Patent application number | Description | Published |
20100270552 | THIN FILM TRANSISTOR SUBSTRATE AND METHOD OF MANUFACTURING THE SAME - A protrusion of dry-etched pattern of a thin film transistor substrate generated due to a difference between isotropy of wet etching and anisotropy of dry etching is removed by forming a plating part on a surface of the wet etched pattern through an electroless plating method. If the plating part is formed on a data pattern layer of the substrate, the width or the thickness of the data pattern layer may be increased without loss of aperture ratio, the channel length of the semiconductor layer may be reduced under the limit according to the stepper resolution and the protrusion part of the semiconductor layer may be removed. As a result, the aperture ratio may be increased, the resistance may be reduced, and the driving margin may be increased due to rising of the ion current. Furthermore, the so-called water-fall noise phenomenon may be eliminated. | 10-28-2010 |
20110012115 | DISPLAY DEVICE WITH IMPROVED SENSING MECHANISM - A display panel that includes: a substrate, a sensing transistor disposed on the substrate, and a readout transistor connected to the sensing transistor and transmitting a detecting signal is presented. The sensing transistor includes a semiconductor layer disposed on the upper substrate, a source electrode and a drain electrode disposed on the semiconductor layer, and a gate electrode overlapping the semiconductor layer on the source electrode and the drain electrode. Accordingly, in a display device and a manufacturing method thereof, an infrared sensing transistor, a visible light sensing transistor, and a readout transistor are simultaneously formed with a top gate structure such that the number of manufacturing processes and the manufacturing cost may be reduced. | 01-20-2011 |
20110032461 | VISIBLE-LIGHT BLOCKING MEMBER, INFRARED SENSOR INCLUDING THE VISIBLE-LIGHT BLOCKING MEMBER, AND LIQUID CRYSTAL DISPLAY DEVICE INCLUDING THE INFRARED SENSOR - In a visible-light blocking member, an infrared sensor including the visible-light blocking member, and a liquid crystal display including the infrared sensor, a visible-light blocking member is a structure including amorphous germanium or a compound of amorphous germanium and has higher transmittance for a wavelength of an infrared ray region than for a wavelength of a visible light region. Accordingly, sensitivity to infrared rays may be increased by applying the visible-light blocking member to the infrared sensor. | 02-10-2011 |
20110057189 | DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - A display device includes a lower panel including a lower substrate and a pixel transistor formed on the lower substrate; and an upper panel facing the lower panel, and including an upper substrate, a sensing transistor formed on the upper substrate, and a readout transistor connected to the sensing transistor and transmitting a signal. The readout transistor includes a first lower gate electrode formed on the upper substrate, a first semiconductor layer formed on the first lower gate electrode and overlaps the first gate electrode, and a first source electrode and a first drain electrode disposed on the first semiconductor layer. The sensing transistor includes a light blocking film disposed on the upper substrate, a second lower gate electrode contacting the light blocking film on the light blocking film, a second semiconductor layer overlapping the light blocking film on the second lower gate electrode, a second source electrode and a second drain electrode formed on the second semiconductor layer, and a second upper gate electrode overlapping the second semiconductor layer on the second source electrode and the second drain electrode. | 03-10-2011 |
20110090420 | SENSOR ARRAY SUBSTRATE, DISPLAY DEVICE INCLUDING THE SAME, AND METHOD OF MANUFACTURING THE SAME - A sensor array substrate, a display device including the sensor array substrate, and a method of manufacturing the sensor array substrate are provided. The sensor array substrate includes a substrate, a first sensor formed on a first pixel area of the substrate and configured to detect light, an overcoat layer formed on the first sensor, and a shield layer formed over the overcoat layer, wherein the shield layer overlaps the first sensor. | 04-21-2011 |
20110147746 | TOUCH SCREEN SUBSTRATE, METHOD OF MANUFACTURING THE SAME, AND DISPLAY PANEL INCLUDING THE TOUCH SCREEN SUBSTRATE - A touch screen substrate includes a base substrate, a first switching element and a first sensing element which senses infrared light. The first switching element includes a first switching gate electrode, a first active pattern disposed on the first switching gate electrode, a first switching source electrode disposed on the first active pattern and a first switching drain electrode disposed apart from the first switching source electrode. The first sensing element includes a first sensing drain electrode connected to the first switching source electrode, a first sensing source electrode disposed apart from the first sensing drain electrode, a second active pattern disposed below the first sensing drain electrode and the first sensing source electrode and including a first amorphous layer, a doped amorphous layer and a second amorphous layer, and a first sensing gate electrode disposed on the first sensing drain electrode and the first sensing source electrode. | 06-23-2011 |
20110169000 | DISPLAY SUBSTRATE AND METHOD OF MANUFACTURING THE SAME - A display substrate includes a first light blocking pattern formed on a base substrate, a first switching element, a second light blocking pattern formed on the base substrate, and a first sensing element. The first light blocking pattern is configured to block visible light and transmit infrared light. The first switching element includes a first semiconductor pattern, a first source electrode, a first drain electrode, and a first gate electrode. The second light blocking pattern is configured to block the visible light and transmit the infrared light. The first sensing element is configured to detect the infrared light, and includes a second semiconductor pattern, a second source electrode, a second drain electrode, and a second gate electrode. | 07-14-2011 |
20110261040 | INFORMATION DETECTION DISPLAY - An information detection device includes: a plurality of light sensing units each configured to detect light; a plurality of sensor scanning drivers each configured to apply sensor scanning signals to the light sensing units; a sensing signal processor configured to receive position information detected by the light sensing units; a plurality of bias applying units each configured to apply bias voltages to the light sensing units; wherein each bias applying unit applies a different polarity of bias voltage. | 10-27-2011 |
20120138929 | IR SENSING TRANSISTOR AND MANUFACTURING METHOD OF DISPLAY DEVICE INCLUDING THE SAME - An IR sensing transistor according to an exemplary embodiment of the present invention includes: a light blocking layer formed on a substrate; a gate insulating layer formed on the light blocking layer; a semiconductor formed on the gate insulating layer; a pair of ohmic contact members formed on the semiconductor; a source electrode and a drain electrode formed on respective ones of the ohmic contact members; a passivation layer formed on the source electrode and the drain electrode; and a gate electrode formed on the passivation layer, wherein substantially all of the gate insulating layer lies on the light blocking layer. | 06-07-2012 |
20120188204 | TOUCH SENSING SUBSTRATE AND METHOD OF MANUFACTURING THE SAME - A touch sensing substrate includes a substrate, a first light sensing element, a second light sensing element and a first bias line. The first light sensing element includes a first gate electrode, a first active pattern overlapping with the first gate electrode, a first source electrode partially overlapping with the first active pattern and a first drain electrode partially overlapping with the first active pattern. The second light sensing element includes a second gate electrode, a second active pattern overlapping with the second gate electrode, a second source electrode partially overlapping with the second active pattern and a second drain electrode partially overlapping with the second active pattern. The first bias line is connected to the first and second gate electrodes. | 07-26-2012 |
20120228505 | OPTICAL SENSOR - An optical sensor includes a visible light sensor includes a visible light sensing transistor and an infrared light sensor includes an infrared light sensing transistor, wherein the visible light sensing transistor receives a first driving voltage through a first driving voltage line, the infrared light sensing transistor receives a second driving voltage through a second driving voltage line, and the visible light sensing transistor and the infrared light sensing transistor receive a reference voltage through a reference voltage line. | 09-13-2012 |
20120248452 | OPTICAL SENSOR - An optical sensor preventing damage to a semiconductor layer, and preventing a disconnection and a short circuit of a source electrode and a drain electrode, and a manufacturing method of the optical sensor is provided. The optical sensor includes: a substrate; an infrared ray sensing thin film transistor including a first semiconductor layer disposed on the substrate; a visible ray sensing thin film transistor including a second semiconductor layer disposed on the substrate; a switching thin film transistor including a third semiconductor layer disposed on the substrate; and a semiconductor passivation layer enclosing an upper surface and a side surface of an end portion of at least one of the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer. | 10-04-2012 |
20140175441 | THIN FILM TRANSISTOR ARRAY PANEL AND MANUFACTURING METHOD THEREOF - A thin film transistor array panel includes a substrate, an insulation layer, a first semiconductor, and a second semiconductor. The insulation layer is disposed on the substrate and includes a stepped portion. The first semiconductor is disposed on the insulation layer. The second semiconductor is disposed on the insulation layer and includes a semiconductor material different than the first semiconductor. The stepped portion is spaced apart from an edge of the first semiconductor. | 06-26-2014 |
20140184942 | DISPLAY HAVING TOUCH SENSING FUNCTION - A panel for a display device is provided. The panel includes a first substrate, a touch sensing circuit formed on the first substrate, the touch sensing circuit including at least one sensing thin film transistor and a connection wire, and a shielding electrode formed covering at least a portion of the sensing thin film transistor and the connection wire. | 07-03-2014 |
20140232972 | DISPLAY SUBSTRATE, DISPLAY PANEL HAVING THE SAME AND METHOD OF MANUFACTURING THE SAME - A display substrate includes a base substrate, a reflection controlling layer disposed on the base substrate, and a metal wiring layer disposed on the reflection controlling layer. The metal wiring layer comprises an opaque metal. The reflection controlling layer changes wavelength-specific reflectance of reflected light using destructive interference. The reflected light is reflected from the metal wiring layer through the base substrate and the reflection controlling layer. | 08-21-2014 |
20140247403 | TOUCH DISPLAY APPARATUS AND METHOD OF MANUFACTURING THE SAME - A touch display apparatus includes a base substrate, a light blocking semiconductor pattern disposed on the base substrate and configured to block a visible light and transmit an infrared light, a sensing element disposed on the light blocking semiconductor pattern and configured to detect a touch position using an incident infrared light, a driving element configured to drive the sensing element, a signal line electrically connected with the sensing element or the driving element and extending in a direction, and a wiring connecting part disposed under the signal line and including a same material as the light blocking semiconductor pattern. | 09-04-2014 |
20140287542 | IR SENSING TRANSISTOR AND MANUFACTURING METHOD OF DISPLAY DEVICE INCLUDING THE SAME - An IR sensing transistor according to an exemplary embodiment of the present invention includes: a light blocking layer formed on a substrate; a gate insulating layer formed on the light blocking layer; a semiconductor formed on the gate insulating layer; a pair of ohmic contact members formed on the semiconductor; a source electrode and a drain electrode formed on respective ones of the ohmic contact members; a passivation layer formed on the source electrode and the drain electrode; and a gate electrode formed on the passivation layer, wherein substantially all of the gate insulating layer lies on the light blocking layer. | 09-25-2014 |
20140306901 | METHOD OF PROCESSING TOUCH-SENSOR DATA AND APPARATUS FOR PERFORMING THE SAME - A method of processing touch-image data includes calculating a plurality of motion vectors using a plurality of low-resolution touch-image data frames, aligning sensing data corresponding to an object detected in the low-resolution touch-image data frames using the motion vectors to generate an overlapped touch-image data frame, generating high-resolution data corresponding to the detected object using the overlapped touch-image data frame and detecting the touch position and generating touch position data of the detected object using the high-resolution touch position data corresponding to the detected object. | 10-16-2014 |