Patent application number | Description | Published |
20110063169 | PHASED-ARRAY TRANSCEIVER FOR MILLIMETER-WAVE FREQUENCIES - A phased-array transmitter and receiver that may be effectively implemented on a silicon substrate. The transmitter distributes to front-ends, and the receiver combines signals from front-ends, using a power distribution/combination tree that employs both passive and active elements. By monitoring the power inputs and outputs, a digital control is able to rapidly provide phase and gain correction information to the front-ends. Such a transmitter/receiver includes a plurality of radio frequency (RF) front-ends and a power splitting/combining network that includes active and passive components configured to distribute signals to/from the front-ends. | 03-17-2011 |
20110254727 | PHASED ARRAY MILLIMETER WAVE IMAGING TECHNIQUES - An apparatus, imager elements, and a method for detecting a radio frequency image using phased array techniques. An example apparatus includes an array of radio frequency antennas fabricated on one or more packaged integrated circuits. The apparatus also includes a controller configured to selectively phase shift radio frequency signals from the antennas such that the at least a portion of the radio frequency image is focused. | 10-20-2011 |
20120262149 | LOOP PARAMETER SENSOR USING REPETITIVE PHASE ERRORS - A method and system are disclosed for measuring a specified parameter in a phase-locked loop frequency synthesizer (PLL). In one embodiment, the method comprises introducing multiple phase errors in the PLL, measuring a specified aspect of the introduced phase errors, and determining a value for the specified parameter using the measured aspects of the introduced phase errors. In one embodiment, the phase errors are introduced repetitively in the PLL, and these phase errors produce a modified phase difference between the reference signal and the feedback signal in the PPL. In one embodiment, crossover times, when this modified phase difference crosses over a preset value, are determined, and these crossover times are used to determine the value for the specified parameter. In an embodiment, the parameter is calculated as a mathematical function of the crossover times. The parameter may be, for example, the bandwidth of the PLL. | 10-18-2012 |
20130069831 | PHASED-ARRAY TRANSCEIVER - Systems, methods, devices and apparatuses directed to transceiver devices are disclosed. In accordance with one method, a first set of antenna positions in a first section of a set of sections of a circuit layout for the circuit package is selected. The method further includes selecting another set of antenna positions in another section of the circuit layout such that an arrangement of selected antenna positions of the other set is different from an arrangement of selected antenna positions of a previously selected set of antenna positions. The selecting another set of positions in another section is iterated until selections have been made for a total number of antennas. The selecting the other set is performed such that consecutive unselected positions in the other section do not exceed a predetermined number of positions. In addition, antenna elements are formed at the selected positions to fabricate the circuit package. | 03-21-2013 |
20140120903 | BASE STATION POWER CONTROL IN A MOBILE NETWORK - The present disclosure relates generally to the field of base station power control in a mobile network. In various examples, base station power control in a mobile network may be implemented in the form of systems, methods and/or algorithms. | 05-01-2014 |
20140120904 | BASE STATION POWER CONTROL IN A MOBILE NETWORK - The present disclosure relates generally to the field of base station power control in a mobile network. In various examples, base station power control in a mobile network may be implemented in the form of systems, methods and/or algorithms. | 05-01-2014 |
20140132450 | PHASED-ARRAY TRANSCEIVER FOR MILLIMETER-WAVE FREQUENCIES - A phased-array receiver that may be effectively implemented on a silicon substrate. A receiver includes multiple radio frequency (RF) front-ends, each configured to receive a signal with a given delay relative to the others such that the gain of the received signal is highest in a given direction. The receiver also includes a power combination network configured to accept an RF signal from each of the RF front-ends and to pass a combined RF signal to a down-conversion element, where the power distribution network includes a combination of active and passive components. Each RF front-end includes a phase shifter configured to delay the signal in accordance with the given direction and a variable amplifier configured to adjust the gain of the signal. | 05-15-2014 |
20140184439 | SCALABLE POLARIMETRIC PHASED ARRAY TRANSCEIVER - A polarimetric transceiver front-end includes two receive paths configured to receive signals from an antenna, each receive path corresponding to a respective polarization. Each front-end includes a variable amplifier and a variable phase shifter; a first transmit path configured to send signals to the antenna, where the transmit path is connected to the variable phase shifter of one of the two receive paths and includes a variable amplifier; and a transmit/receive switch configured to select between the first transmit path and the two receive paths for signals, where the transmit/receive switch includes a quarter-wavelength transmission line that adds a high impedance to the transmit path when the transmit/receive switch is in a receiving state. | 07-03-2014 |