Patent application number | Description | Published |
20090203568 | DETERGENT COMPOSITIONS - The present invention relates to detergent compositions comprising a detergent ingredient and a specific lipase variant with reduced potential for odor generation and a good relative performance versus the parent lipase. | 08-13-2009 |
20090209661 | DELIVERY PARTICLE - The present application relates to agglomerates/particles comprising encapsulated, benefit agents, compositions comprising such agglomerates/particles, and processes for making and using such agglomerates/particles and compositions comprising such agglomerates/particles. Such agglomerates/particles are processed to a form that minimizes or eliminate certain drawbacks associated with incorporating encapsulated benefit agents in consumer products. | 08-20-2009 |
20100132131 | DETERGENT COMPOSITIONS - This invention relates to compositions comprising certain lipase variants and a photobleach and processes for making and using such compositions. Including the use of such compositions to clean and/or treat a situs. | 06-03-2010 |
20120010120 | DELIVERY PARTICLE - The present application relates to agglomerates/particles comprising encapsulated, benefit agents, compositions comprising such agglomerates/particles, and processes for making and using such agglomerates/particles and compositions comprising such agglomerates/particles. Such agglomerates/particles are processed to a form that minimizes or eliminate certain drawbacks associated with incorporating encapsulated benefit agents in consumer products. | 01-12-2012 |
Patent application number | Description | Published |
20090285978 | Electrochromic devices having improved ion conducting layers - An improved ion conductor layer for use in electrochromic devices and other applications is disclosed. The improved ion-conductor layer is comprised of at least two ion transport layers and a buffer layer, wherein the at least two ion transport layers and the buffer layer alternate within the ion conductor layer such that the ion transport layers are in communication with a first and a second electrode. Electrochromic devices utilizing such an improved ion conductor layer color more deeply by virtue of the increased voltage developed across the ion conductor layer prior to electronic breakdown while reducing the amount of electronic leakage. Also disclosed are methods of making electrochromic devices incorporating the improved ion conductor layer disclosed herein and methods of making ion conductors for use in other applications. | 11-19-2009 |
20110135837 | ELECTROCHROMIC DEVICES HAVING IMPROVED ION CONDUCTING LAYERS - An improved ion conductor layer for use in electrochromic devices and other applications is disclosed. The improved ion-conductor layer is comprised of at least two ion transport layers and a buffer layer, wherein the at least two ion transport layers and the buffer layer alternate within the ion conductor layer such that the ion transport layers are in communication with a first and a second electrode. Electrochromic devices utilizing such an improved ion conductor layer color more deeply by virtue of the increased voltage developed across the ion conductor layer prior to electronic breakdown while reducing the amount of electronic leakage. Also disclosed are methods of making electrochromic devices incorporating the improved ion conductor layer disclosed herein and methods of making ion conductors for use in other applications. | 06-09-2011 |
20110260961 | SERIES CONNECTED ELECTROCHROMIC DEVICES - An electrochromic device includes a first electrochromic region interconnected with a second electrochromic region by a plurality of conductive links disposed between sides of a substrate on which the material layers of the electrochromic device are formed. The plurality of conductive links interconnects a first isolated conductive region of the first electrochromic region with a first isolated conductive region of the second electrochromic region. A sequence of a counter electrode layer, an ion conductor layer and an electrochromic layer is sandwiched between the first conductive regions of the first and second electrochromic regions and respective second isolated conductive regions of the first and second electrochromic regions. The second conductive regions of the first and second electrochromic regions are connected to respective first and second bus bars which are for connection to a low voltage electrical source. | 10-27-2011 |
20120062976 | SERIES CONNECTED ELECTROCHROMIC DEVICES - An electrochromic device includes a first electrochromic region interconnected with a second electrochromic region by a plurality of conductive links disposed between sides of a substrate on which the material layers of the electrochromic device are formed. The plurality of conductive links interconnects a first isolated conductive region of the first electrochromic region with a first isolated conductive region of the second electrochromic region. A sequence of a counter electrode layer, an ion conductor layer and an electrochromic layer is sandwiched between the first conductive regions of the first and second electrochromic regions and respective second isolated conductive regions of the first and second electrochromic regions. The second conductive regions of the first and second electrochromic regions are connected to respective first and second bus bars which are for connection to a low voltage electrical source. | 03-15-2012 |
20130286459 | ELECTROCHROMIC DEVICES AND METHODS - A heat treated electrochromic device comprising an anodic complementary counter electrode layer comprised of a mixed tungsten-nickel oxide and lithium, which provides a high transmission in the fully intercalated state and which is capable of long term stability, is disclosed. Methods of making an electrochromic device comprising an anodic complementary counter electrode comprised of a mixed tungsten-nickel oxide are also disclosed. | 10-31-2013 |
20140253996 | LASER CUTS TO REDUCE ELECTRICAL LEAKAGE - One object of the present invention is to provide an electrochromic device having improved insulating film structure to reduce electrical leakage. The improved structure includes a lower conductive layer, upper conductive layer, an electrochromic electrode layer, a counter electrode layer, and at least one ion-conductor layer sandwiched between the electrochromic electrode layer and the counter electrode layer. The lower conductive layer and the electrochromic electrode layer are scribed and the gap formed from the scribing is filled with the layers formed above the electrochromic electrode layer. In some aspects, the ion-conductor layer is also scribed with the lower conductor and electrochromic electrode layers and the gap formed from the scribing is filled with the layers formed above the ion-conductor layer. In further aspects, the insulating film may include one or more buffer layers formed above an ion-conductor layer, further separating the upper conductive layer from the lower conductive layer. | 09-11-2014 |
20150029573 | ELECTROCHROMIC DEVICES HAVING IMPROVED STRUCTURE FOR REDUCING CURRENT LEAKAGE ACROSS LOWER TRANSPARENT CONDUCTOR LAYERS - One object of the present invention is to provide an electrochromic device having improved insulating film structure to reduce electrical leakage. The improved structure includes a lower conductive layer, upper transparent conductive layer, an electrochromic electrode layer, a counter electrode layer, and at least one ion-conductor layer sandwiched between the electrochromic electrode layer and the counter electrode layer. The lower transport conductive layer is scribed and the gap formed from the scribing is filled with the layer(s) formed above the lower conductive layer, such as the electrode layer formed directly above the lower conductive layer. The effective linewidth of the scribe is greater than the migration length of the lithium ions intercalated into the electrode layer, such that the electrode materials occupying the gap do not convert the electrode layer into an electrically conductive region. | 01-29-2015 |