicas may be adjusted based on a location of the cellular enabled device. Transmission power and/or gain of the content replicas that are transmitted from each of the plurality of femtocells may be adjusted based on the location of the cellular enabled device. The content replicas may be received via different ones of a plurality of wireless communication standards. | 07-29-2010 |
20100203827 | METHOD AND APPARATUS FOR MITIGATING INTERFERENCE IN A SATELLITE SIGNAL RECEIVER - A method and apparatus for mitigating interference in a satellite signal receiver is described. The satellite signal receiver receives satellite signals from a plurality of satellites. In one example, data transmission of a wireless transceiver operating in proximity to the satellite signal receiver is monitored. A control signal is transmitted to the satellite signal receiver upon occurrence of data transmission from the wireless transceiver. Signal integration within the satellite signal receiver is then gated is response to the control signal. In another example, one or more values of satellite signal samples are selected from a plurality of possible values. A percentage of satellite signal samples having the one or more selected values is monitored over a predefined period. Signal integration within the satellite signal receiver is gated in response to the percentage exceeding a predefined threshold. In yet another example, a gain setting of an automatic gain control circuit within the satellite signal receiver is adjusted in response to detection of interference. | 08-12-2010 |
20100210239 | SERVICE MOBILITY VIA A FEMTOCELL INFRASTRUCTURE - Aspects of a method and system for service mobility via a femtocell infrastructure are provided. In this regard, a mobile cellular enabled communication device may detect a femtocell operable to deliver content for one or more services to the mobile cellular enabled communication device, where the one or more services may be provided via a set-top-box communicatively coupled to the femtocell. The mobile cellular enabled communication device may communicate a user profile to the femtocell, wherein information in the profile may be utilized by the set-top-box to authenticate and/or authorize access to the services by the mobile cellular enabled communication device and thus the mobile cellular enabled communication device may receive the content from the set-top-box based on the authentication and/or authorization. The content may comprise voice, video, data, text and/or still images. The mobile cellular enabled communication device may detect the femtocell by receiving one or broadcast messages from the femtocell. | 08-19-2010 |
20100215029 | MULTICASTING OR BROADCASTING VIA A PLURALITY OF FEMTOCELLS - Aspects of a method and system for servicing a plurality of users via a plurality of femtocells are provided. In this regard, a cellular enabled communication device may receive portions of a datastream from a plurality of femtocells, reconstruct the datastream from the received portions of the datastream, and process the reconstructed datastream for presentation to a user of the cellular enabled communication device. The received portions may be buffered in the cellular enabled communication device. The portions of the datastream may be associated with a plurality of CDMA channel access codes. The portions of the datastream may be received via a plurality of cellular frequencies. The portions of the datastream may be received during a plurality of TDMA timeslots. Portions of the datastream may be received from a cellular base station. Portions of the datastream may be received from a WiMAX base station. | 08-26-2010 |
20100220692 | METHOD AND SYSTEM FOR NETWORK SYNCHRONIZATION VIA A FEMTOCELL - Aspects of a method and system for communication are provided. In this regard, a femtocell may receive messages from a plurality of different sources comprising one or more other femtocells, one or more cellular enabled communication devices, and one or more non-cellular network nodes. The femtocell may select, based on the received messages, a master clock within one of the plurality of different sources as a master clock for synchronization of the plurality of different sources. A femtocell clock, a global navigational satellite signal (GNSS) clock, a cellular base station clock, or a cellular enabled communication device clock may be selected as the master clock. The femtocell may transmit and/or receive synchronization messages to and/or from the one or more cellular enabled communication devices and the one or more non-cellular network nodes. | 09-02-2010 |
20100220731 | METHOD AND SYSTEM FOR SUPPORTING A PLURALITY OF PROVIDERS VIA A SINGLE FEMTOCELL - Aspects of a method and system for supporting a plurality of providers via a single femtocell are provided. In this regard, a femtocell may determine characteristics of one or more VLANs to which it is virtually communicatively coupled via a non-cellular connection and via a cellular connection. Based on the determined characteristics of the one or more VLANs, a cellular transmitter and/or receiver of the femtocell may be controlled to transmit and/or receive packets belonging to the one or more VLANs via the non-cellular connection and/or via the cellular connection. The characteristics of the one or more VLANs may comprise one or more of: cellular standards utilized by the one or more VLANs, cellular frequencies utilized in the one or more VLANs, access technologies utilized by the one or more VLANs, and a duplexing method utilized by the one or more VLANs. | 09-02-2010 |
20100222054 | METHOD AND SYSTEM FOR CONTROLLING ACCESS AND UTILIZATION OF FEMTOCELLS VIA A NETWORK BASED SERVICE - Aspects of a method and system for controlling access and utilization of femtocells via a network based service are provided. In this regard, a femtocell management entity communicatively coupled to a network and operable to manage one or more femtocells may be accessed via an end-user communication device. In this manner, the femtocell(s) may be managed via the end-user device such as one of the cellular enabled communication devices. The femtocell management entity may enable establishing one or more SLAs between the femtocell(s) and the cellular enabled communication device(s). The SLA(s) may enable the cellular enabled communication device(s) to establish one or more cellular communication channels with the femtocell(s). The SLA(s) may determine when the cellular communication channels may be established. The SLA(s) may determine how a femtocell owner/operator may be compensated for providing cellular service. The femtocell(s) may be accessed utilizing Internet Protocol. | 09-02-2010 |
20100222069 | METHOD AND SYSTEM FOR MITIGATING INTERFERENCE AMONG FEMTOCELLS VIA INTELLIGENT CHANNEL SELECTION - Aspects of a method and system for mitigating interference among femtocells via intelligent channel selection are provided. In this regard, signals which may interfere with cellular communications between a femtocell and a cellular communication device may be detected via the femtocell. Based on the detection, the femtocell may be configured to transmit and/or receive signals on one or more frequencies and/or channels. The one or more frequencies and/or channels may be determined in the femtocell and/or in a network management entity. Detecting interfering signals and configuring the one or more femtocells may occur periodically, upon installation of a femtocell, upon power-up of a femtocell, and/or upon command from a network administrator. The results of the detection may be communicated to one or more other femtocells and/or to a network management entity. | 09-02-2010 |
20100225537 | METHOD AND APPARATUS FOR PROCESSING A SATELLITE POSITIONING SYSTEM SIGNAL USING A CELLULAR ACQUISITION SIGNAL - Method and apparatus for processing satellite positioning system signals is described. In one example, assistance data is received at a mobile receiver from a first wireless network using a wireless transceiver. The first wireless network may be a non-synchronized cellular network. A time synchronization signal is obtained from a second wireless network at the mobile receiver using a wireless receiver. A time offset is then determined in response to the time synchronization signal. Satellite signals are processed at the mobile receiver using the assistance data and the time offset. The second wireless network may be a synchronized cellular network or may be a non-synchronized cellular network that is externally synchronized to GPS time. | 09-09-2010 |
20100238069 | METHOD AND APPARATUS FOR OBTAINING SATELLITE TRAJECTORY DATA AT A SATELLITE POSITIONING SYSTEM RECEIVER - Method and apparatus for locating position of a mobile receiver is described. In one embodiment, satellite measurements are obtained at the mobile receiver for a plurality of satellites in a satellite positioning system constellation. Satellite trajectory data is obtained at the mobile receiver from a server. Ephemeris data is obtained at the mobile receiver from at least one satellite of the plurality of satellites. Position is computed for the mobile receiver using the satellite measurements, the satellite trajectory data, and the ephemeris data. | 09-23-2010 |
20100238836 | METHOD AND SYSTEM FOR TIMELY DELIVERY OF MULTIMEDIA CONTENT VIA A FEMTOCELL - Aspects of a method and system for timely delivery of multimedia content via a femtocell are provided. In this regard, a femtocell may receive data via an upstream path and transmit data via a downstream path. One of the upstream path and downstream path may comprise a cellular path and the other may comprise a non-cellular path. One or both of the upstream path and the downstream path may be audio video bridging (AVB) paths. Data may be stored in the femtocell based on timing characteristics of one or both of the upstream path and the downstream path. Data may be delivered to the femtocell utilizing best effort delivery and the data may be forwarded by the femtocell with guaranteed quality of service. Resources in the femtocell may be reserved and/or synchronized, utilizing AVB protocols, for communication of one or more data streams. | 09-23-2010 |
20100246386 | Method and System for Communicating Data Via a Mesh Network of Interconnected Femtocells - Aspects of a method and system for communicating data via a mesh network of interconnected femtocells are provided. In this regard, a plurality of femtocells and/or base stations may be interconnected to form a mesh network. A cellular enabled communication device may be enabled to communicate data to a first of the plurality of interconnected femtocells. The data may be routed by one or more other of the plurality of interconnected femtocells within the mesh network via one or more dynamically determined routes. The one or more dynamically determined routes may be determined based on one or more of a type of the communicated data, a quality of service (QoS) requested by the cellular enabled communication device for communicating the data and/or a cost associated with the routing of the data by the one or more other of the plurality of interconnected femtocells within the mesh network. | 09-30-2010 |
20100246482 | Method and System for Dynamic Adjustment of Power and Frequencies in a Femtocell Network - Aspects of a method and system for dynamic adjustment of power, antenna direction and frequencies in a femtocell network are provided. In this regard, a communication system may comprise a plurality of femtocells, one or more base stations, and a femtocell management entity that coordinates operation of the plurality of femtocells. One or more parameters may be communicated from one of the plurality of femtocells and/or one or more base stations to the femtocell management entity. The femtocell management entity may be enabled to utilize the one or more parameters to determine configuration information for one of the plurality of femtocells and/or for one or more remaining ones of the plurality of femtocells. One of the plurality of femtocells may be enabled to receive the determined configuration information from the femtocell management entity. One of the plurality of femtocells may be configured utilizing the received determined configuration information. | 09-30-2010 |
20100246483 | Method and System for Communication Between a Plurality of Femtocells to Mitigate Interference Between the Femtocells - Aspects of a method and system for communication between a plurality of femtocells to mitigate interference between the femtocells are provided. In this regard, a first of a plurality of femtocells in a network may receive interference information from one or more other femtocells, one or more base stations, and/or one or more communication devices in the network. The first femtocell may determine configuration information for the first femtocell and one or more other femtocells in the network based on the communicated interference information. The first femtocell and the other femtocells in the network may be configured based on the determined configuration information. The interference between the plurality of femtocells may be mitigated based on configuring the first femtocell and the other femtocells in the network based on the determined configuration information. | 09-30-2010 |
20100248762 | Method and System for Mitigating Interference Between a Plurality of Femtocells Utilizing Transmission Deferral - Aspects of a method and system for mitigating interference between a plurality of femtocells utilizing transmission deferral are provided. In this regard, prior to transmission of cellular signals by a femtocell, the femtocell may be operable to detect signals that interfere with cellular communications between the femtocell, one or more base stations, and a cellular enabled communication device that communicates with the femtocell. The femtocell may be operable to defer transmission of the cellular signals for a particular period of time based on the detected interfering signals. During transmission of cellular signals from the femtocell to a cellular enabled communication device, the femtocell may be operable to detect loss of one or more packets of data. The femtocell may be operable to defer transmission of the cellular signals for a particular period of time based on the detected loss of one or more packets of data. | 09-30-2010 |
20100254319 | JOINT RESOURCE MANAGEMENT IN A FEMTOCELL NETWORK - A Femtocell gateway is operable to determine resource usage information among associated Femtocells in a Femtocell network. The Femtocell gateway may be enabled to allocate resources for distributing traffic among the associated Femtocells based on the determined resource usage information comprising IP usage information, radio access usage, and/or physical layer capabilities among the Femtocells. The Femtocell gateway may be enabled to identify Femtocells with excess resources assigned and Femtocells with a need for additional resources to support a particular traffic based on the determined resource usage information. The Femtocell gateway is operable to allocate and/or reallocate at least a portion of excess resources to the Femtocells with the need for the additional resource to support the particular traffic. The Femtocells that share resources with other Femtocells in the Femtocell network is rewarded with credits. The particular traffic is redirected to the Femtocells with excess resources and distributed to destinations. | 10-07-2010 |
20100254355 | Method and System for Determining a Location of a Device Using Femtocell Information - Aspects of a method and system for determining a location of a device using femtocell information are provided. In this regard, a femtocell management entity may be operable to receive global navigation system satellite (GNSS) coordinates of one or more of a plurality of femtocells and one or both of a receive signal strength indication (RSSI) and/or power levels of one or more of the plurality of femtocells, which are managed by the femtocell management entity. The femtocell management entity may be operable to determine a location of a communication device that is derived based on the received GNSS coordinates, RSSI and/or power levels of one or more of the plurality of femtocells and communicate the determined location to a communication device. One or more location based applications and/or services within the communication device may be operable to utilize the received determined location to provide mapping and/or location information. | 10-07-2010 |
20100254357 | Method and System for Remotely Communicating Information to a Plurality of Devices Within a Femtocell Network - Aspects of a method and system for remotely communicating information to a plurality of devices within a femtocell network are provided. In this regard, a communication system may comprise a plurality of communication devices operable to communicate with one or more of a plurality of femtocells via one or more wireless connections and/or via one or more wired connections. The plurality of femtocells may be managed via a femtocell management entity. One of the plurality of communication devices may be operable to receive information from the femtocell management entity via one or more of the plurality of femtocells utilizing one or both of the one or more wireless connections and/or the one or more wired connections. One of the plurality of communication devices may be configured by utilizing the received information. The received information may comprise one or more of software, service profiles, device configuration data and/or synchronization data. | 10-07-2010 |
20100272161 | METHOD AND APPARATUS FOR PERFORMING FREQUENCY SYNCHRONIZATION - A method and apparatus for performing frequency analysis of sub-epoch correlations to estimate an unknown frequency of a received signal is provided. The method includes forming a sequence of correlation values from a plurality of correlations performed over a period less than a repeating period of a code, and analyzing the sequence of correlation values to estimate the frequency that is used to receive a signal comprising the code. | 10-28-2010 |
20100328152 | METHOD AND APPARATUS FOR PROCESSING SATELLITE POSITIONING SYSTEM SIGNALS - Method and apparatus for processing a satellite positioning system (SPS) signal is described. In one example, a timing reference related to a SPS time of day is obtained from a wireless communication signal received by a mobile receiver. A bias in a local clock of the mobile receiver with respect to a frame timing of a repeating code broadcast by the satellite is compensated for in response to the timing reference. An expected code delay window is obtained for the SPS signal at the mobile receiver. The SPS signal is correlated with a reference code within the expected code delay window. In another example, an expected code delay window is obtained at the mobile receiver. The mobile receiver selects a sampling resolution in response to a size of the expected code delay window. The SPS signal is sampled at the selected sampling resolution and then correlated with a reference code. | 12-30-2010 |
20110012779 | METHOD AND SYSTEM FOR A VIRTUAL WIDE AREA GNSS REFERENCE NETWORK - A GNSS enabled mobile device receives GNSS assistance data in a determined format from a central processing station communicatively coupled to a wide area reference network (WARN). The WARN comprises a first plurality of GNSS tracking stations from which usable signals are received by the central processing station, and a second plurality of GNSS tracking stations from which unusable or no signals are received by the central processing station. The central processing station generates the GNSS assistance data using a complete set of GNSS reference feeds of the WARN. The complete set of GNSS reference feeds comprises actual GNSS reference feeds from the first plurality of GNSS tracking stations and virtual GNSS reference feeds derived for the second plurality of GNSS tracking stations from processed actual GNSS reference feeds. The generated GNSS assistance data is reformatted into a determined format and is communicated to the GNSS enabled mobile device, accordingly. | 01-20-2011 |
20110018761 | METHOD AND SYSTEM FOR A FULL GNSS CAPABLE MULTI-STANDARD SINGLE CHIP - A multi-standard single chip integrated within a multi-standard mobile device concurrently receives multi-standard radio frequency signals by corresponding two or more integrated radios. The multi-standard single chip generates full GNSS measurement comprising pseudo-range information using the received radio frequency signals. The multi-standard single chip comprises a GNSS radio and multiple non-GNSS radios such as Bluetooth. The full GNSS measurement is generated using GNSS radio frequency signals received by the integrated GNSS radio and communicated over, for example, Bluetooth radio. GNSS satellite reference information embedded in radio frequency signals received by the integrated non-GNSS radios is extracted to assist the full GNSS measurement. A full GNSS navigation solution for the multi-standard mobile device is generated internally to and/or externally to the multi-standard single chip depending on the location of a navigation engine. The generation of the full GNSS measurement is independent of a host processor within the multi-standard mobile device. | 01-27-2011 |
20110018762 | METHOD AND SYSTEM FOR CALIBRATING A LOCAL GNSS CLOCK USING NON-GNSS SYSTEM CLOCKS IN A GNSS ENABLED MOBILE DEVICE - A GNSS enabled mobile device is operable to receive two or more system clocks via from a plurality of associated non-GNSS communication networks, for example, GSM, GPRS, UMTS, EDGE, EGPRS, LTE, WiMAX, high-speed wireless LAN (WiFi), and/or short-range wireless (Bluetooth). The received system clocks are used to calibrate an local GNSS clock for the GNSS enabled mobile device. The GNSS enabled mobile device communicates the received system clocks with an associated GNSS receiver without using an external circuitry. The GNSS receiver selects a calibration clock from the received system clocks based on the status (active or inactive) of corresponding system clocks. An active system clock is selected as the calibration clock. The associated local GNSS clock is calibrated by removing clock errors from the associated local GNSS clock using the selected calibration clock. The calibrated local GNSS clock is used for detecting GNSS signals and/or processing detected GNSS signals. | 01-27-2011 |
20110018764 | METHOD AND SYSTEM FOR SHARING CLOCK SOURCES TO SAVE POWER ON A GNSS ENABLED MOBILE DEVICE - A GNSS enabled mobile device selects an associated local GNSS clock or host clock as a clock source to operate a GNSS radio and one or more non-GNSS radios within the GNSS enabled mobile device. When the GNSS radio is in a GNSS active mode, the local GNSS clock is turned ON and selected to be shared with the host. The host operates the GNSS radio and the non-GNSS radios only using the local GNSS clock instead of the host clock. The host clock is turned OFF to save power. When the GNSS radio is in a GNSS inactive mode, the host clock is turned ON and selected to operate the non-GNSS radios. The local GNSS clock is turned OFF to save power. The non-GNSS radios comprise a Bluetooth radio, a WiFi radio, a FM radio, a cellular radio and/or a WiMAX radio. | 01-27-2011 |
20110021166 | METHOD AND SYSTEM FOR ANTENNA DIVERSITY WITH GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) - A wireless device including one or more receivers may selectively couple one or more antennas to one or more receivers based on a directionality of the antennas and an orientation of the antennas with respect to sources of the received wireless signals, which may include global navigation satellite system (GNSS) signals. The orientation may be determined utilizing orientation sensors integrated in the wireless device, and may include a MEMS sensor and/or a magnetic compass. The antennas may be selectively coupled to the receivers based on a location of the wireless sources and the orientation of the directionality with respect to sources of the received wireless signals. A received signal strength indicator (RSSI) may be measured for each configuration. The antennas may be coupled sequentially to the receivers to determine a maximum of the RSSI. The antennas may include patch antennas and/or dipole antennas. | 01-27-2011 |
20110053645 | Method and Apparatus for Adjusting Reference Oscillator Frequency in a Mobile Wireless Device - A method and apparatus for using a conventional oscillator in a cellular telephone transceiver as a source of a reference signal for a GPS receiver. In one embodiment, the method comprises using a voltage-controlled oscillator (“VCXO”) within a cellular telephone transceiver to generate a reference frequency signal for the GPS receiver. Circuitry within the telephone transceiver generates a frequency error signal. Both of these signals are coupled to GPS circuitry and used to control a carrier numerically controlled oscillator (“NCO”) and a code NCO. The NCOs produce a tuning signal and a timing signal, respectively. The GPS circuitry uses the NCO generated signals to process GPS signals. | 03-03-2011 |
20110068978 | Method and Apparatus for Processing Location Service Messages in a Satellite Position Location System - Method and apparatus for processing location service messages in a satellite position location system is described. In one example, a mobile receiver includes a satellite signal receiver, wireless circuitry, and at least one module. The satellite signal receiver is configured to receive satellite positioning system signals, such as Global Positioning System (GPS) signals. The wireless circuitry is configured to communicate location service messages between the mobile receiver and a server through a cellular communication network. The location service messages may include any type of data related to A-GPS operation, such as assistance data, position data, request and response data, and the like. The at least one module is configured to provide a user-plane interface and a control-plane interface between the satellite signal receiver and the wireless transceiver. The at least one module is capable of processing location service messages communicated using either the control-plane signaling or user-plane signaling mechanisms. | 03-24-2011 |
20110080319 | METHOD AND SYSTEM FOR RF INTERFERENCE MITIGATION USING A BLANKING WATCHGUARD - A global navigation satellite system (GNSS) enabled mobile device may be operable to monitor and determine counts at which autoblank signals are asserted over time intervals corresponding to consecutive time windows during the RF interference mitigation process using autoblanking. The GNSS enabled mobile device may be operable to disable the generation of a blank signal when the count may be greater than a particular count threshold at the end of the time window. The GNSS enabled mobile device may be operable to enable the generation of a blank signal when the count may be less than or equal to a particular count threshold at the end of the time window. The blank signals may be used to blank the processing of the received GNSS signals. | 04-07-2011 |
20110080322 | METHOD AND SYSTEM FOR CALIBRATING GROUP DELAY ERRORS IN A COMBINED GPS AND GLONASS RECEIVER - A combined GPS and GLONASS receiver receives GPS signals and GLONASS signals. A calibration signal is generated utilizing the received GPS signals and/or the received GLONASS signals to offset group delay errors in the received GLONASS signals. The generated calibration signal is filtered through Kalman filters to estimate group delay variations in the received GLONASS signals. The estimated group error delay variations are combined with the received GLONASS signals to calibrate the received GLONASS signals by offsetting the estimated group error delay variations. When GPS signals are not available for use, the combined GPS and GLONASS receiver obtains group delay errors stored or in the received GLONASS signals to estimate calibration coefficients. The estimate calibration coefficients are updated utilizing received GPS and/or GLONASS signals. The updated estimated calibration coefficients are stored before turning off the combined GPS and GLONASS receiver to expedite calibrating of GLONASS signals received upon turning on. | 04-07-2011 |
20110148702 | METHOD AND SYSTEM FOR POLAR QUANTIZATION FOR GNSS DATA - A global navigation satellite system (GNSS) receiver may be operable to quantize two-dimensional GNSS sample data with an in-phase (I) and quadrature (Q) pair to two-dimensional quantized data with a magnitude and angle pair using the polar quantization, for example, an unrestricted polar quantization. The GNSS receiver may be operable to reduce a size of the two-dimensional quantized data for storage by representing the two-dimensional quantized data by the one-dimensional symbol data. The one-dimensional symbol data may be stored in a random access memory (RAM) for further processing. The I and Q pair associated with the one-dimensional symbol data stored in the RAM may be retrieved and processed by the GNSS receiver using a correlation such as a fast Fourier transform (FFT) correlation. | 06-23-2011 |
20110150047 | METHOD AND SYSTEM FOR EFFICIENT DSSS FFT PROCESSING EMPLOYING PRIME FACTOR DECOMPOSITION - A direct-sequence spread spectrum (DSSS) receiver may be operable to process signal samples in frequency domain utilizing a prime factor fast Fourier transform (FFT) circuit and a pseudorandom noise (PRN) code. The DSSS receiver may be operable to transform the signal samples into FFT signal samples using the prime factor FFT circuit, transform the PRN code into a FFT PRN code using the prime factor FFT circuit and multiply the FFT signal samples with the FFT PRN code using the prime factor FFT circuit. The DSSS receiver may be operable to inversely transform the multiplied FFT signal samples into correlated signal samples using a prime factor inverse FFT (IFFT) implemented by the prime factor FFT circuit. The prime factor FFT circuit may comprise a prime length FFT core, a FFT memory, a register bank, a switch, a multiplier and a FFT controller. | 06-23-2011 |
20110169695 | METHOD AND APPARATUS FOR MANAGING NETWORK ELEMENTS IN A SATELLITE NAVIGATION DATA DISTRIBUTION SYSTEM - Method and apparatus for managing a network element in a satellite navigation data distribution system is described. In one example, a network element includes a processor for processing satellite navigation data. For example, a network element may be a reference station, a hub, or a server in the satellite navigation data distribution system. The network element includes a memory for maintaining status variables associated with the processing of the satellite navigation data. The status variables may relate to the integrity of the satellite navigation data. The network element further includes a management agent for monitoring states of the status variables and communicating with a network management system to exchange information related to the states of the status variables. In one example, the management agent is configured to communicate using a simple network management protocol (SNMP). | 07-14-2011 |
20110193743 | METHOD AND SYSTEM FOR UTILIZING REDUCED FUNCTIONALITY PROCESSING CHANNELS IN A GNSS RECEIVER - A global navigation satellite system (GNSS) receiver comprising one or more regular channel circuits and one or more sniff channel circuits may be operable, utilizing the sniff channel circuits, to monitor power levels of currently visible GNSS satellites which are not being utilized by the regular channel circuits. An alternative GNSS satellite from the currently monitored GNSS satellites may be selected by the GNSS receiver based on the monitored power levels. GNSS signals received from the selected alternative GNSS satellite may be processed by a regular channel circuit. The GNSS receiver may be operable to detect, for example, signal-to-noise ratios (SNRs) or carrier-to-noise density ratios (C/N0s) of the currently visible GNSS satellites utilizing the sniff channel circuits. The sniff channel circuits may not be utilized to generate GNSS measurements so that functionality of each of the sniff channel circuits may be reduced. | 08-11-2011 |
20110193744 | METHOD AND SYSTEM FOR INTEGRATED GLONASS AND GPS PROCESSING - An integrated global navigation satellite system (GNSS) receiver may be operable to decompose GNSS IF signals associated with GPS satellites and/or GLONASS satellites into a constituent narrowband GPS data stream and/or a plurality of constituent narrowband GLONASS data streams utilizing, for example, a GPS IF tuner and/or one or more GLONASS IF tuners. The narrowband GLONASS data streams and/or the narrowband GPS data stream may be processed at reduced sampling rates utilizing a shared sample memory in the integrated GNSS receiver. The narrowband GLONASS data streams and/or the narrowband GPS data stream may be stored in allocated sections of the shared sample memory. The stored narrowband GLONASS data streams and/or the stored narrowband GPS data stream may be processed using a correlation such as a fast Fourier transform (FFT) correlation. | 08-11-2011 |
20110199185 | BUILDING A LOCATION BASED SERVICE REFERENCE DATABASE BASED ON ENCOUNTERED RFID TAGS - A RFID reader of a RFID enabled mobile device receives RFID information from a RFID tag attached to an object. In instances where the RFID enabled mobile device is GNSS enabled, a GNSS position of the RFID enabled mobile device is determined to associate, for example, by location stamping, with the received RFID information. The location-stamped RFID information is communicated to a remote location server, where location-based RFID information is received from a plurality of users. The RFID enabled mobile device may communicate at least a portion of the received RFID information to the remote location server. When GNSS is not enabled, the RFID enabled mobile device estimates its own location utilizing location information, if available, for the object in the received RFID information. Otherwise, the RFID enabled mobile device acquires location-based RFID information from the remote location server so as to determine its own location. | 08-18-2011 |
20110199255 | METHOD AND SYSTEM FOR DETERMINING A POSITION FIX INDOORS - A location server may be operable to refine a location for a RF node based on a weight applied to one or more location samples that are received from one or more mobile devices. The received location samples may be weighted based on a manufacturer and/or a model information of each of the mobile devices, properties and/or conditions of a RF environment associated with each of the mobile devices, a GNSS dilution of precision, motion sensors used by each of the mobile devices and/or a geometrical population condition associated with each of the mobile devices within range of the RF node. A valid location for the RF node may be generated utilizing the weighted location samples. The location server may update location information for the RF node, which may be stored in a location database, utilizing the valid location for the RF node. | 08-18-2011 |
20110199257 | METHOD AND SYSTEM FOR UPDATING ALTITUDE INFORMATION FOR A LOCATION BY USING TERRAIN MODEL INFORMATION TO PRIME ALTITUDE SENSORS - Methods and systems for updating altitude information for a location by using terrain model information to prime altitude sensors are disclosed and may include determining an altitude of a wireless device including one or more altimeters. The determination of altitude may include determining a location of the wireless device, receiving an altitude value for the location from an altitude database, and measuring a change in the altitude using the altimeters. The database may include a worldwide terrain database that may be stored on a remote device, such as a server. Part of the database may be stored on the wireless device and may be updated as the wireless device moves. The location may be determined utilizing a global navigation satellite system, which may include GPS, GLONASS, and GALILLEO. The location may be measured utilizing cellular service triangulation or by utilizing one or more access points with known locations. | 08-18-2011 |
20110199259 | SENSOR-ASSISTED LOCATION-AWARE MOBILE DEVICE - A GNSS enabled mobile device moves from a first area where GNSS signal quality and/or level is above a threshold to a second area where GNSS signal quality and/or level is below the threshold. The GNSS enabled mobile device in the second area determines its own location utilizing previous GNSS measurements in the first area. GNSS signals are received to calculate GNSS measurements whenever the GNSS enabled mobile device is in the first area. The calculated GNSS measurements are utilized to determine a location of the GNSS enabled mobile device within the first area. The GNSS enabled mobile device in the second area utilizes the most current GNSS measurements in the first area to determine its own location. Sensors such as an image sensor, a light sensor, an audio sensor and/or a location sensor are used to refine the location of the GNSS enabled mobile device in the second area. | 08-18-2011 |
20110199260 | METHOD AND SYSTEM FOR DETERMINING A LOCATION OF A CELLULAR BASE STATION UTILIZING MOBILE GNSS VELOCITY AND CORRESPONDING CELLULAR DOPPLER - A GNSS enabled mobile device concurrently receives GNSS signals from GNSS satellites and transmissions from a cellular base station. GNSS-based velocities and GNSS locations are determined for the GNSS enabled mobile device utilizing the received GNSS signals. A cellular Doppler is measured on the cellular base station. A location of the cellular base station is determined based on the determined GNSS-based velocity and corresponding cellular Doppler measurements. The cellular base station may be located by the GNSS enabled mobile device and/or by a remote location server. In this regard, the remote location server may determine the location for the cellular base station utilizing GNSS velocities and corresponding cellular Doppler measurements received from plural GNSS enabled mobile devices in a coverage area of the cellular base station. The determined location of the cellular base station is used to refine GNSS locations of the plurality of GNSS enabled mobile devices when needed. | 08-18-2011 |
20110199261 | METHOD AND SYSTEM FOR STABILIZING A GNSS CLOCK BY REDUCING INTERFERENCE - Methods and systems for stabilizing a GNSS clock by reducing interference are disclosed and may include stabilizing a frequency of a temperature compensated crystal oscillator (TCXO) on a chip in a GNSS device. A clock signal may be generated for the device by temporarily configuring circuitry adjacent to the TCXO at a constant power level. Temperature and electromagnetic interference of the TCXO may be stabilized by the constant power level of the adjacent circuitry, which may be on the chip or external to the chip. The frequency of the TCXO may be stabilized by temporarily disabling the adjacent circuitry. A GNSS clock signal may be stabilized by the configuring of the constant power level while a GNSS location may be calibrated. A GNSS location of a fixed wireless device, such as a wireless access point, may be calibrated utilizing the configured constant power level and shared with other wireless devices. | 08-18-2011 |
20110199262 | ESTIMATING FREQUENCY OF A GNSS ENABLED DEVICE BASED ON TIME STAMPS - A GNSS enabled device that is communicatively coupled to a network, receives time stamps via the network. The time stamps are generated based on reference clock signals within the network. GNSS receiver clock signal frequency may be adjusted based on the time stamps. When GNSS satellite signals and/or SRN signals are not available, the time stamps enable synchronization with GNSS satellites. Network clock signals and/or time stamps may be generated by an access point, a DSL modem, a cable modem and/or a primary reference clock within the network. A series of time stamps may be utilized for adjusting frequencies. Clock signals may be generated for adjusting frequencies based on a comparison between time stamps and oscillator or mixer output. Clock signals are generated for baseband, intermediate and/or RF frequency signal processing. GNSS satellite signals may be demodulated, correlated with a pseudonoise code sequence and/or synchronized based on the time stamps. | 08-18-2011 |
20110199916 | METHOD AND SYSTEM FOR DETERMINING THE LOCATION OF A WIRELESS ACCESS POINT USING SINGLE DEVICE BASED POWER MEASUREMENTS - A mobile device measures power from different locations for an encountered wireless access point, a WiFi or Bluetooth access point, and communicates the power measurements to a remote location. The remote location server collects power measurements for the encountered wireless access point from a plurality of communication devices. The remote location server determines the location of the encountered wireless access point utilizing corresponding power measurements from a single communication device. The power measurements are performed at different locations and over a period of time. The power measurements are time stamped and transmitted to the remote location server. The single communication device is selected based on quality and/or availability of corresponding power measurements for the encountered wireless access point. The determined location of the encountered wireless access point is stored into a reference database so as to be shared among the plurality of communication devices. | 08-18-2011 |
20110199917 | COLLABORATIVE SHARING OF LOCATION INFORMATION AMONG DEVICES IN A NETWORK - A wireless communication device determines its location and communicates the location to other local devices utilizing a nonstandard, standard and/or proprietary protocol in combination with another protocol such as a Bluetooth, RFID, IEEE 802.11 and/or a cellular phone protocol. The location may be determined utilizing a GNSS receiver and/or network device information. A new location may be determined based on the determined location, a relative distance and/or a relative direction to other local devices. Determined location information may be communicated to other devices via a network. The wireless communication device may receive locations and/or corresponding location uncertainties from devices located within a limited range. The received information is utilized to determine a more accurate location. The more accurate location is communicated back to the devices within the limited range and/or to other communication devices. | 08-18-2011 |
20110199964 | METHOD AND SYSTEM FOR DETERMINING A LOCATION OF AN ACCESS POINT BASED ON ASSOCIATION OF THE ACCESS POINT WITH A COMMUNICATION DEVICE HAVING A KNOWN LOCATION - A communication device associated with a wireless access point, namely, a WiFi access point or a Bluetooth access point for example, communicates its location information to the wireless access point. The wireless access point determines its own location utilizing the communicated location information. The communicated location information comprises a device location address and/or a GNSS position of the associated communication device. The device address comprises a network accessible address, a device identifier, a telephone number, an IP address, a url and/or ftp location, an e-mail address, and/or an account number that identifies a corresponding location of the communication device. The wireless access point retrieves corresponding device location addresses and/or GNSS positions from a plurality of associated communication devices. The retrieved device location addresses are converted to determine corresponding locations for self-locating the wireless access point. The determined location of the wireless access point is shared with each associated communication device. | 08-18-2011 |
20110200023 | METHOD AND SYSTEM FOR DETERMINING A POSITION FIX INDOORS - Whenever a mobile device in a building is within proximity of a RF communication device, the mobile device may be operable to receive location information transmitted, for example by broadcasting it, from a RF communication device. The transmitted location information comprises altitude information of the RF communication device. At least an altitude of the mobile device may be determined based on the received altitude information of the RF communication device. The RF communication device may be located in an elevator car and/or on a particular floor in the building. Whenever the RF communication device is located in the elevator car, the altitude information of the RF communication device may be received by the RF communication device from an elevator controller. In instances when the RF communication device also transmits its latitude/longitude (LAT/LON), the mobile device may be operable to determine a 3-dimentional (3D) location of the mobile device. | 08-18-2011 |
20110200024 | PROVIDING GNSS ASSISTANCE DATA VIA A WIRELESS LAN ACCESS POINT - A wireless mobile device, either a WLAN enabled mobile device or a Bluetooth enable device, which is within range of a WLAN access point, is operable to receive GNSS assistance data broadcasted from the WLAN access point. The GNSS assistance data are acquired by the WLAN access point from a reference database coupled to a location server. The broadcast GNSS assistance data comprise ephemeris data, LTO data, location information related to the WLAN access point and/or time information. The WLAN access point receives the acquired GNSS assistance data from the location server over a broadband IP network. The WLAN access point selects available resources for broadcasting the received GNSS assistance data to wireless mobile devices in range. The wireless mobile device receives the broadcast GNSS assistance data to calculate its own location. The calculated location of the wireless mobile device is used to update or refine the reference database. | 08-18-2011 |
20110201305 | METHOD AND SYSTEM FOR ENSURING USER AND/OR DEVICE ANONYMITY FOR LOCATION BASED SERVICES (LBS) - A mobile device may communicate with a location server during location based services (LBS) operations using a secure identifier. The secure identifier abstracts identification information of the mobile device and/or identification information of a user of the mobile device in instances that the mobile device and/or user identification information are deemed protectable from the location server. The location server may be operable to store location data corresponding to the mobile device and/or the user in a location reference database based on the secure identifier. The secure identifier may comprise a unique value, which may be randomly generated. The secure identifier may also be generated based on the mobile device and/or user identification information, by applying, for example, encryption algorithms to the mobile device and/or user identification information. Service providers for the mobile device may retrieve the abstracted mobile device and/or user identification information from the secure identifier. | 08-18-2011 |
20110201335 | METHOD AND SYSTEM FOR A LOCATION-BASED VERTICAL HANDOFF OVER HETEROGENEOUS MOBILE ENVIRONMENTS - A multi-radio mobile device receives data transmissions for a wireless communication session from a current serving access network in a coupled heterogeneous network system comprising a plurality of different access networks. The multi-radio mobile device initiates a handoff for the wireless communication session based on the current mobile location. The multi-radio mobile device acquires location based network connection information such as call drop in the current mobile location from a location server so as to make a handoff decision. When the handoff is to be performed, a target access network or a different base station in the current serving access network associated with the lowest call drop rate is selected. The wireless communication session is received from the selected target access network, as a new serving access network, or from the different base station in the current serving access network with the completion of the handoff. | 08-18-2011 |
20110201336 | METHOD AND SYSTEM FOR OPTIMIZING USER-LEVEL QoS DURING A LOCATION-BASED HANDOFF OVER HETEROGENEOUS MOBILE ENVIRONMENTS - A multi-radio mobile device receives data transmission of a session from a serving access network in a heterogeneous network system comprising difference access networks. A handoff is performed based on the received data transmissions. User-level QoS for the wireless communication session is adjusted during the handoff based on connection QoS information in the current location of the multi-radio mobile device and/or a velocity of the multi-radio mobile device. Location-based network connection information, comprising call drop information and the connection QoS information, in the current location of the multi-radio mobile device is acquired from a location server. A target access network or a different base station in the serving access network associated with the highest connection QoS is selected. The user-level QoS is adjusted during the handoff for receiving the wireless communication session from the selected target access network or the different base station in the serving access network. | 08-18-2011 |
20110201347 | METHOD AND SYSTEM FOR LOCATION-BASED DYNAMIC RADIO SELECTION - A multi-radio mobile device comprises a plurality of different radios. When a location update occurs, the multi-radio mobile device, at a specific location, acquires location-based radio information from a remote location server. The multi-radio mobile device selects a radio for use in the specific location based on the acquired location-based radio information comprising available radios in the specific location and radio weights. The radio is selected from the available radios based on the radio weights in the specific location. Transmissions of a desired service are received in the specific location utilizing the selected radio. Location-based radio measurements reports to the remote location server are generated utilizing signal strength measurements for the received signals. Radio quality information of the available radios is calculated by the location server utilizing location-based radio measurement reports from associated users. The radio weights of the available radios are determined based on the calculated radio quality information. | 08-18-2011 |
20110201348 | METHOD AND SYSTEM FOR OPTIMIZING UPLOADING OF LOCATION DATA FOR LOCATION BASED SERVICES - A mobile device may be operable to collect location data for a RF node and cache the collected location data in the mobile device. Resources that may be utilized for improving the uploading of the cached location data to a location server may be determined by the mobile device. The cached location data may be communicated, to the location server for updating a location database, by the mobile device utilizing the determined resources. The mobile device may determine and utilize an opportunistic transport based on a data usage and/or an access. The mobile device may store a subset of the location database locally for comparing with the cached location data for redundancy. The compared location data may be transmitted by the mobile device to the location server for updating the location database if the compared location data are not redundant data. | 08-18-2011 |
20110201357 | METHOD AND SYSTEM FOR REFINING A LOCATION OF A BASE STATION AND/OR A MOBILE DEVICE BASED ON SIGNAL STRENGTH MEASUREMENTS AND CORRESPONDING TRANSMITTER AND/OR RECEIVER ANTENNA PATTERNS - A mobile device receives data transmissions, via a coupled receiver antenna array, from a transmitter antenna array of a serving base station. The mobile device determines relative distances, with respect to the serving base station, associated with signal strength measurements on the received data transmissions. The signal strength measurements are compensated, at the mobile device and/or a remote location server, in three-dimensional space based on corresponding transmitter and/or receiver antenna pattern, and/or mobile orientation information for estimating the relative distances. The estimated relative distances are refined by fitting a function of the azimuth and elevation angles. A location for the serving base station and/or the mobile device is determined or refined based on the refined relative distances to be shared among a plurality of users of the remote location server. Fixed or adaptive antenna patterns are supported at the serving base station and/or the mobile device. | 08-18-2011 |
20110201358 | DETERMINING APPLICATION USAGE RELATIVE TO A PARTICULAR LOCATION - A mobile device collects information about application usage and associates collected application information with a location of the mobile device and/or a time that the application is accessed. The application is stored on the mobile device or on an external device and accessed via a network. The application information, location of the mobile device and time the application is accessed are communicated to another device and stored in a storage device which may be operated or managed by a service provider or another entity. The application information may comprise identification of a website, a network device or URL, the application and/or data that is input and/or output from the application. The location of the mobile device and/or the time, are determined utilizing a GNSS receiver and/or utilizing information from a network device. The application information, the location of the mobile device and/or the time may be utilized for targeted advertizing. | 08-18-2011 |
20110201360 | METHOD AND SYSTEM FOR PHYSICAL MAP-ASSISTED WIRELESS ACCESS POINT LOCATING - A mobile device receives a server-assisted location for a wireless access point, either a WiFi access point or a Bluetooth access point, from a remote location server comprising a reference database. The received server-assisted location is refined using a physical map or image. The mobile device is operable to acquire the physical map or image for a map-assisted location for the wireless access point. The mobile device compares the two locations to generate a valid location for the wireless access point. In instances where the two locations are consistent, the mobile device utilizes one of the two locations as the valid location for the wireless access point. Otherwise, the mobile device refines the server-assisted location utilizing the map-assisted location. The resulting refined server-assisted location is utilized as the valid location for the wireless access point and is transmitted to the remote location server to refine the reference database. | 08-18-2011 |
20110202416 | METHOD AND SYSTEM FOR AUTHORIZING TRANSACTIONS BASED ON DEVICE LOCATION - Aspects of a method and system for authorizing network transactions based on device location are provided. In this regard, a request may be received to approve a transaction that was initiated from a first communication device and comprises a need to access an account. In response to the request, a second communication device that is associated with the account may be determined, and it may be determined whether to approve the transaction based on received data relating to the identity and location of the second communication device. The transaction may be associated with the second communication device via a database stored on the location server. The transaction may be approved in instances that the first communication device is in a location associated, via the database, with the second communication device. The transaction may be approved in instances that the first communication device is in substantially the same location as the second communication device. | 08-18-2011 |
20110202460 | METHOD AND SYSTEM FOR AUTHORIZING TRANSACTIONS BASED ON RELATIVE LOCATION OF DEVICES - Aspects of a method and system for authorizing transactions based on relative location of devices are provided. In this regard, data relating to a location of a first communication device and data relating to a location of a second communication device may be received, a distance between the first communication device and the second communication device may be determined based on the received data, and whether to approve a transaction may be determined based on the determined distance. The transaction may have been initiated from one of the first communication device and the second communication device, and may comprise a need to access an account. The transaction may be approved in instances that the first communication device and the second communication device are within a predetermined distance of each other. The received data may comprise distance information determined via communications between the first communication device and the second communication device. | 08-18-2011 |
20110202461 | METHOD AND SYSTEM FOR AUTHORIZING NETWORK TRANSACTIONS BASED ON RADIO FREQUENCY (RF) CHARACTERIZATION OF A DEVICE'S LOCATION - Aspects of a method and system for authorizing network transactions based on radio frequency (RF) characterization of a device's location are provided. In this regard, whether to approve a communication device to perform a network transaction may be determined based on results of a comparison between a radio frequency (RE) characterization of a location of the communication device and one or more approved RF characterizations. The RF characterization may be based on information from a plurality of receivers within the communication device. The one or more approved characterizations may be stored in the network device. The RF characterization may indicate a quantity of RF sources detected and identified by the communication device at the location. The RF characterization may indicate signal strength of signals received from RF sources detected and indentified by the communication device at the location. | 08-18-2011 |
20110205110 | METHOD AND SYSTEM FOR PROPAGATING GNSS ASSISTANCE DATA AMONG COMMUNICATION DEVICES IN A GNSS GROUP - A communication device within a GNSS group propagates GNSS assistance data to one or more other communication devices in the GNSS group utilizing direct device-to-device connections. The GNSS assistance data comprises ephemeris received from one or more GNSS satellites and/or predicted ephemeris. As a source device, the communication device generates, and/or acquires from other resources such as a remote location server, the predicted ephemeris. As a destination device, the communication device receives existing GNSS assistance data from a source device and/or other communication devices in the GNSS group. A GNSS position for the communication device and corresponding time information are used to refresh the received GNSS assistance data. In instances where the communication device further acts as a relay device, the refreshed GNSS assistance data is relayed to other communication devices over wired and/or wireless direct device-to-device connections utilizing appropriate communication technologies such as WiFi, Bluetooth and/or Bluetooth low energy. | 08-25-2011 |
20110207471 | METHOD AND SYSTEM FOR DETERMINING LOCATION WITHIN A BUILDING BASED ON HISTORICAL LOCATION INFORMATION - A mobile device may be operable to receive historical location trail information of a building. A location of the mobile device within the building may be determined by placing, moving or snapping a reference location of the mobile device onto a trail according to the received historical location trail information. The historical location trail information may be acquired from a location server. The historical location trail information stored in the location server may be generated using a plurality of location samples that are provided by one or more other mobile devices that have been within the building. The historical location trail information may also be acquired from an indoor map of the building that is used by the mobile device for navigation within the building. The determined location of the mobile device may then be utilized by the mobile device to navigate within the building for location-based services. | 08-25-2011 |
20110207472 | METHOD AND SYSTEM FOR CELLULAR CLOCK-ASSISTED WIRELESS ACCESS POINT LOCATING - A wireless access point comprising a cellular receiver receives radio signals from a cellular base station. A cellular reference clock, synchronized to the cellular base station, is detected from the received radio signals. The detected cellular reference clock is utilized to stabilize a local access point clock for GNSS positioning. A clock difference between the local access point clock and the detected cellular reference clock is determined and the local access point clock may be adjusted accordingly. The adjusted local access point clock is utilized for clocking communications between the wireless access point and other communication devices. A time offset between the adjusted local access point clock and the detected cellular reference clock is provided to a remote location server. The remote location server retrieves time offset information from wireless access points served by the cellular base station so as to determine relative distances among the wireless access points. | 08-25-2011 |
20110210886 | METHOD AND SYSTEM FOR MAINTAINING A GNSS RECEIVER IN A HOT-STATE - A GNSS receiver in a wake up state during a standby mode may acquire ephemeris from received GNSS signals such as GPS signals and/or GLONASS signals. When subsequently transitioning from the standby mode to a normal mode operating at a high frequency clock, the acquired ephemeris may be utilized to generate a navigation solution for the GNSS receiver. The GNSS receiver in the wake up state during the standby mode may be switched to operate at the high frequency clock in order to receive GNSS signals. The GNSS receiver may extract complete ephemeris from the received GNSS signals, and may subsequently transition from the wake up state to a sleep state during the standby mode to save power. Radio frequency front-end components of the GNSS receiver may only be turned on to receive the GNSS signals. The GNSS receiver may transition between the standby mode and the normal mode. | 09-01-2011 |
20110212732 | METHOD AND SYSTEM FOR DETERMINING A LOCATION OF A MOBILE DEVICE BASED ON A PLURALITY OF LOCATION SAMPLES - A mobile device may be operable to receive three or more location samples for the mobile device from each of three or more resources. Two or more valid location samples may be selected based on an accuracy indicator associated with each of the received location samples. A location of the mobile device may be determined utilizing the selected two or more valid location samples. A region around each of the received location samples may be determined based on the accuracy indicator and a condition of a geographic environment that is associated with each of the received location samples. Two or more valid location samples among the received location samples may be selected in instances when at least a portion of the region of each of the selected valid location samples overlaps with at least a portion of the regions of each of other selected valid location samples. | 09-01-2011 |
20110212735 | METHOD AND SYSTEM FOR SEAMLESS CONSUMMATION OF AN ELECTRONIC TRANSACTION BASED ON LOCATION RELATED DATA - A mobile device may determine its location, receive transaction related information, and initiate, based on its determined location and/or the transaction related information, a transaction at the current location. The transaction related information may be received from a location server. The mobile device and/or its users may also be authenticated, using the location server. The initiated transaction may be completed automatically, without user input. The device user may also be prompted for authorization and/or information for completing the transaction. The transaction related information may specify if and/or when transactions are to be completed automatically. The mobile device may track user actions via the mobile device, and may generate based on that tracking, user action data pertaining transactions initiated and/or conducted by the user. The generated user action data may be communicated to the location server, and may be used to update the profile data maintained by the location server. | 09-01-2011 |
20110222471 | METHOD AND SYSTEM FOR OPTIMIZED TRANSFER OF LOCATION DATABASE INFORMATION - A servicing communication device may receive a subset of a location reference database that is maintained by a plurality of location servers, and may provide location related data to a mobile device that is communicatively coupled to the servicing communication device based on the received subset. The servicing communication device may determine capabilities and/or requirements of the mobile device, and may generate the location related data based on that determination. The servicing communication device may determine attributes and/or parameters that may affect determination of the subset of the location reference database. The subset of location reference database may be requested based on the determined attributes and/or parameters. The attributes and/or parameters may comprise a location of the servicing communication device. The servicing communication device may determine its location, directly based on GNSS transmissions and/or indirectly based on assisted GNSS (A-GNSS) data received from the plurality of location servers. | 09-15-2011 |
20110223931 | METHOD AND SYSTEM FOR CHARACTERIZING LOCATION AND/OR RANGE BASED ON TRANSMIT POWER - A transmitting communication device may iteratively adjust its transmit power, and may estimate, based on iterative transmit power adjustment, relative location of a receiving communication device. The transmit power may be initialized to a maximum value, and the transmit power may be iteratively reduced until connectivity with the receiving communication device is lost. The loss of connectivity may be determined based on reception of responses to ping messages transmitted by the transmitting communication device. The transmitting communication device may authenticate the receiving communication device and/or a user of the receiving communication device. The authentication may comprises utilizing transmit power adjustment and/or relative location estimation therefrom to ensure that a separation between the devices does not exceed a maximum value. The transmitting communication device may generate location info associated with the receiving communication device based on the relative location estimation, and may communicate the location info to a location server. | 09-15-2011 |
20110227788 | METHOD AND SYSTEM FOR GENERATING AND PROPAGATING LOCATION INFORMATION BY A MOBILE DEVICE USING SENSORY DATA - A mobile device may determine its initial absolute location; may track using a plurality of sensors, its movements relative to the initial absolute location; and may generate location related data for a location based on that tracking. Tracking movement of the mobile device may comprise generating data corresponding to three-dimensional (3D) linear and/or rotational changes in position and/or location of the mobile device. The initial absolute location may be determined directly by the mobile device, based on GNSS signals and/or assisted GNSS (A-GNSS) data received from one or more location servers; and/or it may be estimated based on a location of a communication device that is communicatively coupled to the mobile device. The generated location related data may propagated by the mobile device to other mobile and/or communication devices, and/or to the location servers, where a reference database for supporting location related services (LBS) may be updated accordingly. | 09-22-2011 |
20110237185 | METHOD AND SYSTEM FOR DETERMINING A LOCATION FOR A RF COMMUNICATION DEVICE BASED ON ITS PROXIMITY TO A MOBILE DEVICE - A mobile device may be operable to determine, based on a known location of the mobile device, a location for a RF communication device that communicates with the mobile device, whenever the mobile device is within proximate range of the RF communication device. The determined location for the RF communication device may be stored in a location database in a location server and/or a memory in the RF communication device. The stored location of the RF communication device may then be used to determine a location for other mobile devices that may communicate with the RF communication device and are within proximate range of the RF communication device. The RF communication device may comprise a radio-frequency identification (RFID) device and/or a near field communication (NFC) device. The determined location for the RF communication device may comprise the known location of the mobile device. | 09-29-2011 |
20110260913 | Method for Adjusting a Measurement Cycle in a Satellite Positioning System Signal Receiver - A method for adjusting a measurement cycle in a satellite signal receiver is described. The method includes adjusting a measurement cycle in a satellite signal receiver by computing a position state comprising at least one of a velocity and a heading of the satellite signal receiver, detecting a change in the position state, and automatically adjusting a frequency of said measurement cycle in response to the change in the position state. | 10-27-2011 |
20110291888 | METHOD AND SYSTEM FOR RF INTERFERENCE MITIGATION USING A BLANKING WATCHGUARD - A global navigation satellite system (GNSS) enabled mobile device may be operable to assert one of autoblank signals when RF interference is detected in received GNSS signals for one of consecutive first time windows. The asserted autoblank signals are monitored by the GNSS enabled mobile device over time intervals corresponding to consecutive second time windows and a rate at which the autoblank signals are asserted for each of the consecutive second time windows is determined by the GNSS enabled mobile device based on the monitoring. The GNSS enabled mobile device may be operable to determine whether to blank processing of the received GNSS signals based on the determined rate. The autoblank signals may be asserted by the GNSS enabled mobile device based on a number of the received GNSS signals whose absolute signal levels exceed a signal level threshold for the first time window. | 12-01-2011 |
20120075140 | Method and System for a Virtual Wide Area GNSS Reference Network - A GNSS enabled mobile device receives GNSS assistance data in a determined format from a central processing station communicatively coupled to a wide area reference network (WARN). The WARN comprises a first plurality of GNSS tracking stations from which usable signals are received by the central processing station, and a second plurality of GNSS tracking stations from which unusable or no signals are received by the central processing station. The central processing station generates the GNSS assistance data using a complete set of GNSS reference feeds of the WARN. The complete set of GNSS reference feeds comprises actual GNSS reference feeds from the first plurality of GNSS tracking stations and virtual GNSS reference feeds derived for the second plurality of GNSS tracking stations from processed actual GNSS reference feeds. The generated GNSS assistance data is reformatted into a determined format and is communicated to the GNSS enabled mobile device, accordingly. | 03-29-2012 |
20120075144 | METHOD AND SYSTEM FOR REDUCING AUTONOMOUS TIME TO FIX OF A MULTI-STANDARD GNSS RECEIVER - A multi-standard GNSS receiver, handle different global navigation satellite systems (GNSSs), determines with respect to a current time instant, the earliest broadcast timing based on corresponding satellite broadcast cycles for satellites in the different GNSSs. The multi-standard GNSS receiver acquires fresh broadcast ephemeris at the determined earliest broadcast timing to determine its own first position. A search order is determined based on the corresponding satellite broadcast cycles and the current time instant. The multi-standard GNSS receiver may selectively utilize appropriate satellite receivers such as the GPS receiver and the GLONASS receiver to search for satellite signals based on the determined search order. Channels for different GNSSs are scanned to identify transmitting satellites based on the corresponding satellite broadcast cycles for ephemeris downloading. The satellite search is prioritized by comparing the current time instant with the corresponding satellite broadcast cycles. | 03-29-2012 |
20120077520 | Method and Apparatus for Locating Position of a Mobile Device in an Assisted Satellite Positioning System - Method and apparatus for locating position of a mobile device in an assisted satellite positioning system is described. In one example, satellite measurement data is obtained from a plurality of satellites at a mobile device. Position of the mobile device is computed using the satellite measurement data. The position is sent to a cellular device via a wireless ad hoc network. In one example, the wireless ad hoc network comprises a BLUETOOTH communication link. In one example, the mobile device is configured to receive assistance data from a position server through the wireless ad hoc network. For example, the mobile device may comprise a housing configured to plug into a cigarette lighter connector of an automobile and the cellular device may comprise a cellular telephone without location-determination capabilities (i.e., the cellular telephone does not include an integrated GPS receiver). | 03-29-2012 |
20120105281 | Method and Apparatus for Distribution of Satellite Navigation Data - A method and apparatus for distributing satellite navigation data is described. In one example, satellite signals are processed at each of a plurality of reference stations to receive a respective plurality of satellite navigation data streams. Packets are formed in response to said plurality of satellite navigation data streams to generate a plurality of packetized satellite navigation data streams. The packetized satellite navigation data streams are sent to a processing system. The processing system removes duplicate packets within said plurality of packetized satellite navigation data streams to generate a combined packet stream. The combined packet stream is then sent into a communication network. | 05-03-2012 |
20120190349 | Method and System for Timely Delivery of Multimedia Content Via a Femtocell - Aspects of a method and system for timely delivery of multimedia content via a femtocell are provided. In this regard, a femtocell may receive data via an upstream path and transmit data via a downstream path. One of the upstream path and downstream path may comprise a cellular path and the other may comprise a non-cellular path. One or both of the upstream path and the downstream path may be audio video bridging (AVB) paths. Data may be stored in the femtocell based on timing characteristics of one or both of the upstream path and the downstream path. Data may be delivered to the femtocell utilizing best effort delivery and the data may be forwarded by the femtocell with guaranteed quality of service. Resources in the femtocell may be reserved and/or synchronized, utilizing AVB protocols, for communication of one or more data streams. | 07-26-2012 |
20120200384 | Method and Apparatus for Providing Intelligent Deactivation of Electronic Devices in Aircraft - A method and apparatus for automatically deactivating an electronic device during flight of an aircraft. The method utilizes a global positioning system (GPS) or assisted global positioning system (AGPS) circuit to facilitate computing the acceleration, velocity and altitude of the electronic device and comparing this information to a profile to determine whether the acceleration, altitude and velocity meets a profile threshold of an airliner taking off. If the profile is that of the take-off of an aircraft, then the circuitry connected to the GPS/AGPS circuit will be deactivated. | 08-09-2012 |
20120229335 | Method and Apparatus for Enhanced Autonomous GPS - Method and apparatus for locating position of a remote receiver is described. In one example, long term satellite tracking data is obtained at a remote receiver. Satellite positioning system (SPS) satellites are detected. Pseudoranges are determined from the remote receiver to the detected SPS satellites. Position of the remote receiver is computed using the pseudoranges and the long term satellite tracking data. SPS satellites may be detected using at least one of acquisition assistance data computed using a previously computed position and a blind search. Use of long term satellite tracking data obviates the need for the remote receiver to decode ephemeris from the satellites. In addition, position of the remote receiver is computed without obtaining an initial position estimate from a server or network. | 09-13-2012 |
20120238280 | METHOD AND SYSTEM FOR DYNAMIC ADJUSTMENT OF POWER AND FREQUENCIES IN A FEMTOCELL NETWORK - Aspects of a method and system for dynamic adjustment of power, antenna direction and frequencies in a femtocell network are provided. In this regard, a communication system may comprise a plurality of femtocells, one or more base stations, and a femtocell management entity that coordinates operation of the plurality of femtocells. One or more parameters may be communicated from one of the plurality of femtocells and/or one or more base stations to the femtocell management entity. The femtocell management entity may be enabled to utilize the one or more parameters to determine configuration information for one of the plurality of femtocells and/or for one or more remaining ones of the plurality of femtocells. One of the plurality of femtocells may be enabled to receive the determined configuration information from the femtocell management entity. One of the plurality of femtocells may be configured utilizing the received determined configuration information. | 09-20-2012 |
20120287918 | Method and System for Preserving Content Timing Across Femtocell Interfaces Via Timestamp Insertion - Aspects of a method and system for preserving content timing across femtocell interfaces via timestamp insertion are provided. In this regard, a femtocell may receive a first time-stamped packet via a first interface and transcode the time-stamped packet. The femtocell may buffer the transcoded packet based on a time-stamp recovered from the packet and may transmit the buffered transcoded packet via a second interface. One of the first interface and the second interface may utilize the Internet Protocol. One of the first interface and the second interface may be a non-cellular interface and the other interface may be a cellular interface. The femtocell may be operable to generate a timestamp corresponding to a time instant at which a time-stamped packet arrived via the first interface or the second interface. The timestamp may be referenced to a clock within a cellular enabled communication devices communicatively coupled to the femtocell. | 11-15-2012 |
20120306696 | Method and System for Integrated Glonass and GPS Processing - An integrated global navigation satellite system (GNSS) receiver may be operable to decompose GNSS IF signals associated with GPS satellites and/or GLONASS satellites into a constituent narrowband GPS data stream and/or a plurality of constituent narrowband GLONASS data streams utilizing, for example, a GPS IF tuner and/or one or more GLONASS IF tuners. The narrowband GLONASS data streams and/or the narrowband GPS data stream may be processed at reduced sampling rates utilizing a shared sample memory in the integrated GNSS receiver. The narrowband GLONASS data streams and/or the narrowband GPS data stream may be stored in allocated sections of the shared sample memory. The stored narrowband GLONASS data streams and/or the stored narrowband GPS data stream may be processed using a correlation such as a fast Fourier transform (FFT) correlation. | 12-06-2012 |
20120322435 | Method and System for Communication Between a Plurality of Femtocells to Mitigate Interference Between the Femtocells - Aspects of a method and system for communication between a plurality of femtocells to mitigate interference between the femtocells are provided. In this regard, a first of a plurality of femtocells in a network may receive interference information from one or more other femtocells, one or more base stations, and/or one or more communication devices in the network. The first femtocell may determine configuration information for the first femtocell and one or more other femtocells in the network based on the communicated interference information. The first femtocell and the other femtocells in the network may be configured based on the determined configuration information. The interference between the plurality of femtocells may be mitigated based on configuring the first femtocell and the other femtocells in the network based on the determined configuration information. | 12-20-2012 |
20130009811 | Method and System for Maintaining a GNSS Receiver in a Hot-Start State - A GNSS receiver in a wake up state during a standby mode may acquire ephemeris from received GNSS signals such as GPS signals and/or GLONASS signals. When subsequently transitioning from the standby mode to a normal mode operating at a high frequency clock, the acquired ephemeris may be utilized to generate a navigation solution for the GNSS receiver. The GNSS receiver in the wake up state during the standby mode may be switched to operate at the high frequency clock in order to receive GNSS signals. The GNSS receiver may extract complete ephemeris from the received GNSS signals, and may subsequently transition from the wake up state to a sleep state during the standby mode to save power. Radio frequency front-end components of the GNSS receiver may only be turned on to receive the GNSS signals. The GNSS receiver may transition between the standby mode and the normal mode. | 01-10-2013 |
20130009813 | Method and System for a Virtual Wide Area GNSS Reference Network - A GNSS enabled mobile device receives GNSS assistance data in a determined format from a central processing station communicatively coupled to a wide area reference network (WARN). The WARN comprises a first plurality of GNSS tracking stations from which usable signals are received by the central processing station, and a second plurality of GNSS tracking stations from which unusable or no signals are received by the central processing station. The central processing station generates the GNSS assistance data using a complete set of GNSS reference feeds of the WARN. The complete set of GNSS reference feeds comprises actual GNSS reference feeds from the first plurality of GNSS tracking stations and virtual GNSS reference feeds derived for the second plurality of GNSS tracking stations from processed actual GNSS reference feeds. The generated GNSS assistance data is reformatted into a determined format and is communicated to the GNSS enabled mobile device, accordingly. | 01-10-2013 |
20130016008 | Method and System for a Full GNSS Signals That Indicate - A multi-standard single chip integrated within a multi-standard mobile device concurrently receives multi-standard radio frequency signals by corresponding two or more integrated radios. The multi-standard single chip generates full GNSS measurement comprising pseudo-range information using the received radio frequency signals. The multi-standard single chip comprises a GNSS radio and multiple non-GNSS radios such as Bluetooth. The full GNSS measurement is generated using GNSS radio frequency signals received by the integrated GNSS radio and communicated over, for example, Bluetooth radio. GNSS satellite reference information embedded in radio frequency signals received by the integrated non-GNSS radios is extracted to assist the full GNSS measurement. A full GNSS navigation solution for the multi-standard mobile device is generated internally to and/or externally to the multi-standard single chip depending on the location of a navigation engine. The generation of the full GNSS measurement is independent of a host processor within the multi-standard mobile device. | 01-17-2013 |
20130099966 | METHOD AND SYSTEM FOR PROPAGATING GNSS ASSISTANCE DATA AMONG COMMUNICATION DEVICES - A communication device within a GNSS group propagates GNSS assistance data to one or more other communication devices in the GNSS group. The GNSS assistance data includes ephemeris received from one or more GNSS satellites and/or predicted ephemeris. As a source device, the communication device generates, and/or acquires from other resources such as a remote location server, the predicted ephemeris. As a destination device, the communication device receives existing GNSS assistance data from a source device and/or other communication devices in the GNSS group. A GNSS position for the communication device and corresponding time information are used to refresh the received GNSS assistance data. In instances where the communication device further acts as a relay device, the refreshed GNSS assistance data is relayed to other communication devices over wired and/or wireless direct device-to-device connections utilizing appropriate communication technologies such as WiFi, Bluetooth and/or Bluetooth low energy. | 04-25-2013 |
20130122857 | DETERMINING APPLICATION USAGE RELATIVE TO A PARTICULAR LOCATION - A mobile device collects information about application usage and associates collected application information with a location of the mobile device and a time that the application is accessed. The application is stored on the mobile device or on an external device and accessed via a network. The application information, location of the mobile device and time the application is accessed are communicated to another device and stored in a storage device which may be operated or managed by a service provider or another entity. The application information may comprise identification of a website, a network device or URL, the application and/or data that is input and/or output from the application. The location of the mobile device and/or the time, are determined utilizing a GNSS receiver and/or utilizing information from a network device. The application information, the location of the mobile device and/or the time may be utilized for targeted advertising. | 05-16-2013 |
20130125163 | METHOD AND SYSTEM FOR CONTROLLING DATA DISTRIBUTION VIA CELLULAR COMMUNICATIONS UTILIZING AN INTEGRATED FEMTOCELL AND SET-TOP-BOX DEVICE - Aspects of a method and system for controlling data distribution via cellular communications with an integrated femtocell and set-top-box (IFSTB) device are provided. In this regard, a cellular enabled communication device may detect when it is within cellular communication range of a femtocell. Upon detection of the femtocell, the cellular enabled communication device may communicate instructions to a content source instructing the content source to deliver multimedia content to the femtocell. In instances that multimedia content is already being delivered to the cellular enabled communication device prior to the detection, the instructions from the cellular enabled communication device may instruct the content source to redirect the multimedia content to the femtocell. In this regard, the multimedia content may be delivered from the content source to the cellular enabled communication device via the femtocell. The femtocell may deliver at least a portion of the multimedia content to other communication devices. | 05-16-2013 |
20130237236 | Method and System for Mitigating Interference Among Femtocells Via Intelligent Channel Selection - Aspects of a method and system for mitigating interference among femtocells via intelligent channel selection are provided. In this regard, signals which may interfere with cellular communications between a femtocell and a cellular communication device may be detected via the femtocell. Based on the detection, the femtocell may be configured to transmit and/or receive signals on one or more frequencies and/or channels. The one or more frequencies and/or channels may be determined in the femtocell and/or in a network management entity. Detecting interfering signals and configuring the one or more femtocells may occur periodically, upon installation of a femtocell, upon power-up of a femtocell, and/or upon command from a network administrator. The results of the detection may be communicated to one or more other femtocells and/or to a network management entity. | 09-12-2013 |
20130252598 | METHOD AND SYSTEM FOR DYNAMIC ADJUSTMENT OF POWER AND FREQUENCIES IN A FEMTOCELL NETWORK - Aspects of a method and system for dynamic adjustment of power, antenna direction and frequencies in a femtocell network are provided. In this regard, a communication system may comprise a plurality of femtocells, one or more base stations, and a femtocell management entity that coordinates operation of the plurality of femtocells. One or more parameters may be communicated from one of the plurality of femtocells and/or one or more base stations to the femtocell management entity. The femtocell management entity may be enabled to utilize the one or more parameters to determine configuration information for one of the plurality of femtocells and/or for one or more remaining ones of the plurality of femtocells. One of the plurality of femtocells may be enabled to receive the determined configuration information from the femtocell management entity. One of the plurality of femtocells may be configured utilizing the received determined configuration information. | 09-26-2013 |
20130279541 | Method and Apparatus for Performing Frequency Synchronization - A method and apparatus for performing frequency analysis of sub-epoch correlations to estimate an unknown frequency of a received signal is provided. The method includes forming a sequence of correlation values from a plurality of correlations performed over a period less than a repeating period of a code, and analyzing the sequence of correlation values to estimate the frequency that is used to receive a signal comprising the code. | 10-24-2013 |
20130288651 | User Profile Based Content Delivery Between a Standard Handset and a Femtocell Device - An access device receives content from a broadband IP network to be communicated to a wireless handset over a radio access network (RAN). The access device acquires a user profile utilized in the radio network for the wireless handset. Based on the acquired user profile, the access device determines transmission parameters utilized for communicating the received content to the wireless handset using an air interface protocol over the radio access network. A security level and/or a security protocol, a transcoding mechanism, and/or transmission bit rate are determined based on the acquired user profile. A resolution, transmission bit rate, coding structure, security protocol and/or security level for transmitting the received content to the wireless handset are adjusted based on the acquired user profile. Alternately, the access device is enabled to receive content from the wireless handset using a transmission profile determined Lased on user profile of the wireless handset. | 10-31-2013 |
20130310005 | SERVICE MOBILITY VIA A FEMTOCELL INFRASTRUCTURE - Aspects of a method and system for service mobility via a femtocell infrastructure are provided. In this regard, a mobile cellular enabled communication device may detect a femtocell operable to deliver content for one or more services to the mobile cellular enabled communication device, where the one or more services may be provided via a set-top-box communicatively coupled to the femtocell. The mobile cellular enabled communication device may communicate a user profile to the femtocell, wherein information in the profile may be utilized by the set-top-box to authenticate and/or authorize access to the services by the mobile cellular enabled communication device and thus the mobile cellular enabled communication device may receive the content from the set-top-box based on the authentication and/or authorization. The content may comprise voice, video, data, text and/or still images. The mobile cellular enabled communication device may detect the femtocell by receiving one or broadcast messages from the femtocell. | 11-21-2013 |
20130316702 | Method and System for Timely Delivery of Multimedia Content via a Femtocell - Aspects of a method and system for timely delivery of multimedia content via a femtocell are provided. In this regard, a femtocell may receive data via an upstream path and transmit data via a downstream path. One of the upstream path and downstream path may comprise a cellular path and the other may comprise a non-cellular path. One or both of the upstream path and the downstream path may be audio video bridging (AVB) paths. Data may be stored in the femtocell based on timing characteristics of one or both of the upstream path and the downstream path. Data may be delivered to the femtocell utilizing best effort delivery and the data may be forwarded by the femtocell with guaranteed quality of service. Resources in the femtocell may be reserved and/or synchronized, utilizing AVB protocols, for communication of one or more data streams. | 11-28-2013 |
20130344808 | METHOD AND SYSTEM FOR DETERMINING A LOCATION FOR A RF COMMUNICATION DEVICE BASED ON ITS PROXIMITY TO A MOBILE DEVICE - A mobile device may be operable to determine, based on a known location of the mobile device, a location for a RF communication device that communicates with the mobile device, whenever the mobile device is within proximate range of the RF communication device. The determined location for the RF communication device may be stored in a location database in a location server and/or a memory in the RF communication device. The stored location of the RF communication device may then be used to determine a location for other mobile devices that may communicate with the RF communication device and are within proximate range of the RF communication device. The RF communication device may comprise a radio-frequency identification (RFID) device and/or a near field communication (NFC) device. The determined location for the RF communication device may comprise the known location of the mobile device. | 12-26-2013 |
20140017993 | METHOD AND APPARATUS FOR MITIGATING INTERFERENCE IN A SATELLITE SIGNAL RECEIVER - A method and apparatus for mitigating interference in a satellite signal receiver is described. The satellite signal receiver receives satellite signals from a plurality of satellites. In one example a control signal is transmitted to the satellite signal receiver upon occurrence of data transmission from a wireless transceiver operating in proximity to the satellite signal receiver. Signal integration within the satellite signal receiver is gated in response to the control signal In another example, one or more values of satellite signal samples are selected from a plurality of possible values. Signal integration within the satellite signal receiver is gated in response to a percentage of satellite signal samples taken over a predefined period exceeding a predefined threshold. In yet another example, a gain setting of an automatic gain control circuit within the satellite signal receiver is adjusted in response to detection of interference. | 01-16-2014 |
20140022122 | Method and System for Reducing Autonomous Time to Fix a Multi-Standard GNSS Receiver - A multi-standard GNSS receiver, handle different global navigation satellite systems (GNSSs), determines with respect to a current time instant, the earliest broadcast timing based on corresponding satellite broadcast cycles for satellites in the different GNSSs. The multi-standard GNSS receiver acquires broadcast ephemeris at the determined earliest broadcast timing to determine its own first position. A search order is determined based on the corresponding satellite broadcast cycles and the current time instant. The multi-standard GNSS receiver may selectively utilize appropriate satellite receivers such as the GPS receiver and the GLONASS receiver to search for satellite signals based on the determined search order. Channels for different GNSSs are scanned to identify transmitting satellites based on the corresponding satellite broadcast cycles for ephemeris downloading. The satellite search is prioritized by comparing the current time instant with the corresponding satellite broadcast cycles. | 01-23-2014 |
20140024359 | METHOD AND SYSTEM FOR INSTALLATION AND CONFIGURATION OF A FEMTOCELL - Aspects of a method and system for installation and configuration of a femtocell are provided. In this regard, information for configuring a femtocell to operate in a specified location may be received by the femtocell and may be utilized to configure one or more parameters of the femtocell. Once the femtocell is operational the parameters may be updated and/or optimized based on one or both of characterizations of cellular signals and/or information received from a femtocell registry. In this manner the femtocell may be reconfigured utilizing the updated and/or optimized parameters. The one or more parameters may be configured based on attributes of the location in which the femtocell is to operate. The one or more parameters may be configured based on a location, number, and/or coverage area of other femtocells The parameters may comprise one or more of power levels, frequency of operation, and/or antenna beam pattern. | 01-23-2014 |
20140055301 | Method and System for Adjusting a Measurement Cycle in a Wireless Receiver - A method for adjusting a frequency of a measurement cycle in a wireless receiver is described. The method includes adjusting a measurement cycle in a wireless receiver by computing a position state comprising at least one of a velocity and a heading of the satellite signal receiver, detecting a change in the position state, and automatically adjusting a frequency of said measurement cycle in response to the change in the position state. | 02-27-2014 |
20140062782 | Method and System for Calibrating Group Delay Errors in a Combined GPS and GLONASS Receiver - A combined GPS and GLONASS receiver receives GPS signals and GLONASS signals. A calibration signal is generated utilizing the received GPS signals and/or the received GLONASS signals to offset group delay errors in the received GLONASS signals. The generated calibration signal is filtered through Kalman filters to estimate group delay variations in the received GLONASS signals. The estimated group error delay variations are combined with the received GLONASS signals to calibrate the received GLONASS signals by offsetting the estimated group error delay variations. When GPS signals are not available for use, the combined GPS and GLONASS receiver obtains group delay errors stored or in the received GLONASS signals to estimate calibration coefficients. The estimate calibration coefficients are updated utilizing received GPS and/or GLONASS signals. The updated estimated calibration coefficients are stored before turning off the combined GPS and GLONASS receiver to expedite calibrating of GLONASS signals received upon turning on. | 03-06-2014 |
20140066076 | Method and System for Location-Based Dynamic Radio Selection - A multi-radio mobile device comprises a plurality of different radios. When a location update occurs, the multi-radio mobile device, at a specific location, acquires location-based radio information from a remote location server. The multi-radio mobile device selects a radio for use in the specific location based on the acquired location-based radio information comprising available radios in the specific location and radio weights. The radio is selected from the available radios based on the radio weights in the specific location. Transmissions of a desired service are received in the specific location utilizing the selected radio. Location-based radio measurements reports to the remote location server are generated utilizing signal strength measurements for the received signals. Radio quality information of the available radios is calculated by the location server utilizing location-based radio measurement reports from associated users. The radio weights of the available radios are determined based on the calculated radio quality information. | 03-06-2014 |
20140077990 | Method and System for Utilizing Reduced Functionality Processing Channels in a GNSS Receiver - A global navigation satellite system (GNSS) receiver comprising one or more regular channel circuits and one or more sniff channel circuits may be operable, utilizing the sniff channel circuits, to monitor power levels of currently visible GNSS satellites which are not being utilized by the regular channel circuits. An alternative GNSS satellite from the currently monitored GNSS satellites may be selected by the GNSS receiver based on the monitored power levels. GNSS signals received from the selected alternative GNSS satellite may be processed by a regular channel circuit. The GNSS receiver may be operable to detect, for example, signal-to-noise ratios (SNRs) or carrier-to-noise density ratios (C/N0s) of the currently visible GNSS satellites utilizing the sniff channel circuits. The sniff channel circuits may not be utilized to generate GNSS measurements so that functionality of each of the sniff channel circuits may be reduced. | 03-20-2014 |
20140098910 | METHOD AND APPARATUS FOR REDUCING THE TIME REQUIRED TO ACQUIRE A GPS SIGNAL - A method of correlating a digital communications signal is described. In an example, a window is defined equal to a portion of an epoch of the digital communication signal. The digital communication signal is then correlated across the window. A determination is made as to whether a correlation peak results from the correlating. Timing parameters are then established for receiving additional digital communication signals in response to presence of the correlation peak. | 04-10-2014 |
20140141795 | Apparatus and Method for Performing Low-Power Geo-Fence Operations - A geo-fence capable device is disclosed that is capable of performing an accurate geo-fence operation while minimizing power consumption. The device includes sensors, Wi-Fi connectability and GNSS. Sensors intermittently detect whether the device is in motion. When determined to be in motion, Wi-Fi is used to acquire a wireless access point list and to compare the access point list to previously-stored access points in order to determine whether the device is still within a particular region. GNSS is used to confirm exit from a region and to intermittently monitor whether the device has entered a new region. GNSS and application processor use can be minimized by utilizing sensor and Wi-Fi functionality as preliminary region monitors. | 05-22-2014 |
20140210664 | Method and Apparatus for Processing of Satellite Signals Without Time of Day Information - Method and apparatus for locating position of a satellite signal receiver is described. In one example, pseudoranges are obtained that estimate the range of a satellite signal receiver to a plurality of satellites. An absolute time and a position are computed using the pseudoranges at a first time. The absolute time is then used to compute another position at a subsequent time. In another example, a plurality of states associated with a satellite signal receiver are estimated, where the plurality of states includes a time tag error state. A dynamic model is then formed relating the plurality of states, the dynamic model operative to compute position of the satellite signal receiver. | 07-31-2014 |
20140323154 | Method and System for Optimized Transfer of Location Database Information - A servicing communication device may receive a subset of a location reference database that is maintained by a plurality of location servers, and may provide location related data to a mobile device that is communicatively coupled to the servicing communication device based on the received subset. The servicing communication device may determine capabilities and/or requirements of the mobile device, and may generate the location related data based on that determination. The servicing communication device may determine attributes and/or parameters that may affect determination of the subset of the location reference database. The subset of location reference database may be requested based on the determined attributes and/or parameters. The attributes and/or parameters may comprise a location of the servicing communication device. The servicing communication device may determine its location, directly based on GNSS transmissions and/or indirectly based on assisted GNSS (A-GNSS) data received from the plurality of location servers. | 10-30-2014 |