Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Brahmavar

Deepak Brahmavar, Bangalore IN

Patent application numberDescriptionPublished
20100107154METHOD AND SYSTEM FOR INSTALLING AN OPERATING SYSTEM VIA A NETWORK - A system and method for handling network interface error during operating system installation on a client device by an installation server via a network is disclosed. In one embodiment, the method includes determining available network interface modules in the client device when a request for an installation of the OS is forwarded by the client device, initiating the installation of the OS using a first network interface module of the available network interface modules, switching to a second network interface module of the available network interface modules when the first network interface module becomes inoperable due to an error, and continuing the installation of the OS on the client device using the second network interface module. The method further includes downloading the probe module from the installation server to the client device using a default connection between the installation server and the client device.04-29-2010

Deepak Brahmavar, Bangalore Karnataka IN

Patent application numberDescriptionPublished
20090063651System And Method For Saving Dump Data Of A Client In A Network - A system and method for saving memory dump data from an operating system of a client in a network. The method includes configuring the client to allocate client system memory according to system memory classifications, configuring the client to transfer dump data to at least one dump server, saving said dump data periodically during client system run-time based on the system memory classifications, and saving dump data in the event of a client system crash to at least complement the dump data sent periodically during client system run-time.03-05-2009

Deepak Brahmavar, Bangalore Karnalaka IN

Patent application numberDescriptionPublished
20080256547Method and System For Managing a Common Resource In a Computing System - The invention, in one embodiment, provides a method for acquiring and releasing a lock over a common resource in a computing system. After a lock has been acquired over a common resource. A determination (10-16-2008

Ramesh Pai Brahmavar, Hyderabad IN

Patent application numberDescriptionPublished
20120286820METHODS TO DETECT A SINGLE POINT OF FAILURE - A method of detecting a single point of failure includes: placing a portion of a machine being monitored by a plurality of monitoring devices in a first position; causing the portion to cycle to a second position during a first cycle; measuring a component of electrical power provided by a first power supply unit while the portion cycles during the first cycle; returning the portion to the first position; causing the portion to cycle to the second position during a second cycle; measuring the component of electrical power provided by a second power supply during the second cycle; determining that an amount of the component of electrical power provided during either the first or second cycle is equal to or less than a minimum value; and generating an alarm.11-15-2012
20140019092System and Method for Monitoring Process Control System Health - Systems and methods are provided for monitoring health of a process control system. The system includes a device configured to receive diagnostic alarm data that relates to the health of the process control system, group the diagnostic alarm data into a plurality of groups, and identify a problem associated with each group of diagnostic alarm data in the plurality of groups.01-16-2014
20140031957SYSTEMS AND METHODS FOR CONTROL RELIABILITY OPERATIONS - In one embodiment, a system includes a data collection system configured to collect a data from a control system. The system further includes a configuration management system configured to manage a hardware configuration and a software configuration for the control system based on the data. The system additionally includes a rule engine configured to use the data as input and to output a health assessment by using a rule database, and a report generator configured to provide a health assessment for the control system.01-30-2014
20140031958SYSTEMS AND METHODS FOR RULE-BASED CONTROL SYSTEM RELIABILITY - In one embodiment, a system includes system includes a data collection system configured to collect a data from a control system. The system further includes a configuration management system configured to manage a hardware configuration and a software configuration for the control system based on the data. The system additionally includes a rule engine configured to use the data as input and to output a health assessment by using a rule database configured to store at least one rule, and a report generator configured to provide a health assessment for the control system. The system also includes a rule editor configured to create the at least one rule, update the at least one rule, delete the at least one rule, or a combination thereof.01-30-2014
20140032169SYSTEMS AND METHODS FOR IMPROVING CONTROL SYSTEM RELIABILITY - In one embodiment, a system includes system includes a data collection system configured to collect a data from a control system. The system further includes a configuration management system configured to manage a hardware configuration and a software configuration for the control system based on the data. The system additionally includes a rule engine configured to use the data as input and to output a health assessment by using a rule database configured to store at least one rule, and a report generator configured to provide a health assessment for the control system. The system also includes a rule editor configured to create the at least one rule, update the at least one rule, delete the at least one rule, or a combination thereof.01-30-2014
20140032470SYSTEMS AND METHODS FOR CONTROL RELIABILITY OPERATIONS - In one embodiment, a system includes a data collection system configured to collect a data from a control system by using an offline mode of operations. The system further includes a configuration management system configured to manage a hardware configuration and a software configuration for the control system based on the data. The system additionally includes a rule engine configured to use the data as input and to output a health assessment by using a rule database, and a report generator configured to provide a health assessment for the control system.01-30-2014
20140111889METHODS TO AVOID A SINGLE POINT OF FAILURE - A method to avoid a single point of failure in a system that includes at least two monitoring devices, at least two power supplies and a switching device coupled between the monitoring devices and the power supplies. The method includes performing a test that can determine if two monitoring devices are receiving power from the power supply, generating an error code and varying a position of one or more switches in a switching device based on the error code.04-24-2014

Subhash M. Brahmavar, Fort Wayne, IN US

Patent application numberDescriptionPublished
20100052457METHODS AND APPARATUS FOR FABRICATION OF ELECTRIC MOTORS - A rotor assembly for an electric motor is described that includes a rotor shaft, a ferromagnetic core mounted on the rotor shaft, and at least one cylindrical shaped magnet configured to engage and substantially surround the length of the ferromagnetic core. The at least one magnet is fabricated utilizing neodymium.03-04-2010
20110291514RESILIENT ROTOR ASSEMBLY FOR INTERIOR PERMANENT MAGNET MOTOR - A method for manufacturing an interior magnet rotor core motor is described herein. The method includes attaching a resilient material to an inner rigid structure configured to engage a shaft associated with the motor, engaging the structure with the motor shaft, positioning the shaft and structure assembly with respect to the rotor core, and affixing the resilient material to the rotor core.12-01-2011
20120139381PERMANENT MAGNET ROTORS AND METHODS OF ASSEMBLING THE SAME - A method for securing a permanent magnet within a rotor core is described. The rotor core includes a first end and a second end and at least one permanent magnet opening configured to receive the permanent magnet. The method includes coupling a first rotor end lamination to the first end of the rotor core. The first lamination includes at least one inner wall that defines an opening within the first lamination that corresponds to the permanent magnet opening in the rotor core. The first lamination includes a bridge portion positioned between the at least one inner wall and an outer edge of the first rotor end lamination. The method also includes positioning a permanent magnet at least partially within the permanent magnet opening and mechanically deforming the bridge portion of the first lamination to secure the permanent magnet within the permanent magnet opening.06-07-2012
20140021810RESILIENT ROTOR ASSEMBLY FOR INTERIOR PERMANENT MAGNET MOTOR - An electric motor comprises a shaft, an interior magnet rotor core comprising a central bore and a pair of opposing ends faces, and at least one resilient structure inserted within the central bore between the pair of opposing end faces. The at least one resilient component is inserted within the central bore between the pair of opposing end faces such that the at least one resilient component does not extend beyond one of the opposing end faces. The resilient component comprises an outer rigid structure inserted within the central bore, a resilient component inserted within the outer rigid structure, and an inner rigid structure inserted within the resilient component, wherein the shaft is inserted through the inner rigid structure.01-23-2014
20140159535PERMANENT MAGNET ROTORS AND METHODS OF ASSEMBLING THE SAME - A permanent magnet rotor includes at least one permanent magnet and a rotor core including a first end and a second end. The rotor core includes a plurality of permanent magnet openings that are each configured to receive a permanent magnet. The permanent magnet rotor also includes a first rotor end lamination coupled to the first rotor core end. The first rotor end lamination includes a plurality of inner lamination walls defining a first lamination opening and a second lamination opening circumferentially adjacent the first lamination opening. At least one inner lamination wall includes at least one permanent magnet retention feature configured to secure the permanent magnet within a corresponding permanent magnet opening. The at least one permanent magnet retention feature includes at least one tab extending radially from at least one of the plurality of inner lamination walls within the first rotor end lamination.06-12-2014

Patent applications by Subhash M. Brahmavar, Fort Wayne, IN US

Subhash Marutirao Brahmavar, Fort Wayne, IN US

Patent application numberDescriptionPublished
20140028148METHODS, SYSTEMS, AND APPARATUS FOR REDUCING COGGING TORQUE IN AN ELECTRIC MACHINE - An interior permanent magnet machine is described. The machine includes a rotor rotatable about a central machine axis. The rotor includes a plurality of permanent magnet openings and a plurality of permanent magnets disposed therein. The permanent magnet openings are separated by rotor webs configured to facilitate reducing leakage flux through the rotor webs. The machine also includes a stator disposed coaxially with the rotor and separated from the rotor by a circumferential air gap. The stator includes a plurality of stator teeth that define a plurality of stator slots therebetween. The stator teeth include a stator tooth tip configured to facilitate reducing cogging torque and torque ripple.01-30-2014
20140102674RADIALLY EMBEDDED PERMANENT MAGNET ROTOR AND METHODS THEREOF - In one embodiment, a permanent magnet rotor for use with a stator is provided. The permanent magnet rotor includes at least one permanent magnet and a substantially cylindrical rotor core including an outer edge, a hub having an inner edge defining a central opening, and a plurality of independent pole pieces spaced from the hub radially about the central opening. The rotor core further includes at least one radial aperture extending radially from the outer edge through the rotor core between adjacent independent pole pieces, the at least one aperture configured to receive the at least one permanent magnet.04-17-2014
20140103768RADIALLY EMBEDDED PERMANENT MAGNET ROTOR AND METHODS THEREOF - In one embodiment, a permanent magnet rotor is provided. The permanent magnet rotor includes at least one permanent magnet and a substantially cylindrical rotor core including an outer edge and an inner edge defining a central opening. The rotor core includes a radius R, at least one pole, and at least one radial aperture extending radially though the rotor core from the outer edge to a predetermined depth less than the radius. The at least one radial aperture is configured to receive the at least one permanent magnet. The rotor further includes at least one protrusion extending into the at least one radial aperture, the at least one protrusion positioned substantially along a bottom of the at least one radial aperture and configured to facilitate retention of the at least one permanent magnet within the at least one radial aperture.04-17-2014
20140103769RADIALLY EMBEDDED PERMANENT MAGNET ROTOR AND METHODS THEREOF - In one embodiment, a permanent magnet rotor is provided. The permanent magnet rotor includes a shaft comprising an outer diameter, a first hub coupled about the shaft outer diameter, and a first plurality of pole pieces positioned radially about the hub. The rotor further includes a plurality of permanent magnets positioned radially about the hub. The plurality of pole pieces and the plurality of permanent magnets define a rotor outer diameter, and the rotor outer diameter is magnetically isolated from shaft.04-17-2014
20140103770PERMANENT MAGNET ROTOR AND METHODS THEREOF - In one embodiment, an electric machine is provided. The electric machine includes a machine housing and a stator disposed at least partially within the housing, the stator comprising a plurality of teeth and an aluminum winding wound around at least one tooth of the plurality of teeth. The electric machine further includes a radially embedded permanent magnet rotor disposed at least partially within the housing, the rotor comprising at least one radially embedded permanent magnet and configured to provide increased flux to reduce motor efficiency loss compared to a copper winding.04-17-2014
20140103772RADIALLY EMBEDDED PERMANENT MAGNET ROTOR AND METHODS THEREOF - In one embodiment, a permanent magnet rotor is provided. The rotor includes at least one permanent magnet and a substantially cylindrical rotor core including a plurality of stacked laminations, a hub having an inner edge defining a central opening, and a shaft inserted through the central opening, the shaft magnetically isolated from the hub. The rotor includes at least one connected pole piece coupled to the hub and at least one independent pole piece separated from the hub. The at least one permanent magnet is disposed between the at least one connected pole piece and the at least one independent pole piece.04-17-2014
20150061441ELECTRIC MACHINE AND ASSOCIATED METHOD - An electric machine includes a machine housing and a stator disposed at least partially within the housing. The electric machine also includes a radially embedded permanent magnet rotor disposed at least partially within the housing and an endcap. The rotor has at least one radially embedded permanent magnet that is configured to provide increased flux to reduce motor efficiency loss. The endcap is operably connected to a distal portion of the rotor.03-05-2015
20150061468ELECTRIC MACHINE AND ASSOCIATED METHOD - A method for fabricating a rotor for an electric motor is provided. The method includes the steps of fabricating a first set of rotor parts for use in a motor having a first frame size and fabricating a second set of rotor parts for use in a motor having a second frame size. The second frame size is substantially different from the first frame size. The method further includes the steps of fabricating a third set of rotor parts for use in the motor having the first frame size and for use in the motor having the second frame size, ascertaining the desired motor frame size, and selecting one of the first set of rotor parts and the second set of rotor parts in accordance with desired motor frame size. The method also includes the steps of selecting the third set of rotor parts and assembling a rotor with one of the first set of rotor parts and the second set of rotor parts and with the third set of rotor parts, such that a rotor for use with the desired motor frame size is substantially provided.03-05-2015
Website © 2015 Advameg, Inc.