Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Charles A. Taylor, Menlo Park US

Charles A. Taylor, Menlo Park, CA US

Patent application numberDescriptionPublished
20100241404Patient-specific hemodynamics of the cardio vascular system - A noninvasive patient-specific method is provided to aid in the analysis, diagnosis, prediction or treatment of hemodynamics of the cardiovascular system of a patient. Coronary blood flow and pressure can be predicted using a 3-D patient image-based model that is implicitly coupled with a model of at least a portion of the remaining cardiovascular system. The 3-D patient image-based model includes at least a portion of the thoracic aorta and epicardial coronaries of the patient. The shape of one or more velocity profiles at the interface of the models is enforced to control complex flow features of recirculating or retrograde flow thereby minimizing model instabilities and resulting in patient-specific predictions of coronary flow rate and pressure. The invention allows for patient-specific predictions of the effect of different or varying physiological states and hemodynamic benefits of coronary medical interventions, percutaneous coronary interventions and surgical therapies.09-23-2010
20120041318METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.02-16-2012
20120041319METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.02-16-2012
20120041320METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.02-16-2012
20120041321METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.02-16-2012
20120041322METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.02-16-2012
20120041323METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.02-16-2012
20120041324METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.02-16-2012
20120041735METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.02-16-2012
20120041739Method and System for Patient-Specific Modeling of Blood Flow - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.02-16-2012
20120059246METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of at least a portion of an anatomical structure of the patient. The portion of the anatomical structure may include at least a portion of the patient's aorta and at least a portion of a plurality of coronary arteries emanating from the portion of the aorta. The at least one computer system may also be configured to create a three-dimensional model representing the portion of the anatomical structure based on the patient-specific data, create a physics-based model relating to a blood flow characteristic within the portion of the anatomical structure, and determine a fractional flow reserve within the portion of the anatomical structure based on the three-dimensional model and the physics-based model.03-08-2012
20120150516METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining patient-specific cardiovascular information. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of an anatomical structure of the patient and create a three-dimensional model representing at least a portion of the anatomical structure of the patient based on the patient-specific data. The at least one computer system may be further configured to determine a total resistance associated with a total flow through the portion of the anatomical structure of the patient, and determine information regarding a blood flow characteristic within the anatomical structure of the patient based on the three-dimensional model, a physics-based model relating to the anatomical structure of the patient, and the determined total resistance.06-14-2012
20130054214METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.02-28-2013
20130064438METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.03-14-2013
20130066618METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.03-14-2013
20130151163METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.06-13-2013
20130211728METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.08-15-2013
20140107935METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.04-17-2014
20140148693METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patients heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.05-29-2014
20140155770METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.06-05-2014
20140207432METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.07-24-2014
20140222406METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.08-07-2014
20140236492METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.08-21-2014
20140249784METHOD AND SYSTEM FOR SENSITIVITY ANALYSIS IN MODELING BLOOD FLOW CHARACTERISTICS - Embodiments include systems and methods for determining cardiovascular information for a patient. A method includes receiving patient-specific data regarding a geometry of the patient's vasculature; creating an anatomic model representing at least a portion of the patient's vasculature based on the patient-specific data; and creating a computational model of a blood flow characteristic based on the anatomic model. The method also includes identifying one or more of an uncertain parameter, an uncertain clinical variable, and an uncertain geometry; modifying a probability model based on one or more of the identified uncertain parameter, uncertain clinical variable, or uncertain geometry; determining a blood flow characteristic within the patient's vasculature based on the anatomic model and the computational model of the blood flow characteristic of the patient's vasculature; and calculating, based on the probability model and the determined blood flow characteristic, a sensitivity of the determined fractional flow reserve to one or more of the identified uncertain parameter, uncertain clinical variable, or uncertain geometry.09-04-2014
20150038860METHOD AND SYSTEM FOR MODELING BLOOD FLOW WITH BOUNDARY CONDITIONS FOR OPTIMIZED DIAGNOSTIC PERFORMANCE - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.02-05-2015
20150051884SYSTEMS AND METHODS FOR IDENTIFYING PERSONALIZED VASCULAR IMPLANTS FROM PATIENT-SPECIFIC ANATOMIC DATA - Embodiments include methods of identifying a personalized cardiovascular device based on patient-specific geometrical information, the method comprising acquiring an anatomical model of at least part of the patient's vascular system; performing, using a processor, one or more of geometrical analysis, computational fluid dynamics analysis, and structural mechanics analysis on the anatomical model; and identifying, using the processor, a personalized cardiovascular device for the patient, based on results of one or more of the geometrical analysis, computational fluid dynamics analysis, and structural mechanics analysis of anatomical model.02-19-2015
20150051885SYSTEMS AND METHODS FOR IDENTIFYING PERSONALIZED VASCULAR IMPLANTS FROM PATIENT-SPECIFIC ANATOMIC DATA - Embodiments include methods of identifying a personalized cardiovascular device based on patient-specific geometrical information, the method comprising acquiring a geometric model of at least a portion of a patient's vascular system; obtaining one or more geometric quantities of one or more blood vessels of the geometric model of the patient's vascular system; determining the presence or absence of a pathology characteristic at a location in the geometric model of the patient's vascular system; generating an objective function defined by a plurality of device variables and a plurality of hemodynamic and solid mechanics characteristics; and optimizing the objective function using computational fluid dynamics and structural mechanics analysis to identify a plurality of device variables that result in desired hemodynamic and solid mechanics characteristics.02-19-2015
20150051886SYSTEMS AND METHODS FOR IDENTIFYING PERSONALIZED VASCULAR IMPLANTS FROM PATIENT-SPECIFIC ANATOMIC DATA - Embodiments include methods of identifying a personalized cardiovascular device based on patient-specific geometrical information, the method comprising: generating a patient specific model of at least a portion of a patient's vasculature from image data of the patient's vasculature and one or more measured or estimated physiological or phenotypic parameters of the patient; determining pathology characteristics from cardiovascular geometry of the patient specific model; defining an objective function for a device based on design considerations and one or more estimates of hemodynamic and mechanical characteristics; optimizing the objective function, by simulating at least one change in devices and evaluating the objective function using fluid dynamic or structural mechanic analyses; and using the optimized objective function to either (i) select a device from a set of available devices or (ii) manufacture a desired device.02-19-2015
20150065846SYSTEMS AND METHODS FOR PREDICTING LOCATION, ONSET, AND/OR CHANGE OF CORONARY LESIONS - Systems and methods are disclosed for predicting the location, onset, or change of coronary lesions from factors like vessel geometry, physiology, and hemodynamics. One method includes: acquiring, for each of a plurality of individuals, a geometric model, blood flow characteristics, and plaque information for part of the individual's vascular system; training a machine learning algorithm based on the geometric models and blood flow characteristics for each of the plurality of individuals, and features predictive of the presence of plaque within the geometric models and blood flow characteristics of the plurality of individuals; acquiring, for a patient, a geometric model and blood flow characteristics for part of the patient's vascular system; and executing the machine learning algorithm on the patient's geometric model and blood flow characteristics to determine, based on the predictive features, plaque information of the patient for at least one point in the patient's geometric model.03-05-2015
20150065847SYSTEMS AND METHODS FOR PREDICTING LOCATION, ONSET, AND/OR CHANGE OF CORONARY LESIONS - Systems and methods are disclosed for predicting the location, onset, or change of coronary lesions from factors like vessel geometry, physiology, and hemodynamics. One method includes: acquiring, for each of a plurality of individuals, a geometric model, blood flow characteristics, and plaque information for part of the individual's vascular system; training a machine learning algorithm based on the geometric models and blood flow characteristics for each of the plurality of individuals, and features predictive of the presence of plaque within the geometric models and blood flow characteristics of the plurality of individuals; acquiring, for a patient, a geometric model and blood flow characteristics for part of the patient's vascular system; and executing the machine learning algorithm on the patient's geometric model and blood flow characteristics to determine, based on the predictive features, plaque information of the patient for at least one point in the patient's geometric model.03-05-2015
20150065848SYSTEMS AND METHODS FOR PREDICTING LOCATION, ONSET, AND/OR CHANGE OF CORONARY LESIONS - Systems and methods are disclosed for predicting the location, onset, or change of coronary lesions from factors like vessel geometry, physiology, and hemodynamics. One method includes: acquiring, for each of a plurality of individuals, a geometric model, blood flow characteristics, and plaque information for part of the individual's vascular system; training a machine learning algorithm based on the geometric models and blood flow characteristics for each of the plurality of individuals, and features predictive of the presence of plaque within the geometric models and blood flow characteristics of the plurality of individuals; acquiring, for a patient, a geometric model and blood flow characteristics for part of the patient's vascular system; and executing the machine learning algorithm on the patient's geometric model and blood flow characteristics to determine, based on the predictive features, plaque information of the patient for at least one point in the patient's geometric model.03-05-2015
20150088015METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patients heart based on the three-dimensional model and the physics-based model.03-26-2015
20150088478METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.03-26-2015

Patent applications by Charles A. Taylor, Menlo Park, CA US

Website © 2015 Advameg, Inc.