Patent application number | Description | Published |
20090000986 | SYSTEM AND PROCESS FOR HYDROCRACKING - A method for hydrocracking a feedstream comprising liquid hydrocarbon by forming a dispersion comprising hydrogen-containing gas bubbles dispersed in the liquid hydrocarbon, wherein the bubbles have a mean diameter of less than about 5 μm, and introducing the dispersion into a hydrocracker comprising hydrocracking catalyst. A method for hydrocracking by subjecting a fluid mixture comprising hydrogen-containing gas and liquid hydrocarbons to a shear rate greater than 20,000 s | 01-01-2009 |
20090000989 | SYSTEM AND PROCESS FOR HYDRODESULFURIZATION, HYDRODENITROGENATION, OR HYDROFINISHING - A method for hydrodesulfurization by forming a dispersion comprising hydrogen-containing gas bubbles with a mean diameter of less than 1 micron dispersed in a liquid phase comprising sulfur-containing compounds. Desulfurizing a liquid stream comprising sulfur-containing compounds by subjecting a fluid mixture comprising hydrogen-containing gas and the liquid to a shear rate greater than 20,000 s | 01-01-2009 |
20090001017 | SYSTEM AND PROCESS FOR WATER TREATMENT - A method for removing contaminant from feedwater by forming a dispersion comprising bubbles of a treatment gas in a continuous phase comprising feedwater, wherein the bubbles have a mean diameter of less than about 5 μm and wherein the treatment gas is selected from air, oxygen, and chlorine. A method for removing contaminants from a feedwater by subjecting a fluid mixture comprising feedwater and a treatment gas to a shear rate greater than 20,000 s | 01-01-2009 |
20090001188 | SYSTEM AND PROCESS FOR INHIBITOR INJECTION - A method for introducing inhibitor into a fluid to be treated by forming a dispersion comprising droplets, particles, or gas bubbles of the inhibitor dispersed in a continuous phase of a carrier, wherein the droplets, particles, or gas bubbles have a mean diameter of less than 5 μm, and wherein either the carrier is the fluid to be treated or the method further comprises introducing the dispersion into the fluid to be treated. A system for inhibiting an undesirable component, the system comprising at least one high shear mixing device comprising at least one generator comprising a rotor and a stator separated by a shear gap, wherein the high shear mixing device is capable of producing a tip speed of the rotor of greater than 22.9 m/s, and a pump for delivering a mixture of a carrier and an inhibitor to the high shear mixing device. | 01-01-2009 |
20090001316 | SYSTEM AND PROCESS FOR PRODUCTION OF LIQUID PRODUCT FROM LIGHT GAS - A method for producing a product comprising at least one selected from C | 01-01-2009 |
20090001320 | SYSTEM AND PROCESS FOR GAS SWEETENING - A method for removing hydrogen sulfide from a sour gas stream comprising hydrogen sulfide by oxidizing hydrogen sulfide in a converter by contacting the sour gas stream with an aqueous catalytic solution, thereby producing a desulfurized gas stream and a liquid stream comprising reduced catalyst and elemental sulfur, introducing an oxidant and the liquid stream comprising reduced catalyst and elemental sulfur into a high shear device and producing a dispersion wherein the mean bubble diameter of the oxidant gas in the dispersion is less than about 5 μm, introducing the dispersion into a vessel from which a sulfur-containing slurry is removed and a regenerated catalyst stream is removed, wherein the sulfur slurry comprises elemental sulfur and aqueous liquid, and recycling at least a portion of the regenerated catalyst stream to the converter. A system of apparatus for carrying out the method is also provided. | 01-01-2009 |
20090003126 | SYSTEM AND PROCESS FOR FISCHER-TROPSCH CONVERSION - A method for forming C2+ hydrocarbons by forming a dispersion comprising synthesis gas bubbles dispersed in a liquid phase comprising hydrocarbons in a high shear device, wherein the average bubble diameter of the synthesis gas bubbles is less than about 1.5 μm, introducing the dispersion into a reactor, and removing a product stream comprising C2+ hydrocarbons from the reactor. A system for converting carbon monoxide and hydrogen gas into C2+ hydrocarbons including at least one high shear mixing device comprising at least one rotor and at least one stator separated by a shear gap, wherein the high shear mixing device is capable of producing a tip speed of the at least one rotor of greater than 22.9 m/s (4,500 ft/min), and a pump configured for delivering a fluid stream comprising liquid medium to the high shear mixing device. | 01-01-2009 |
20090005521 | SYSTEM AND PROCESS FOR PRODUCTION OF POLYVINYL CHLORIDE - A method is disclosed for producing polyvinyl chloride which includes mixing a vinyl chloride solution with an initiator solution in at least one high shear mixing device comprising at least one rotor/stator set producing a rotor tip speed of at least 5.1 m/sec (1000 ft/min), to form a polymerization mixture; and allowing the mixture to polymerize by free radical polymerization to form polyvinyl chloride. The polymerization mixture may be subjected to free radical polymerization conditions comprising a temperature in the range of about 20° C. to about 230° C. In some embodiments, the high shear mixing device produces a shear rate of at least 20,000 s | 01-01-2009 |
20090005552 | SYSTEM AND PROCESS FOR STARCH PRODUCTION - Use of a high shear mechanical device in a process for production of starch by hydration and disruption of corn kernel particles in the presence of sulfur dioxide or bisulfite ions makes possible a decrease in mass transfer limitations, thereby enhancing starch production. A system for production of starch is also provided in which a high shear mixing device is configured to receive an aqueous corn slurry from a pump that is disposed between the reactor and a gaseous sulfur dioxide inlet of the high shear mixing device. The high shear mixing device is also configured to generate a fine dispersion of sulfur dioxide bubbles and small corn particles in the slurry. A reactor is configured to receive the output from the high shear mixing device and to provide for starch production. | 01-01-2009 |
20090005553 | HIGH SHEAR PROCESS FOR DEXTROSE PRODUCTION - Use of a high shear mechanical device in a process for production of starch hydrolysate by reacting starch with a hydrolytic agent makes possible a decrease in mass transfer limitations, thereby enhancing production of starch hydrolysate. A system for production of starch hydrolysate is also provided in which a reactor is configured to receive the output from a high shear device, which is configured to receive a starch and lysing reagent. The high shear device is configured to generate a fine dispersion or emulsion of lysing. | 01-01-2009 |
20090005578 | HIGH SHEAR PROCESS FOR THE PRODUCTION OF BUTADIENE SULFONE - Use of a high shear mechanical device incorporated into a process for the production of sulfolene as a reactor device is capable of decreasing mass transfer limitations, thereby enhancing the sulfolene production process. A system for the production of sulfolene from butadiene and sulfur dioxide, the system comprising a reactor and an external high shear mixer the outlet of which is fluidly connected to the inlet of the reactor; the high shear mixer capable of providing a dispersion of sulfur dioxide gas bubbles within a liquid, the bubbles having an average bubble diameter of less than about 100 μm. | 01-01-2009 |
20090005585 | HIGH SHEAR SYSTEM AND PROCESS FOR THE PRODUCTION OF ACETIC ANHYDRIDE - A system and method for a high shear mechanical device incorporated into a process for the production of acetic anhydride as a reactor device is shown to be capable of decreasing mass transfer limitations, thereby enhancing the process. A system for the production of acetic anhydride including the mixing of catalyst and acetic acid via a high shear device. | 01-01-2009 |
20090005587 | METHOD OF MAKING PHTHALIC ACID DIESTERS - Methods and systems for the production of phthalic acid diesters are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and mixing of a phthalic acid derivative with alcohol. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time with existing catalysts. | 01-01-2009 |
20090005588 | METHOD OF PRODUCING ETHYL ACETATE - Methods and systems for the production of ethyl acetate are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and mixing of a carbonyl co-reactant (e.g. acetic acid, acetaldehyde) with ethanol. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time with existing catalysts. | 01-01-2009 |
20090005589 | SYSTEM AND PROCESS FOR PRODUCTION OF TOLUENE DIISOCYANATE - A method for producing toluene diisocyanate is disclosed which comprises forming a dispersion comprising phosgene gas bubbles dispersed in toluene diamine liquid phase, wherein said gas bubbles have a mean diameter less than 1 micron; and subjecting the dispersion to phosgenation reaction conditions, whereby at least a portion of the toluene diamine is phosgenated to form toluene diisocyanate. A system for carrying out the phosgenation of toluene diamine is also disclosed. | 01-01-2009 |
20090005591 | SYSTEM AND PROCESS FOR PRODUCTION OF BENZOIC ACIDS AND PHTHALIC ACIDS - A method for producing benzoic acid or a methylbenzoic acid isomer is disclosed which comprises forming a dispersion comprising oxygen-containing gas bubbles dispersed in either toluene or an xylene isomer, wherein the bubbles have a mean diameter less than 1 micron. The dispersion is then subjected to reaction conditions comprising a pressure of less than about 1013 kPa and a temperature of less than about 160° C., whereby at least a portion of the toluene or xylene isomer is partially oxidized to form benzoic acid or the corresponding methylbenzoic acid isomer, respectively. In some embodiments, the methylbenzoic acid isomer is an intermediate compound, and the method further includes subjecting any unreacted xylene isomer and the intermediate compound to further oxidization, to form 1,2-benzenedicarboxylic acid, 1,3-benzenedicarboxylic acid, or 1,4-benzenedicarboxylic acid. A system of apparatus for performing the method is also disclosed. | 01-01-2009 |
20090005592 | HIGH SHEAR PROCESS FOR ASPIRIN PRODUCTION - Use of a high shear mechanical device in a process for production of acetyl salicylic acid, by contacting acetic anhydride with salicylic acid in a high shear device. The disclosed process makes possible a decrease in mass transfer limitations, thereby enhancing production of acetyl salicylic acid. A system for production of acetyl salicylic acid is also provided in which a reactor is configured to receive the output from a high shear device, which is configured to receive, via one or more inlets, acetic anhydride, and salicylic acid and generate a fine dispersion or emulsion of reactants. | 01-01-2009 |
20090005598 | SYSTEM AND PROCESS FOR THE PRODUCTION OF ANILINE AND TOLUENEDIAMINE - A method for producing aniline or toluenediamine is disclosed which comprises forming a dispersion comprising hydrogen gas bubbles dispersed in a liquid medium comprising either nitrobenzene or dinitrotoluene, wherein the hydrogen gas bubbles have a mean diameter less than 1 micron; and subjecting the dispersion to hydrogenation reaction promoting conditions comprising pressure less than about 600 kPa and temperature less than about 200° C., whereby at least a portion of the nitrobenzene or dinitrotoluene is hydrogenated to form aniline or toluenediamine, respectively. A system for carrying out the method is also disclosed. | 01-01-2009 |
20090005602 | METHOD OF MAKING DIALKYL KETONES - Methods and systems for preparing dialkyl ketones are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of carbon monoxide and hydrogen with the olefins (e.g. ethylene) in a liquid solvent. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. | 01-01-2009 |
20090005604 | HIGH SHEAR PROCESS FOR THE PRODUCTION OF CHLORAL - Use of a high shear mechanical device incorporated into a process for the production of chloral as a reactor device is capable of decreasing mass transfer limitations, thereby enhancing the chloral production process. A system for the production of chloral from acetaldehyde and chlorine, the system comprising a reactor and an external high shear device the outlet of which is fluidly connected to the inlet of the reactor; the high shear device capable of providing a dispersion of chlorine gas bubbles within a liquid, the bubbles having an average bubble diameter of less than about 100 μm. | 01-01-2009 |
20090005605 | HIGH SHEAR PROCESS FOR THE PRODUCTION OF ACETALDEHYDE - A method of use for a high shear device incorporated into a process or system for the production of acetaldehyde from ethylene as a reactor device is shown to be capable of decreasing mass transfer limitations, by forming a feed stream emulsion, and thereby enhancing the acetaldehyde production process in the system. | 01-01-2009 |
20090005606 | HIGH SHEAR PROCESS FOR THE PRODUCTION OF CUMENE HYDROPEROXIDE - Use of a high shear mechanical device incorporated into a process for the production of cumene hydroperoxide as a mixer/reactor device is capable of decreasing mass transfer limitations, thereby enhancing the cumene hydroperoxide production process. A system for the production of cumene hydroperoxide from oxidation of cumene, the system comprising a reactor and an high shear mixer the outlet of which is fluidly connected to the inlet of the reactor; the high shear mixer capable of providing a dispersion air gas bubbles within a liquid, the bubbles having an average bubble diameter of less than about 100 μm. | 01-01-2009 |
20090005608 | HIGH SHEAR PROCESS FOR CYCLOHEXANOL PRODUCTION - Use of a high shear mechanical device incorporated into a process for the production of cyclohexanol is capable of decreasing mass transfer limitations, thereby enhancing the cyclohexanol production process. A system for the production of cyclohexanol from air oxidation of cyclohexane, the system comprising a high shear device, the outlet of the high shear device fluidly connected to the inlet of a reactor; the high shear device capable of providing a dispersion of air bubbles within a liquid comprising cyclohexane, the bubbles having an average bubble diameter of less than about 100 μm. | 01-01-2009 |
20090005609 | METHOD FOR MAKING CHLOROHYDRINS - Methods and systems for the preparation of chlorohydrins are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins into the chlorinating phase. The high shear device may allow for lower reaction temperatures and pressures and may also reduce chlorination time. | 01-01-2009 |
20090005610 | METHOD OF MAKING GLYCEROL - Methods and systems for the hydroxylation of olefenic alcohols are described herein. The methods and systems incorporate the novel use of a high shear device to promote mixing and solubility of peroxides with the olefenic alcohol. The high shear device may allow for lower reaction temperatures and pressures and may also reduce hydroxylation time with existing catalysts. | 01-01-2009 |
20090005611 | METHOD OF HYDROGENATING ALDEHYDES AND KETONES - Methods and systems for the hydrogenation of aldehydes and/or ketones are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of the hydrogen-containing gas (e.g. H | 01-01-2009 |
20090005612 | METHOD OF MAKING ALKYLENE GLYCOLS - Methods and systems for preparing alkylene glycols are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of alkylene oxides with water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. | 01-01-2009 |
20090005613 | METHOD OF MAKING ALCOHOLS - Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol. | 01-01-2009 |
20090005615 | SYSTEM AND PROCESS FOR PRODUCTION OF NITROBENZENE - A method for producing nitrobenzene is disclosed which comprises forming a dispersion comprising benzene-containing droplets or particles dispersed in a mixture of concentrated nitric acid and concentrated sulfuric acid, wherein said particles have a mean diameter less than one micron, and subjecting the dispersion to reaction conditions comprising a pressure in the range of about 203 kPa (2 atm) to about 6080 kPa (60 atm) and a temperature in the range of about 20° C. to about 230° C., whereby at least a portion of said benzene is nitrated to form nitrobenzene. A system for carrying out the method is also disclosed. | 01-01-2009 |
20090005619 | HIGH SHEAR PROCESS FOR THE PRODUCTION OF CHLOROBENZENE - Use of a high shear mechanical device incorporated into a process for the production of chlorobenzene is capable of decreasing mass transfer limitations, thereby enhancing the chlorobenzene production process. A system for the production of chlorobenzene from benzene and chlorine, the system comprising a reactor and an external high shear device, the outlet of which is fluidly connected to the inlet of the reactor; the high shear device capable of providing a emulsion of chlorine gas bubbles within liquid benzene | 01-01-2009 |
20090005621 | HIGH SHEAR PROCESS FOR CYCLOHEXANE PRODUCTION - A high shear mechanical device incorporated into a process and system for the production of cyclohexane is capable of decreasing mass transfer limitations, thereby enhancing the cyclohexane production process. A system for the production of cyclohexane from benzene and hydrogen, the system comprising a reactor, solid catalyst, and a high shear device, the outlet of which is fluidly connected to the inlet of the reactor; the high shear device capable of providing an emulsion of hydrogen gas bubbles within a liquid comprising benzene, the bubbles having an average bubble diameter of less than about 100 μm. | 01-01-2009 |
20090005622 | METHOD OF MAKING LINEAR ALKYLBENZENES - Methods and systems for the production of linear alkylbenzens are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and mixing of one or more olefins (e.g. propylene) with an aromatic. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time with existing catalysts. | 01-01-2009 |
20090005625 | SYSTEM AND PROCESS FOR ALKYLATION - A method for alkylating a hydrocarbon comprising at least one isoparaffin and at least one olefin by introducing liquid acid catalyst and the hydrocarbon into a high shear reactor, forming an emulsion comprising droplets comprising hydrocarbon in a continuous acid phase, wherein the droplets have a mean diameter of less than about 5 μm, introducing the emulsion into a vessel operating under suitable alkylation conditions whereby at least a portion of the isoparaffin is alkylated with the olefin to form alkylate, and removing a product stream comprising alkylate from the vessel. A system for carrying out the method is also disclosed. | 01-01-2009 |
20090018286 | SYSTEM AND PROCESS FOR PRODUCTION OF POLYETHYLENE AND POLYPROPYLENE - A method for producing a polyethylene or polypropylene polymer, or co-polymer thereof, comprises contacting a monomer-containing medium with polymerization catalyst particles in at least one high shear mixing device to form a nanodispersion, wherein the particles have a mean diameter less than 1 micron. The monomer is selected from the group consisting of ethylene, propylene, and combinations thereof. The method further includes subjecting the nanodispersion to polymerization conditions comprising pressure in the range of about 203 kPa to about 6080 kPa (about 2 atm to about 60 atm) and temperature in the range of about 20° C. to about 230° C., whereby at least a portion of the monomer is polymerized. A system for carrying out the method is also disclosed. | 01-15-2009 |
20090036694 | SYSTEM AND PROCESS FOR PRODUCTION OF FATTY ACIDS AND WAX ALTERNATIVES FROM TRIGLYCERIDES - A method of producing volatilized fatty acids by heating a feedstock comprising at least one fat or oil in a reactor under inert vacuum to volatilize fatty acids, and removing volatilized fatty acids from bottoms residue comprising cross-linked oil. A system for stripping fatty acids from triglycerides, the system comprising a reactor, heating apparatus and a vacuum pump capable of pulling a vacuum in the range of from 1 kPa to 50 kPa on the reactor. A system for producing a hydrogenated product including a reactor comprising an inlet for a stream comprising triglycerides, an outlet for volatilized fatty acids, and an outlet for a cross-linked product, heating apparatus, a vacuum pump capable of pulling a vacuum in the range of from 1 kPa to 50 kPa on the reactor, and a hydrogenation reactor, wherein an inlet of the hydrogenation reactor is fluidly connected to the outlet for cross-linked product. | 02-05-2009 |
20090136392 | METHOD OF MAKING ALCOHOLS - Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol. | 05-28-2009 |
20090136393 | METHOD OF MAKING ALKYLENE GLYCOLS - Methods and systems for preparing alkylene glycols are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of alkylene oxides with water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. | 05-28-2009 |
20090136396 | METHOD FOR MAKING CHLOROHYDRINS - Methods and systems for the preparation of chlorohydrins are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins into the chlorinating phase. The high shear device may allow for lower reaction temperatures and pressures and may also reduce chlorination time. | 05-28-2009 |
20090180940 | HIGH SHEAR PROCESS FOR CYCLOHEXANOL PRODUCTION - Use of a high shear mechanical device incorporated into a process for the production of cyclohexanol is capable of decreasing mass transfer limitations, thereby enhancing the cyclohexanol production process. A system for the production of cyclohexanol from air oxidation of cyclohexane, the system comprising a high shear device, the outlet of the high shear device fluidly connected to the inlet of a reactor; the high shear device capable of providing a dispersion of air bubbles within a liquid comprising cyclohexane, the bubbles having an average bubble diameter of less than about 100 μm. | 07-16-2009 |
20090208382 | SYSTEM AND PROCESS FOR PRODUCTION OF POLYVINYL CHLORIDE - A method is disclosed for producing polyvinyl chloride which includes mixing a vinyl chloride solution with an initiator solution in at least one high shear mixing device comprising at least one rotor/stator set producing a rotor tip speed of at least 5.1 m/sec (1000 ft/min), to form a polymerization mixture; and allowing the mixture to polymerize by free radical polymerization to form polyvinyl chloride. The polymerization mixture may be subjected to free radical polymerization conditions comprising a temperature in the range of about 20° C. to about 230° C. In some embodiments, the high shear mixing device produces a shear rate of at least 20,000 s | 08-20-2009 |
20090321331 | SYSTEM AND PROCESS FOR WATER TREATMENT - A system for treating feedwater to remove contaminants therefrom, the system comprising at least one high shear mixing device comprising at least one generator comprising a rotor and a stator separated by a shear gap, wherein the shear gap is the minimum distance between the rotor and the stator, and wherein the high shear mixing device is capable of producing a tip speed of the rotor of greater than 22.9 m/s (4,500 ft/min) and a pump configured for delivering feedwater and treatment gas selected from oxygen, air, and chlorine to the high shear mixing device. | 12-31-2009 |
20100000502 | HIGH SHEAR PROCESS FOR AIR/FUEL MIXING - Use of a high shear mechanical device in a process to produce aerated fuels for efficient combustion in an engine. In instances, the method comprises forming an emulsion of a gas and liquid fuel in a high shear device prior to introduction to an engine. A vehicular system for producing aerated fuels comprising a high shear device. | 01-07-2010 |
20100004419 | HIGH SHEAR ROTARY FIXED BED REACTOR - A reactor comprising at least one contact surface made from, coated with, or impregnated by a catalyst, wherein the contact surface comprises a sintered metal or a ceramic, and wherein the reactor is configured to subject a reactant stream to shear. A system for carrying out a heterogeneously catalyzed reaction, the system comprising a reactor as described above and a pump configured for delivering reactants to the at least one reactor. A method for carrying out a heterogeneously-catalyzed reaction by introducing reactants into a reactor comprising at least one contact surface made from, coated with, or impregnated by a catalyst under conditions which promote production of a desired product, wherein the contact surface comprises a sintered metal or a ceramic, and forming a dispersion of reactants within the reactor, wherein the dispersion comprises droplets or gas bubbles of reactant with an average diameter of less than about 5 μm. | 01-07-2010 |
20100015015 | SYSTEM AND PROCESS FOR PRODUCTION OF NITROBENZENE - A method for producing nitrobenzene is disclosed which comprises forming a dispersion comprising benzene-containing droplets or particles dispersed in a mixture of concentrated nitric acid and concentrated sulfuric acid, wherein said particles have a mean diameter less than one micron, and subjecting the dispersion to reaction conditions comprising a pressure in the range of about 203 kPa (2 atm) to about 6080 kPa (60 atm) and a temperature in the range of about 20° C. to about 230° C., whereby at least a portion of said benzene is nitrated to form nitrobenzene. A system for carrying out the method is also disclosed. | 01-21-2010 |
20100015019 | SYSTEM AND PROCESS FOR PRODUCTION OF ANILINE AND TOLUENEDIAMINE - A method for producing aniline or toluenediamine is disclosed which comprises forming a dispersion comprising hydrogen gas bubbles dispersed in a liquid medium comprising either nitrobenzene or dinitrotoluene, wherein the hydrogen gas bubbles have a mean diameter less than 1 micron; and subjecting the dispersion to hydrogenation reaction promoting conditions comprising pressure less than about 600 kPa and temperature less than about 200° C., whereby at least a portion of the nitrobenzene or dinitrotoluene is hydrogenated to form aniline or toluenediamine, respectively. A system for carrying out the method is also disclosed. | 01-21-2010 |
20100018118 | SYSTEM AND PROCESS FOR GAS SWEETENING - A method for removing hydrogen sulfide from a sour gas stream comprising hydrogen sulfide by oxidizing hydrogen sulfide in a converter by contacting the sour gas stream with an aqueous catalytic solution, thereby producing a desulfurized gas stream and a liquid stream comprising reduced catalyst and elemental sulfur, introducing an oxidant and the liquid stream comprising reduced catalyst and elemental sulfur into a high shear device and producing a dispersion wherein the mean bubble diameter of the oxidant gas in the dispersion is less than about 5 μm, introducing the dispersion into a vessel from which a sulfur-containing slurry is removed and a regenerated catalyst stream is removed, wherein the sulfur slurry comprises elemental sulfur and aqueous liquid, and recycling at least a portion of the regenerated catalyst stream to the converter. A system of apparatus for carrying out the method is also provided. | 01-28-2010 |
20100080736 | METHOD OF PRODUCING ETHYL ACETATE - Methods and systems for the production of ethyl acetate are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and mixing of a carbonyl co-reactant (e.g. acetic acid, acetaldehyde) with ethanol. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time with existing catalysts. | 04-01-2010 |
20100092347 | HIGH SHEAR PROCESS FOR THE PRODUCTION OF ACETALDEHYDE - A method of use for a high shear device incorporated into a process or system for the production of acetaldehyde from ethylene as a reactor device is shown to be capable of decreasing mass transfer limitations, by forming a feed stream emulsion, and thereby enhancing the acetaldehyde production process in the system. | 04-15-2010 |
20100092354 | HIGH SHEAR PROCESS FOR THE PRODUCTION OF CHLORAL - Use of a high shear mechanical device incorporated into a process for the production of chloral as a reactor device is capable of decreasing mass transfer limitations, thereby enhancing the chloral production process. A system for the production of chloral from acetaldehyde and chlorine, the system comprising a reactor and an external high shear device the outlet of which is fluidly connected to the inlet of the reactor; the high shear device capable of providing a dispersion of chlorine gas bubbles within a liquid, the bubbles having an average bubble diameter of less than about 100 μm. | 04-15-2010 |
20100111786 | SYSTEM AND PROCESS FOR STARCH PRODUCTION - Use of a high shear mechanical device in a process for production of starch by hydration and disruption of corn kernel particles in the presence of sulfur dioxide or bisulfite ions makes possible a decrease in mass transfer limitations, thereby enhancing starch production. A system for production of starch is also provided in which a high shear mixing device is configured to receive an aqueous corn slurry from a pump that is disposed between the reactor and a gaseous sulfur dioxide inlet of the high shear mixing device. The high shear mixing device is also configured to generate a fine dispersion of sulfur dioxide bubbles and small corn particles in the slurry. A reactor is configured to receive the output from the high shear mixing device and to provide for starch production. | 05-06-2010 |
20100114061 | APPLYING SHEAR STRESS FOR DISEASE TREATMENT - Herein disclosed is a system for applying shear stress ex-situ to a fluid. In some embodiments, the system comprises a shear device; and at least one device configured for intravenous administration of the fluid to a patient, the devices defining a fluid passage configured to be sterilized and maintained sterile during use, the fluid comprising at least one therapeutic fluid, blood, or a combination thereof. The shear device of the system is in fluid communication with the at least one device configured for intravenous administration of the fluid to a patient. Herein also disclosed is a method of preparing a fluid for intravenous administration to a patient. | 05-06-2010 |
20100125157 | HIGH SHEAR PROCESS FOR PRODUCING MICRONIZED WAXES - A method and system for producing dispersed waxes, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of wax globules in a carrier liquid in a high shear device prior to implementation in a waxy product. In another instance the system for producing waxy products comprises a high shear device for dispersing wax in a carrier liquid. | 05-20-2010 |
20100147764 | SYSTEM AND PROCESS FOR WATER TREATMENT - A method for removing contaminant from feedwater by forming a dispersion comprising bubbles of a treatment gas in a continuous phase comprising feedwater, wherein the bubbles have a mean diameter of less than about 5 μm and wherein the treatment gas is selected from the group consisting of air, oxygen, and chlorine. A method for removing contaminants from a feedwater by subjecting a fluid mixture comprising feedwater and a treatment gas to a shear rate greater than 20,000 s | 06-17-2010 |
20100168477 | HIGH SHEAR OXIDATION OF CYCLOHEXANE - Disclosed herein is a method for cyclohexane oxidation. The method comprises a) forming a dispersion comprising liquid cyclohexane and an oxidant gas utilizing a high shear device, wherein the dispersion comprises oxidant gas bubbles with a mean diameter of less than about 5 μm, and wherein the high shear device comprises at least one rotor and at least one stator; and b) hydrogenating the dispersion in the presence of a hydrogenation catalyst to form a product comprising cyclohexanol or cyclohexanone. In some embodiments, the oxidant comprises air, oxygen-enriched air, oxygen, or an oxygen-containing gas. In some embodiments, step a) of the method comprises forming the dispersion in the presence of an oxidation catalyst. Also disclosed herein is a system for oxidizing cyclohexane. | 07-01-2010 |
20100183486 | HIGH SHEAR SYSTEM FOR THE PRODUCTION OF CHLOROBENZENE - Use of a high shear mechanical device incorporated into a process for the production of chlorobenzene is capable of decreasing mass transfer limitations, thereby enhancing the chlorobenzene production process. A system for the production of chlorobenzene from benzene and chlorine, the system comprising a reactor and an external high shear device, the outlet of which is fluidly connected to the inlet of the reactor; the high shear device capable of providing an emulsion of chlorine gas bubbles within liquid benzene | 07-22-2010 |
20100199545 | HIGH SHEAR HYDROGENATION OF WAX AND OIL MIXTURES - Embodiments disclosed herein describe a system for producing enhanced wax alternatives. The system comprises a reactor with at least one inlet and one outlet and at least one high shear mixing device with at least one inlet and one outlet. The at least one outlet of said high shear mixing device is in fluid communication with at least one inlet of said reactor. The high shear mixing device may comprise counter rotating rotors. The high shear mixing device may also comprise at least one catalytic surface. Embodiments disclosed herein also describe a method of producing enhanced wax alternatives. The method comprises (1) providing petroleum wax and base oil; (2) mixing said petroleum wax and base oil with a hydrogen-containing gas in a high shear device to form a feedstock; and (3) hydrogenating said feedstock for a time sufficient to produce enhanced hydrogenated products. | 08-12-2010 |
20100200487 | SYSTEM FOR WATER TREATMENT - A system for treating feedwater to remove contaminants therefrom, the system comprising at least one high shear mixing device comprising at least one generator comprising a rotor and a stator separated by a shear gap, wherein the shear gap is the minimum distance between the rotor and the stator, and wherein the high shear mixing device is capable of producing a tip speed of the rotor of greater than 22.9 m/s (4,500 ft/min) and a pump configured for delivering feedwater and treatment gas selected from oxygen, air, and chlorine to the high shear mixing device. | 08-12-2010 |
20100217039 | SYSTEM AND METHOD FOR GAS REACTION - Herein disclosed is an apparatus, which comprises (1) a first cylindrical, porous, catalytic rotor symmetrically positioned about an axis of rotation and surrounding a first interior space; wherein the first porous catalytic rotor comprises a first catalyst; (2) an outer casing, wherein the outer casing and the rotor are separated by an annular space; (3) a motor configured for rotating the rotor about the axis of rotation; (4) a feed inlet line; and (5) a first outlet line, wherein the first outlet line is fluidly connected with the annular space. Herein disclosed is also a method comprising: (1) passing a feed gas comprising at least one gaseous reactant through a porous, catalytic rotor, wherein the porous, catalytic rotor is permeable to the at least one gaseous reactant and is made from or contains a catalyst effective for catalyzing a first reaction; and (2) extracting a first desired product. | 08-26-2010 |
20100222615 | METHOD OF MAKING ALKYLENE GLYCOLS - Herein disclosed is a method of hydrating an alkylene oxide. In an embodiment, the method comprises (a) introducing an alkylene oxide into water to form a first stream; (b) flowing the first stream through a high shear device to produce a second stream; and (c) contacting the second stream with a catalyst in a reactor to hydrate the alkylene oxide and form an alkylene glycol. In some embodiments, alkylene oxide comprises ethylene oxide, propylene oxide, butylene oxide, or combinations thereof. In some embodiments, producing the second stream comprises an energy expenditure of at least about 1000 W/m | 09-02-2010 |
20100234550 | HIGH SHEAR OXIDATION OF WAX - In this disclosure, a system is described, comprising a shear device with at least one inlet and at least one outlet and a mixing vessel with at least one inlet and at least one outlet, wherein an inlet of the shear device is in fluid communication with an outlet of the mixing vessel. In certain embodiments, the shear device and the mixing vessel form a loop for fluid communication. Also disclosed herein is a method of high shear oxidation, comprising mixing an oxidant with a substrate to form a substrate-oxidant mixture and applying shear to the substrate-oxidant mixture to form a product. The product includes ethylene oxide, propylene oxide, terephthalic acid, phenol, acrylonitrile, maleic anhydride, phthalic anhydride, nitric acid, caprolactam, oxidized polyethylene, oxidized polypropylene, oxidized polyethylene copolymers, and oxidized polypropylene copolymers. Suitable oxidant includes air, oxygen, ozone, peroxide, organic peroxide, halogen, oxygen-containing gas, and halogen-containing gas. | 09-16-2010 |
20100266465 | SYSTEM FOR MAKING LINEAR ALKYLBENZENES - Methods and systems for the production of linear alkylbenzenes are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and mixing of one or more olefins (e.g. propylene) with an aromatic. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time with existing catalysts. | 10-21-2010 |
20100294699 | PROCESS FOR HYDRODESULFURIZATION, HYDRODENITROGENATION, HYDROFINISHING, OR AMINE PRODUCTION - Herein disclosed is a method for hydrodesulfurization, hydrodenitrogenation, hydrofinishing, amine production or a combination thereof. The method comprises forming a dispersion comprising hydrogen-containing gas bubbles dispersed in a liquid feedstock, wherein the bubbles have a mean diameter of less than about 5 μm and wherein the feedstock comprises a mixture of petroleum-derived hydrocarbons and a naturally derived renewable oil. The feedstock comprises hydrocarbons selected from the group consisting of liquid natural gas, crude oil, crude oil fractions, gasoline, diesel, naphtha, kerosene, jet fuel, fuel oils, and combinations thereof. The method further comprises contacting the dispersion with a catalyst that is active for hydrodesulfurization, hydrodenitrogenation, hydrofinishing, amine production, or a combination thereof. The catalyst comprises homogeneous catalysts and heterogeneous catalysts. The catalyst may be utilized in fixed-bed or slurry applications. | 11-25-2010 |
20100313751 | APPARATUS AND METHOD FOR GAS SEPARATION - Herein disclosed is an apparatus comprising ( | 12-16-2010 |
20100317748 | GASIFICATION OF CARBONACEOUS MATERIALS AND GAS TO LIQUID PROCESSES - Herein disclosed is a method of producing synthesis gas from carbonaceous material, the method comprising: (a) providing a mixture comprising carbonaceous material and a liquid medium; (b) subjecting the mixture to high shear under gasification conditions whereby a high shear-treated stream comprising synthesis gas is produced; and (c) separating a product comprising synthesis gas from the high shear-treated stream. Herein also disclosed is a method for producing a liquid product. The method comprises forming a dispersion comprising gas bubbles dispersed in a liquid phase in a high shear device, wherein the average gas bubble diameter is less than about 1.5 μm; contacting the dispersion with a multifunctional catalyst to form the liquid product; and recovering the liquid product. In an embodiment, the liquid product is selected from the group consisting of C2+ hydrocarbons, C2+ oxygenates, and combinations thereof. | 12-16-2010 |
20100324308 | HIGH SHEAR SYSTEM AND METHOD FOR THE PRODUCTION OF ACIDS - Herein disclosed is a method, comprising: forming a dispersion under high shear comprising gas bubbles of an oxidant dispersed in a liquid phase, wherein the bubbles have a mean diameter of less than 1.5 micron; and contacting the dispersion with an oxidation catalyst to produce a product stream, wherein the product stream comprises a substance selected from the group consisting of dicarboxylic acid, benzoic acid, 2-methylbenzoic acid, 3-methylbenzoic acid, 4-methylbenzoic acid, and phthalic anhydride. In some cases, forming the dispersion under high shear comprises introducing the oxidant and the liquid phase into a high shear device comprising at least one rotor and at least one complementarily-shaped stator. Herein also disclosed is a system for producing a substance selected from the group consisting of dicarboxylic acid, benzoic acid, 2-methylbenzoic acid, 3-methylbenzoic acid, 4-methylbenzoic acid, and phthalic anhydride. | 12-23-2010 |
20100329944 | SYSTEM AND PROCESS FOR PRODUCTION OF LIQUID PRODUCT FROM LIGHT GAS - A method for producing a product comprising at least one selected from C | 12-30-2010 |
20110027140 | METHOD OF MAKING PHTHALIC ACID DIESTERS - Methods and systems for the production of phthalic acid diesters are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and mixing of a phthalic acid derivative with alcohol. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time with existing catalysts. | 02-03-2011 |
20110027147 | SYSTEM AND PROCESS FOR PRODUCTION OF TOLUENE DIISOCYANATE - A method for producing toluene diisocyanate is disclosed which comprises forming a dispersion comprising phosgene gas bubbles dispersed in toluene diamine liquid phase, wherein said gas bubbles have a mean diameter less than 1 micron; and subjecting the dispersion to phosgenation reaction conditions, whereby at least a portion of the toluene diamine is phosgenated to form toluene diisocyanate. A system for carrying out the phosgenation of toluene diamine is also disclosed. | 02-03-2011 |
20110028573 | High Shear Production of Value-Added Product From Refinery-Related Gas - A method of producing value-added product from refinery-related gas, the method comprising: providing a refinery-related gas comprising at least one selected from C1-C8 compounds; intimately mixing the refinery-related gas with a liquid carrier in a high shear device to form a dispersion of gas in the liquid carrier, wherein the gas bubbles in the dispersion have a mean diameter of less than or equal to about 5 μm; and extracting value-added product comprising at least one component selected from higher hydrocarbons, olefins and alcohols. A system for producing value-added product from refinery-related gas comprising: at least one high shear device comprising at least one rotor and at least one complementarily-shaped stator; apparatus for the production of a refinery-related gas comprising one or more of C1-C8 compounds; and a pump configured for delivering a liquid stream comprising the liquid carrier to the high shear device. | 02-03-2011 |
20110091360 | HIGH SHEAR SYSTEM AND PROCESS FOR THE PRODUCTION OF ACETIC ANHYDRIDE - A system and method for a high shear mechanical device incorporated into a process for the production of acetic anhydride as a reactor device is shown to be capable of decreasing mass transfer limitations, thereby enhancing the process. A system for the production of acetic anhydride including the mixing of catalyst and acetic acid via a high shear device. | 04-21-2011 |
20110201849 | METHOD OF HYDROGENATING ALDEHYDES AND KETONES - Methods and systems for the hydrogenation of aldehydes and/or ketones are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of the hydrogen-containing gas (e.g. H | 08-18-2011 |
20110201850 | METHOD OF MAKING ALKYLENE GLYCOLS - Methods and systems for preparing alkylene glycols are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of alkylene oxides with water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. | 08-18-2011 |
20110207970 | METHOD OF MAKING CHLOROHYDRINS - Methods and systems for the preparation of chlorohydrins are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins into the chlorinating phase. The high shear device may allow for lower reaction temperatures and pressures and may also reduce chlorination time. | 08-25-2011 |
20110213040 | PROCESS FOR PRODUCTION OF FATTY ACIDS AND WAX ALTERNATIVES FROM TRIGLYCERIDES - A method of producing volatilized fatty acids by heating a feedstock comprising at least one fat or oil in a reactor under inert vacuum to volatilize fatty acids, and removing volatilized fatty acids from bottoms residue comprising cross-linked oil. A system for stripping fatty acids from triglycerides, the system comprising a reactor, heating apparatus and a vacuum pump capable of pulling a vacuum in the range of from 1 kPa to 50 kPa on the reactor. A system for producing a hydrogenated product including a reactor comprising an inlet for a stream comprising triglycerides, an outlet for volatilized fatty acids, and an outlet for a cross-linked product, heating apparatus, a vacuum pump capable of pulling a vacuum in the range of from 1 kPa to 50 kPa on the reactor, and a hydrogenation reactor, wherein an inlet of the hydrogenation reactor is fluidly connected to the outlet for cross-linked product. | 09-01-2011 |
20110245552 | ALGAE PROCESSING - A method for culturing algae comprising, forming an emulsion comprising a gaseous stream and a media utilizing a high shear device, wherein the emulsion comprises gas bubbles, and wherein the high shear device comprises at least one toothed rotor and at least one stator; introducing the emulsion into a bioreactor; and introducing an algae into the bioreactor for growing the algae culture. Additionally, a method for producing liquids from an algae culture, the method comprising forming an emulsion comprising a buffer and algal components, wherein the emulsion comprises algal component globules; separating algal hydrocarbons; and processing algal hydrocarbons to form liquid hydrocarbons. Additionally, a system for producing liquids from an algae culture comprising at least one high shear device. | 10-06-2011 |
20110251441 | METHOD OF MAKING ALCOHOLS - Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol. | 10-13-2011 |
20110266198 | BITUMEN EXTRACTION AND ASPHALTENE REMOVAL FROM HEAVY CRUDE USING HIGH SHEAR - Herein disclosed is a method of removing at least one component from a feed by subjecting the feed to high shear in the presence of carbon dioxide to produce a high shear-treated product and separating the at least one component from the high shear-treated product to produce a component-reduced product. Also disclosed is a method of removing asphaltenes from asphaltenic oil by subjecting the asphaltenic oil to a shear rate of at least 10,000 s | 11-03-2011 |
20110268659 | HIGH SHEAR APPLICATION IN DRUG DELIVERY - In this disclosure, methods and systems for drug delivery utilizing high shear are disclosed. In an embodiment, a method comprises ( | 11-03-2011 |
20110270156 | HIGH SHEAR APPLICATION IN MEDICAL THERAPY - In this disclosure, a method is described wherein the method comprises mixing a therapeutic gas or a therapeutic liquid or a combination thereof and a liquid carrier in a high shear device to produce a dispersion; and administering the produced dispersion intravenously to a patient; wherein the produced dispersion contains nanobubbles of the therapeutic gas or droplets of the therapeutic liquid with a mean diameter of less than about 1.5 μm. In this disclosure, a system is also described wherein the system comprises a therapeutic gas source or a therapeutic liquid source or a combination thereof, a liquid carrier source; a high shear device (HSD) having an inlet, an outlet, at least one rotor, and at least one stator separated by a shear gap; and a pump configured to control the flow rate and residence time of a fluid passing through the high shear device. | 11-03-2011 |
20110293486 | SYSTEM AND PROCESS FOR HYDRODESULFURIZATION, HYDRODENITROGENATION, OR HYDROFINISHING - A method for hydrodesulfurization by forming a dispersion comprising hydrogen-containing gas bubbles with a mean diameter of less than 1 micron dispersed in a liquid phase comprising sulfur-containing compounds. Desulfurizing a liquid stream comprising sulfur-containing compounds by subjecting a fluid mixture comprising hydrogen-containing gas and the liquid to a shear rate greater than 20,000 s | 12-01-2011 |
20110300024 | SYSTEM AND PROCESS FOR PRODUCTION OF POLYETHYLENE AND POLYPROPYLENE - A system for production of a polymer that may include a first high shear mixing device configured for producing a nanodispersion comprising particles or bubbles having a mean diameter less than 1 micron dispersed in a monomer-containing liquid or gaseous phase; a pump configured for delivering a pressurized liquid stream comprising the monomer to the first high shear mixing device; and a vessel configured for receiving the nanodispersion and for maintaining a predetermined pressure and temperature. | 12-08-2011 |
20110315601 | HIGH SHEAR PROCESS FOR PROCESSING NAPHTHA - A method and system for processing naphtha, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of gas in a naphtha hydrocarbon liquid in a high shear device prior to introduction in a cracking reactor/furnace. In another instance the system for processing naphtha comprises a high shear device for mechanically shearing hydrocarbons. | 12-29-2011 |
20120024906 | SYSTEM AND PROCESS FOR PRODUCTION OF POLYETHYLENE AND POLYPROPYLENE - A system for introducing an inhibitor into a fluid to be treated, the system having at least one high shear mixing device comprising a rotor and a stator separated by a shear gap, wherein the at least one high shear mixing device is configured to subject a mixture of the inhibitor and the fluid to a shear rate of greater than about 20,000 s | 02-02-2012 |
20120058024 | SYSTEM AND PROCESS FOR PRODUCTION OF BENZOIC ACIDS AND PHTHALIC ACIDS - Systems disclosed herein may include at least one high shear mixing device configured to produce a dispersion of oxygen-containing gas bubbles in toluene liquid phase, wherein the dispersion has a mean bubble diameter of less than 5 microns; a pump configured to deliver a liquid stream comprising the toluene to the high shear mixing device; and a vessel configured to receive the dispersion from the high shear mixing device and configured to maintain a predetermined pressure and temperature. | 03-08-2012 |
20120111769 | CRUDE OIL DESULFURIZATION - A method of removing sulfur from sour oil by subjecting sour oil having a first sulfur content to high shear in the presence of at least one desulfurizing agent to produce a high shear treated stream, wherein the at least one desulfurizing agent is selected from the group consisting of bases and inorganic salts, and separating both a sulfur-rich product and a sweetened oil product from the high shear-treated stream, wherein the sulfur-rich product comprises elemental sulfur and wherein the sweetened oil product has a second sulfur content that is less than the first sulfur content. A system for reducing the sulfur content of sour oil via at least one high shear device comprising at least one rotor and at least one complementarily-shaped stator, and at least one separation device configured to separate a sulfur-rich product and sweetened oil from the high shear-treated stream. | 05-10-2012 |
20120136075 | SYSTEM AND PROCESS FOR FISCHER-TROPSCH CONVERSION - A system for converting carbon monoxide and hydrogen gas into C2+ hydrocarbons including at least one high shear mixing device comprising at least one rotor and at least one stator separated by a shear gap, wherein the high shear mixing device is capable of producing a tip speed of the at least one rotor of greater than 22.9 m/s (4,500 ft/min), and a pump configured for delivering a fluid stream comprising liquid medium to the high shear mixing device. | 05-31-2012 |
20120156104 | SYSTEM AND PROCESS FOR PRODUCTION OF POLYVINYL CHLORIDE - A system configured to produce polyvinyl chloride that includes a high shear mixing device comprising at least one rotor/stator set and configured to produce a polymerization mixture by high shear mixing a vinyl chloride solution with an initiator solution, wherein the polymerization mixture comprises an emulsion of droplets; a pump in fluid communication with an inlet of said high shear mixing device; and a vessel in fluid communication with an outlet of said high shear mixing device and configured for to maintain a predetermined pressure and temperature on the polymerization mixture, wherein the vessel comprises an outlet for a product comprising polyvinyl chloride and unconverted vinyl chloride and a vent gas outlet for at least one gas selected from the group consisting of gaseous vinyl chloride, volatile reaction products, and combinations thereof. | 06-21-2012 |
20120177544 | SYSTEM AND PROCESS FOR PRODUCTION OF NITROBENZENE - A system for production of nitrobenzene that may include a high shear device configured to produce a nanoemulsion having benzene particles dispersed in a mixture of nitric acid and sulfuric acid, wherein the particles have a mean diameter of less than about 1.5 microns; a pump configured to deliver a pressurized liquid stream to the high shear device; and a vessel operated under a pressure of greater than 304 kPa and less than 6080 kPa, the vessel configured to receive the nanoemulsion from the high shear device. | 07-12-2012 |
20120184784 | METHOD OF HYDROGENATING ALDEHYDES AND KETONES - Methods and systems for hydrogenating an aldehyde or a ketone, including introducing a gas stream comprising hydrogen into a high shear device comprising a rotor and a stator; introducing a liquid stream comprising an aldehyde or ketone into the high shear device; forming a dispersion of the gas stream and the liquid stream in the high shear device; and hydrogenating at least a portion of the aldehyde or ketone in the dispersion. | 07-19-2012 |
20120202986 | SYSTEM AND METHOD FOR GAS REACTION - Herein disclosed is an apparatus having a first porous rotor positioned about an axis of rotation, wherein the first porous rotor comprises a first catalyst; an outer casing, wherein the outer casing and the first porous rotor are separated by an annular space; and a motor configured for rotating the first porous rotor about the axis of rotation. | 08-09-2012 |
20120209033 | METHOD OF MAKING CHLOROHYDRINS - Methods and systems for the preparation of chlorohydrins are described herein. The method includes introducing a liquid stream into a high shear device, wherein the liquid stream has an aqueous phase; introducing a gas stream into the high shear device, wherein the gas stream has an olefin gas; forming a dispersion in the high shear device, the dispersion comprising gas bubbles dispersed in the liquid stream; and reacting at least a portion of the dispersion to produce chlorohydrin. | 08-16-2012 |
20120226078 | METHOD OF MAKING ALKYLENE GLYCOLS - Methods and systems for preparing alkylene glycols are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of alkylene oxides with water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. | 09-06-2012 |
20120232313 | METHOD OF MAKING ALCOHOLS - Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol. | 09-13-2012 |
20120241390 | BITUMEN EXTRACTION AND ASPHALTENE REMOVAL FROM HEAVY CRUDE USING HIGH SHEAR - Herein disclosed is a method of removing at least one component from a feed stream, the method including steps of subjecting the feed stream to high shear separation in a high shear device to produce a high shear-treated product stream; and substantially separating the at least one component from the high shear-treated product stream to produce a component-reduced product stream. | 09-27-2012 |
20120252908 | GASIFICATION OF CARBONACEOUS MATERIALS AND GAS TO LIQUID PROCESSES - Herein disclosed is a method of reacting one or more components in a liquid medium to form an organic product that may include feeding a carbonaceous gas and a liquid medium to a high shear device; processing the gas and the liquid medium under shearing conditions in the high shear device, resulting in an emulsion comprising at least some of the carbonaceous gas dispersed in the liquid medium, wherein the dispersed carbonaceous gas comprises gas bubbles with a mean diameter of less than about 1 μm; and reacting the emulsion to produce the organic product. | 10-04-2012 |
20120291763 | HIGH SHEAR PROCESS FOR AIR/FUEL MIXING - A method for producing aerated fuels that includes introducing a gas and a liquid fuel into a high shear device; and processing the gas and the liquid fuel in the high shear device at a shear rate of greater than about 20,000 s | 11-22-2012 |
20120295822 | System and Process for Production of Polyethylene and Polypropylene - A method for introducing inhibitor into a fluid to be treated, the method including forming a dispersion comprising droplets, particles, or gas bubbles of inhibitor dispersed in a continuous phase of a carrier, wherein forming the dispersion comprises subjecting a mixture of the inhibitor and the carrier to a shear rate of greater than about 20,000 s | 11-22-2012 |
20120296144 | METHOD OF MAKING LINEAR ALKYLBENZENES - A method of producing a linear alkylbenzene that includes introducing an olefin into an aromatic stream to form a mixture; processing the mixture in a shear device at a shear rate greater than about 20,000 s | 11-22-2012 |
20120302800 | METHOD OF MAKING GLYCEROL - Method of producing glycerol that includes mixing a peroxide stream with an olefenic alcohol stream to form a feed stream; processing the feed stream in a high shear device to produce a high shear dispersion of peroxide and olefinic alcohol, wherein the high shear device is configured with a rotor and a stator separated by a shear gap; and contacting the high shear dispersion with a catalyst in a reactor to produce glycerol. | 11-29-2012 |
20120310028 | SYSTEM AND PROCESS FOR ALKYLATION - A method for alkylating a hydrocarbon comprising at least one isoparaffin and at least one olefin that includes introducing a liquid catalyst and the hydrocarbon into a high shear device; processing the liquid catalyst and the hydrocarbon in the high shear device to form an emulsion comprising droplets of hydrocarbon dispersed in the liquid catalyst; introducing the emulsion into a vessel operating under suitable alkylation conditions whereby at least a portion of the isoparaffin is alkylated with the olefin to form alkylate, wherein suitable alkylation conditions comprise a bulk reaction temperature of from about 38° C. to about 90° C. and a bulk reaction pressure in the range of from about 1379 kPa to about 34 MPa; and removing a product stream comprising alkylate from the vessel. | 12-06-2012 |
20120323223 | APPLYING SHEAR STRESS FOR DISEASE TREATMENT - A system for applying shear stress ex-situ to a fluid. A method of preparing a fluid for intravenous administration to a patient. In some embodiments, the system comprises a shear device; and at least one device configured for intravenous administration of the fluid to a patient, the devices defining a fluid passage configured to be sterilized and maintained sterile during use, the fluid comprising at least one therapeutic fluid, blood, or a combination thereof. The shear device of the system is in fluid communication with the at least one device configured for intravenous administration of the fluid to a patient. | 12-20-2012 |
20120330233 | APPLYING SHEAR STRESS FOR DISEASE TREATMENT - Herein disclosed is a system for applying shear stress ex-situ to a fluid. In some embodiments, the system comprises a shear device; and at least one device configured for intravenous administration of the fluid to a patient, the devices defining a fluid passage configured to be sterilized and maintained sterile during use, the fluid comprising at least one therapeutic fluid, blood, or a combination thereof. The shear device of the system is in fluid communication with the at least one device configured for intravenous administration of the fluid to a patient. Herein also disclosed is a method of preparing a fluid for intravenous administration to a patient. | 12-27-2012 |
20130028803 | METHOD OF MAKING ALKYLENE GLYCOLS - Herein disclosed is a system for hydrating an alkylene oxide that includes a high shear device configured to form a dispersion of an alkylene oxide and water, the high shear device comprising a rotor, a stator, and a catalytic surface, wherein the dispersion comprises gas bubbles with an average gas bubble diameter of less than about 5 μm; a pump configured for delivering a liquid stream to the high shear device; and a reactor coupled to the high shear device, and configured to receive the dispersion from the high shear device, wherein the alkylene oxide is hydrated in the reactor. | 01-31-2013 |
20130030223 | METHOD OF MAKING ALKYLENE GLYCOLS - Herein disclosed is a method of hydrating an alkylene oxide that includes introducing an alkylene oxide into water to form a first stream; flowing the first stream through a high shear device to produce a second stream; and contacting the second stream with a catalyst in a reactor to hydrate the alkylene oxide and form an alkylene glycol. | 01-31-2013 |
20130066118 | METHOD OF MAKING ALCOHOLS - Methods and systems for the synthesis of alcohol are described herein. The methods and systems include a method of hydrating an olefin that may include emulsifying an olefin gas in a water stream in a high shear device under high shear conditions to produce a dispersion; and contacting the dispersion with a catalyst to hydrate the olefin gas and form an alcohol. | 03-14-2013 |
20130067799 | HIGH SHEAR HYDROGENATION OF WAX AND OIL MIXTURES - Embodiments disclosed herein describe method of producing hydrogenated products, the method that includes providing a wax and an oil; processing the wax and the oil with a gas under high shear conditions to form a high shear product; and hydrogenating the high shear product to produce hydrogenated products. The wax may be a petroleum wax comprising alkane hydrocarbons with formula C | 03-21-2013 |
20130071299 | HIGH SHEAR HYDROGENATION OF WAX AND OIL MIXTURES - Embodiments disclosed herein describe a system for producing enhanced wax alternatives, the system that includes a reactor having a reactor inlet and a reactor outlet; and a high shear device having a device inlet, a device outlet, a rotor, a stator, and a catalytic surface, wherein the device outlet is in fluid communication with the reactor inlet. | 03-21-2013 |
20130072718 | HIGH SHEAR SYSTEM AND PROCESS FOR THE PRODUCTION OF ACETIC ANHYDRIDE - A method for producing acetic anhydride that includes operating a high shear device at a shear rate of greater than about 20,000 s | 03-21-2013 |
20130096489 | HIGH SHEAR APPLICATION IN MEDICAL THERAPY - In this disclosure, a method is described wherein the method comprises mixing a therapeutic gas or a therapeutic liquid or a combination thereof and a liquid carrier in a high shear device to produce a dispersion; and administering the produced dispersion intravenously to a patient; wherein the produced dispersion contains nanobubbles of the therapeutic gas or droplets of the therapeutic liquid with a mean diameter of less than about 1.5 μm. In this disclosure, a method is described wherein the method comprises mixing a therapeutic gas or a therapeutic liquid or a combination thereof and a liquid carrier in a high shear device to produce a therapeutic fluid, wherein said therapeutic fluid is a solution, a dispersion, or combination thereof and administering the produced therapeutic fluid intravenously to a patient; wherein the solution is supersaturated with the therapeutic gas, the therapeutic liquid, or combination thereof. | 04-18-2013 |
20130133514 | APPARATUS AND METHOD FOR GAS SEPARATION - Herein disclosed is an apparatus that includes a porous rotor positioned about an axis of rotation and surrounding an interior space wherein the porous rotor comprises sintered metal or ceramic; an outer casing, wherein the outer casing and the porous rotor are separated by an annular space; and a motor configured for rotating the porous rotor about the axis of rotation. | 05-30-2013 |
20130142706 | GASIFICATION OF CARBONACEOUS MATERIALS AND GAS TO LIQUID PROCESSES - Herein disclosed is a system for producing an organic, the system including at least one high shear mixing device having at least one rotor and at least one stator separated by a shear gap, wherein the shear gap is the minimum distance between the at least one rotor and the at least one stator; a pump configured for delivering a fluid stream comprising liquid medium and light gas to the at least one high shear mixing device, wherein the at least one high shear mixing device is configured to form a dispersion of the light gas in the liquid medium; and a reactor comprising at least one inlet and at least one outlet, wherein the at least one inlet of the reactor is fluidly connected to the at least one high shear mixing device, and wherein the at least one outlet is configured for extracting the organic therefrom. | 06-06-2013 |
20130167722 | APPARATUS AND METHOD FOR GAS SEPARATION - Herein disclosed is an apparatus that includes a porous rotor positioned about an axis of rotation and surrounding an interior space, wherein the porous rotor includes sintered metal or ceramic; an outer casing, wherein the outer casing and the porous rotor are separated by an annular space; and a motor configured for rotating the porous rotor about the axis of rotation. | 07-04-2013 |
20130233544 | SYSTEM AND PROCESS FOR INHIBITOR INJECTION - A method for introducing inhibitor into a fluid to be treated by forming a dispersion comprising droplets, particles, or gas bubbles of inhibitor dispersed in a continuous phase of a carrier, wherein forming the dispersion comprises subjecting a mixture of the inhibitor and the carrier to a shear rate of greater than about 20,000 s | 09-12-2013 |
20130237717 | HIGH SHEAR PROCESS FOR PRODUCING MICRONIZED WAXES - A method and system for producing dispersed waxes, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of wax globules in a carrier liquid in a high shear device prior to implementation in a waxy product. In another instance the system for producing waxy products comprises a high shear device for dispersing wax in a carrier liquid. | 09-12-2013 |
20130243671 | HIGH SHEAR HYDROGENATION OF WAX AND OIL MIXTURES - A system for producing enhanced wax alternatives, including a high shear device comprising a rotor and a stator, and configured to process petroleum wax and base oil with a hydrogen-containing gas under shearing conditions to form a feedstock, wherein at least one of the rotor and the stator comprises a toothed surface; and a reactor comprising a reactor inlet and a reactor outlet, and configured for hydrogenation of the feedstock for a time sufficient to produce enhanced hydrogenated products, wherein the high shear device is in fluid communication with the reactor, whereby the feedstock is transferable therebetween. | 09-19-2013 |
20130251613 | APPARATUS, SYSTEM, AND METHOD FOR CONVERTING A FIRST SUBSTANCE INTO A SECOND SUBSTANCE - A system for converting a first substance into a second substance, the system including a mixing reactor configured to provide a reactant mixture comprising a first reactant, a second reactant, and a solvent; and a high shear device fluidly connected to the mixing reactor, wherein the high shear device comprises at least one rotor/stator set comprising a rotor and a complementarily-shaped stator symmetrically positioned about an axis of rotation and separated by a shear gap, wherein the shear gap is in the range of from about 10 microns to about 250 microns; and a motor configured for rotating the rotor about the axis of rotation, whereby energy can be transferred from the rotor to the reactants thereby inducing reactions between the first reactant and the second reactant to form a product. | 09-26-2013 |
20130266703 | HIGH SHEAR APPLICATION IN PROCESSING OILS - Herein disclosed is a method of processing oil, comprising providing a high shear device comprising at least one rotor and at least one complementarily-shaped stator configured to mix a gas with a liquid; contacting a gas with an oil in the high shear device, wherein the gas is an inert gas or a reactive gas; and forming a product, wherein the product is a solution, a dispersion, or combination thereof. Herein also disclosed is a high shear system for processing oil, comprising; at least one high shear device, having an inlet and at least one rotor and at least one complementarily-shaped stator configured to mix a gas with a liquid; a gas source fluidly connected to the inlet; an oil source fluidly connected to the inlet; and a pump positioned upstream of a high shear device, the pump in fluid connection with the inlet and the oil source. | 10-10-2013 |
20130276737 | HIGH SHEAR PROCESS FOR AIR/FUEL MIXING - A system for the production of aerated fuels, the system including a high shear device configured to produce an emulsion of aerated fuel comprising gas bubbles dispersed in a liquid fuel, wherein the gas bubbles in the emulsion have an average bubble diameter of less than about 5 μm, and an internal combustion engine configured for the combustion of the emulsion, and wherein the gas comprises at least one component selected from the group consisting of air, water vapor, methanol, nitrous oxide, propane, nitromethane, oxalate, organic nitrates, acetone, kerosene, toluene, and methyl-cyclopentadienyl manganese tricarbonyl. | 10-24-2013 |
20140010725 | HIGH SHEAR APPLICATION IN PROCESSING OILS - Herein disclosed is a method of processing oil, comprising providing a high shear device comprising at least one rotor and at least one complementarily-shaped stator configured to mix a gas with a liquid; contacting a gas with an oil in the high shear device, wherein the gas is an inert gas or a reactive gas; and forming a product, wherein the product is a solution, a dispersion, or combination thereof. Herein also disclosed is a high shear system for processing oil, comprising; at least one high shear device, having an inlet and at least one rotor and at least one complementarily-shaped stator configured to mix a gas with a liquid; a gas source fluidly connected to the inlet; an oil source fluidly connected to the inlet; and a pump positioned upstream of a high shear device, the pump in fluid connection with the inlet and the oil source. | 01-09-2014 |
20140066852 | HIGH SHEAR APPLICATION IN DRUG DELIVERY - In this disclosure, methods and systems for drug delivery utilizing high shear are disclosed. In an embodiment, a method comprises (1) subjecting a therapeutic fluid containing a drug to high shear; and (2) obtaining a processed therapeutic fluid, wherein the processed therapeutic fluid contains the drug in nano-size. In an embodiment, a method comprises (1) subjecting a drug carrier and a therapeutic fluid containing a drug to high shear; and (2) obtaining a processed therapeutic fluid, wherein the processed therapeutic fluid contains the drug carrier loaded with the drug. In an embodiment, a method comprises (1) applying high shear to a drug carrier and a therapeutic fluid containing a drug; (2) obtaining a processed therapeutic fluid, wherein the processed therapeutic fluid contains the drug-loaded carrier; and (3) modifying the drug-loaded carrier with a targeting moiety to obtain a modified drug-loaded carrier. | 03-06-2014 |
20140081198 | HIGH SHEAR APPLICATION IN MEDICAL THERAPY - In this disclosure, a method is described wherein the method comprises mixing a therapeutic gas or a therapeutic liquid or a combination thereof and a liquid carrier in a high shear device to produce a dispersion; and administering the produced dispersion intravenously to a patient; wherein the produced dispersion contains nanobubbles of the therapeutic gas or droplets of the therapeutic liquid with a mean diameter of less than about 1.5 μm. In this disclosure, a system is also described wherein the system comprises a therapeutic gas source or a therapeutic liquid source or a combination thereof; a liquid carrier source; a high shear device (HSD) having an inlet, an outlet, at least one rotor, and at least one stator separated by a shear gap; and a pump configured to control the flow rate and residence time of a fluid passing through the high shear device. | 03-20-2014 |
20140093951 | ALGAE PROCESSING - A method for culturing algae comprising, forming an emulsion comprising a gaseous stream and a media utilizing a high shear device, wherein the emulsion comprises gas bubbles, and wherein the high shear device comprises at least one toothed rotor and at least one stator; introducing the emulsion into a bioreactor; and introducing an algae into the bioreactor for growing the algae culture. Additionally, a method for producing liquids from an algae culture, the method comprising forming an emulsion comprising a buffer and algal components, wherein the emulsion comprises algal component globules; separating algal hydrocarbons; and processing algal hydrocarbons to form liquid hydrocarbons. Additionally, a system for producing liquids from an algae culture comprising at least one high shear device. | 04-03-2014 |
20140128484 | CONVERTING NATURAL GAS TO ORGANIC COMPOUNDS - Herein disclosed is a catalyst composition for producing organic compounds comprising (a) a catalyst that promotes the oxidative coupling of methane (OCM) and a methane steam reforming (MSR) catalyst, wherein the catalyst composition causes oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (b) a catalyst that promotes syngas generation (SG) and a Fischer-Tropsch (FT) catalyst wherein the catalyst composition causes non-oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (c) a SG catalyst, a MSR catalyst, and a FT catalyst wherein the catalyst composition causes non-oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (d) a FT catalyst and a MSR catalyst wherein the catalyst composition causes reforming reactions and chain growing reactions to produce the organic compounds. | 05-08-2014 |
20140128485 | REACTOR AND CATALYST FOR CONVERTING NATURAL GAS TO ORGANIC COMPOUNDS - Herein disclosed is a reactor comprising a housing; an inlet tube having a section with perforations along its length, wherein the inlet tube section is within the reactor housing; an outlet tube having a section with perforations along its length, wherein the outlet tube section is within the reactor housing; and at least one cylinder made of sintered metal contained within the reactor housing, wherein the sintered metal is catalytically active. In some cases, the sintered metal in the reactor comprises a porous metallic multifunctional (PMM) catalyst. Other reactor designs and the method of use are also described herein. | 05-08-2014 |
20140128640 | METHOD OF MAKING GLYCEROL - Method of producing glycerol that includes mixing a peroxide stream with an olefenic alcohol stream to form a feed stream; processing the feed stream in a high shear device to produce a high shear dispersion of peroxide and olefinic alcohol, wherein the high shear device is configured with a rotor and a stator separated by a shear gap; and contacting the high shear dispersion with a catalyst in a reactor to produce glycerol. | 05-08-2014 |
20140154392 | PROCESS FOR UPGRADING LOW VALUE RENEWABLE OILS - Steps in the processing of oils derived from plants or vegetables include the degumming, deodorizing and bleaching of the oil before it can be used for further applications. By eliminating one or more of these steps from the processing of the oil, followed by hydrogenating the oil to a specified degree of hydrogenation, the resulting upgraded oils can be incorporated into products having commercial applications. The process uses a high shear mixing device and a hydrogenation catalyst. The process can utilize a single or multiple high shear devices, and utilize renewable oils instead of increasingly scarce petroleum based products. The resulting hydrogenated products may then be utilized in a variety of other commercial applications, such as to render cellulosic products water resistant, provide a coating for numerous cellulosic products, adhesive compositions, ink compositions, firelog compositions, drilling muds or asphalt modifiers. | 06-05-2014 |
20140161683 | HIGH SHEAR PROCESS FOR PROCESSING NAPHTHA - A method and system for processing naphtha, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of gas in a naphtha hydrocarbon liquid in a high shear device prior to introduction in a cracking reactor/furnace. In another instance the system for processing naphtha comprises a high shear device for mechanically shearing hydrocarbons. | 06-12-2014 |
20140209507 | SYSTEM AND PROCESS FOR CATALYTIC CRACKING AND REFORMING - Herein disclosed is a method for catalytic cracking or reforming of hydrocarbons comprising: supersaturating a hydrocarbonaceous liquid or slurry stream in a high shear device with a gas stream comprising one or more C1-C6 hydrocarbons and optionally hydrogen to form a supersaturated dispersion; introducing the supersaturated dispersion into a catalytic cracking or reforming reactor in the presence of a cracking or reforming catalyst to generate a product stream. In some embodiments, the catalyst is present as a slurry or a fluidized or fixed bed of catalyst. In some embodiments, the cracking or reforming catalyst is mixed with the hydrocarbonaceous liquid or slurry stream and the gas stream in the high shear device. Herein also disclosed is a system for catalytic cracking or reforming of hydrocarbons. | 07-31-2014 |
20140209508 | SYSTEM AND PROCESS FOR THERMAL CRACKING AND STEAM CRACKING - Herein disclosed is a method for thermal cracking or steam cracking of hydrocarbons comprising: supersaturating a hydrocarbonaceous liquid or slurry stream in a high shear device with a gas stream comprising steam or hydrogen and optionally one or more C1-C6 hydrocarbons to form a supersaturated dispersion; and introducing the supersaturated dispersion into a thermal cracking or steam cracking reactor to generate a product stream. In some embodiments, the method further comprises contacting the supersaturated dispersion with a cracking catalyst in a slurry, a fluidized catalyst bed, or a fixed catalyst bed. In some embodiments, the cracking catalyst is mixed with the hydrocarbonaceous liquid or slurry stream and the gas stream in the high shear device. Herein also disclosed is a system for thermal cracking or steam cracking of hydrocarbons. | 07-31-2014 |
20140209509 | SYSTEM AND PROCESS FOR HYDROCRACKING AND HYDROGENATION - Herein disclosed is a method for hydrogenation comprising: supersaturating a hydrocarbonaceous liquid or slurry stream in a high shear device with a gas stream comprising hydrogen and optionally one or more C1-C6 hydrocarbons to form a supersaturated dispersion; and introducing the supersaturated dispersion into a reactor in the presence of a hydrogenation catalyst to generate a product stream. In some embodiments, the catalyst is present as a slurry or a fluidized or fixed bed of catalyst. In some embodiments, the hydrogenation catalyst is mixed with the hydrocarbonaceous liquid or slurry stream and the gas stream in the high shear device. In some embodiments, the method further comprises recycling at least a portion of an off gas from the reactor, recycling at least a portion of the product stream from the reactor, or both. Also disclosed herein is a system for hydrogenation. | 07-31-2014 |
20140209513 | SYSTEM AND PROCESS FOR COAL LIQUEFACTION - Herein disclosed is a method for coal liquefaction comprising: supersaturating a hydrocarbonaceous liquid stream in a high shear device with a gas stream comprising hydrogen and optionally one or more C1-C6 hydrocarbons to form a supersaturated dispersion; and contacting the supersaturated dispersion with coal in the high shear device or in a coal liquefaction reactor to generate a product stream. In some embodiments, the method further comprises utilizing a conversion catalyst, wherein the catalyst is provided as a slurry, a fluidized bed, or a fixed bed. In some embodiments, the method further comprises feeding a conversion catalyst into the high shear device. In some embodiments, the method further comprises recycling at least a portion of an off gas from the reactor, recycling at least a portion of the product stream from the reactor, or both. Herein also disclosed is a system for coal liquefaction. | 07-31-2014 |
20140209714 | METHOD OF HIGH SHEAR COMMINUTION OF SOLIDS - Herein disclosed in a method comprising: shearing a feed comprising a solid component in a high shear device to produce a product, at least a portion of which comprises sheared solids; and separating at least some of the sheared solids from the product to produce a component-reduced product, wherein the solid component in the feed stream comprises a first particle density, and wherein the sheared solids in the product comprise a second particle density greater than the first particle density. In some embodiments, the solid component of the feed comprises gas trapped therein, and wherein at least a portion of said gas is released from the solid component upon shearing. Herein also is disclosed a method of comminuting solids in a feed stream comprising a solid component by processing the feed stream in a high shear device to produce a product stream comprising comminuted solids. | 07-31-2014 |
20140256601 | PREDISPERSED WAXES FOR OIL AND GAS DRILLING - Herein disclosed is a method for producing a predispersed wax product comprising: operating a high shear device having at least one rotor/stator, configurable for a shear rate of at least 20,000 s | 09-11-2014 |
20140353112 | CRUDE OIL DESULFURIZATION - A method of removing sulfur from sour oil by subjecting sour oil having a first sulfur content to high shear in the presence of at least one desulfurizing agent to produce a high shear treated stream, wherein the at least one desulfurizing agent is selected from the group consisting of bases and inorganic salts, and separating both a sulfur-rich product and a sweetened oil product from the high shear-treated stream, wherein the sulfur-rich product comprises elemental sulfur and wherein the sweetened oil product has a second sulfur content that is less than the first sulfur content. A system for reducing the sulfur content of sour oil via at least one high shear device comprising at least one rotor and at least one complementarily-shaped stator, and at least one separation device configured to separate a sulfur-rich product and sweetened oil from the high shear-treated stream. | 12-04-2014 |
20150068953 | ENHANCED PROCESSES TO PRODUCE VALUE-ADDED PRODUCTS FORM LIGHT GASES - Herein disclosed is a method of producing value-added product from light gases, the method comprising: (a) providing light gases comprising at least one compound selected from the group consisting of C1-C6 compounds and combinations thereof; (b) intimately mixing the light gases with a liquid carrier in a high shear device to form a dispersion of gas in the liquid carrier, wherein the dispersion is supersaturated with the light gases and comprises gas bubbles at least some of which have a mean diameter of less than or equal to about 5 micron(s); (c) allowing the value-added product to form and utilizing vacuum to extract unreacted light gases from the liquid carrier; (d) extracting the value-added product; wherein the value-added product comprises at least one component selected from the group consisting of higher hydrocarbons, hydrogen, olefins, alcohols, aldehydes, and ketones. A system for producing value-added product from light gases is also disclosed. | 03-12-2015 |