Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Ali Kamen, Skillman US

Ali Kamen, Skillman, NJ US

Patent application numberDescriptionPublished
20130064439Systems and Method for Automatic Prostate Localization in MR Images Using Random Walker Segmentation Initialized Via Boosted Classifiers - Automatic prostate localization in T2-weighted MR images facilitate labor-intensive cancer imaging techniques. Methods and systems to accurately segment the prostate gland in MR images are provided and address large variations in prostate anatomy and disease, intensity inhomogeneities, and artifacts induced by endorectal coils. A center of the prostate is automatically detected with a boosted classifier trained on intensity based multi-level Gaussian Mixture Model Expectation Maximization (GMM-EM) segmentations of the raw MR images. A shape model is used in conjunction with Multi-Label Random Walker (MLRW) to constrain the seeding process within MLRW.03-14-2013
20130132054Method and System for Multi-Scale Anatomical and Functional Modeling of Coronary Circulation - A method and system for multi-scale anatomical and functional modeling of coronary circulation is disclosed. A patient-specific anatomical model of coronary arteries and the heart is generated from medical image data of a patient. A multi-scale functional model of coronary circulation is generated based on the patient-specific anatomical model. Blood flow is simulated in at least one stenosis region of at least one coronary artery using the multi-scale function model of coronary circulation. Hemodynamic quantities, such as fractional flow reserve (FFR), are computed to determine a functional assessment of the stenosis, and virtual intervention simulations are performed using the multi-scale function model of coronary circulation for decision support and intervention planning.05-23-2013
20130191100BLOOD FLOW COMPUTATION IN VESSELS WITH IMPLANTED DEVICES - A method for modeling blood flow through a flow diverter includes receiving a medical image containing blood vessels. Vessel geometry is extracted from the received medical image. Inlets and outlets are tagged within the extracted vessel geometry. A desired flow diverter is selected. A model of the selected flow diverter is generated within the imaged blood vessel, the model representing the flow diverter as a tube having a porous surface characterized by a viscous resistance and an inertial resistance. A course of blood flow though the flow diverter is predicted based on the generated model, the extracted vessel geometry, and the tagged inlets and outlets.07-25-2013
20130197881Method and System for Patient Specific Planning of Cardiac Therapies on Preoperative Clinical Data and Medical Images - A method and system for patient-specific planning of cardiac therapy, such as cardiac resynchronization therapy (CRT), based on preoperative clinical data and medical images, such as ECG data, magnetic resonance imaging (MRI) data, and ultrasound data, is disclosed. A patient-specific anatomical model of the left and right ventricles is generated from medical image data of a patient. A patient-specific computational heart model, which comprises cardiac electrophysiology, biomechanics and hemodynamics, is generated based on the patient-specific anatomical model of the left and right ventricles and clinical data. Simulations of cardiac therapies, such as CRT at one or more anatomical locations are performed using the patient-specific computational heart model. Changes in clinical cardiac parameters are then computed from the patient-specific model, constituting predictors of therapy outcome useful for therapy planning and optimization.08-01-2013
20130197884Method and System for Advanced Measurements Computation and Therapy Planning from Medical Data and Images Using a Multi-Physics Fluid-Solid Heart Model - Method and system for computation of advanced heart measurements from medical images and data; and therapy planning using a patient-specific multi-physics fluid-solid heart model is disclosed. A patient-specific anatomical model of the left and right ventricles is generated from medical image patient data. A patient-specific computational heart model is generated based on the patient-specific anatomical model of the left and right ventricles and patient-specific clinical data. The computational model includes biomechanics, electrophysiology and hemodynamics. To generate the patient-specific computational heart model, initial patient-specific parameters of an electrophysiology model, initial patient-specific parameters of a biomechanics model, and initial patient-specific computational fluid dynamics (CFD) boundary conditions are marginally estimated. A coupled fluid-structure interaction (FSI) simulation is performed using the initial patient-specific parameters, and the initial patient-specific parameters are refined based on the coupled FSI simulation. The estimated model parameters then constitute new advanced measurements that can be used for decision making.08-01-2013
20130226542Method and System for Fast Patient-Specific Cardiac Electrophysiology Simulations for Therapy Planning and Guidance - A method and system for patient-specific cardiac electrophysiology is disclosed. Particularly, a patient-specific anatomical model of a heart is generated from medical image data of a patient, a level-set representation of the patient-specific anatomical model is generated of the heart on a Cartesian grid; and a transmembrane action potential at each node of the level-set representation of the of the patient-specific anatomical model of the heart is computed on a Cartesian grid.08-29-2013
20130243292NETWORK CYCLE FEATURES IN RELATIVE NEIGHBORHOOD GRAPHS - Methods for analyzing biomedical data include: (a) obtaining macroscopic imaging data; (b) obtaining histopathological imaging data; (c) executing a parallel algorithm stored on a non-transient computer-readable medium to compute one or a plurality of network cycle features of a relative neighborhood graph derived from the histopathological imaging data; (d) registering the macroscopic imaging data and the histopathological imaging data; and (e) correlating the macroscopic imaging data and the network cycle features. Systems for analyzing biomedical data and computer readable storage media are described.09-19-2013
20130243352Global Error Minimization In Image Mosaicking Using Graph Laplacians And Its Applications In Microscopy - An image mosaicking method includes performing pairwise registration of a plurality of tiles (09-19-2013
20130246034Method and System for Non-Invasive Functional Assessment of Coronary Artery Stenosis - A method and system for non-invasive assessment of coronary artery stenosis is disclosed. Patient-specific anatomical measurements of the coronary arteries are extracted from medical image data of a patient acquired during rest state. Patient-specific rest state boundary conditions of a model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Patient-specific rest state boundary conditions of the model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Hyperemic blood flow and pressure across at least one stenosis region of the coronary arteries are simulated using the model of coronary circulation and the patient-specific hyperemic boundary conditions. Fractional flow reserve (FFR) is calculated for the at least one stenosis region based on the simulated hyperemic blood flow and pressure.09-19-2013
20130261446Robotic Navigated Nuclear Probe Imaging - Robotic navigation is provided for nuclear probe imaging. Using a three-dimensional scanner (10-03-2013
20130324841System and Method for Real-Time Ultrasound Guided Prostate Needle Biopsy Based on Biomechanical Model of the Prostate from Magnetic Resonance Imaging Data - A method and system for real-time ultrasound guided prostate needle biopsy based on a biomechanical model of the prostate from 3D planning image data, such as magnetic resonance imaging (MRI) data, is disclosed. The prostate is segmented in the 3D ultrasound image. A reference patient-specific biomechanical model of the prostate extracted from planning image data is fused to a boundary of the segmented prostate in the 3D ultrasound image, resulting in a fused 3D biomechanical prostate model. In response to movement of an ultrasound probe to a new location, a current 2D ultrasound image is received. The fused 3D biomechanical prostate model is deformed based on the current 2D ultrasound image to match a current deformation of the prostate due to the movement of the ultrasound probe to the new location.12-05-2013
20140012558SYSTEM AND METHODS FOR INTEGRATED AND PREDICTIVE ANALYSIS OF MOLECULAR, IMAGING, AND CLINICAL DATA FOR PATIENT-SPECIFIC MANAGEMENT OF DISEASES - A system operating in a plurality of modes to provide an integrated analysis of molecular data, imaging data, and clinical data associated with a patient includes a multi-scale model, a molecular model, and a linking component. The multi-scale model is configured to generate one or more estimated multi-scale parameters based on the clinical data and the imaging data when the system operates in a first mode, and generate a model of organ functionality based on one or more inferred multi-scale parameters when the system operates in a second mode. The molecular model is configured to generate one or more first molecular findings based on a molecular network analysis of the molecular data, wherein the molecular model is constrained by the estimated parameters when the system operates in the first mode. The linking component, which is operably coupled to the multi-scale model and the molecular model, is configured to transfer the estimated multi-scale parameters from the multi-scale model to the molecular model when the system operates in the first mode, and generate, using a machine learning process, the inferred multi-scale parameters based on the molecular findings when the system operates in the second mode.01-09-2014
20140022250System and Method for Patient Specific Planning and Guidance of Ablative Procedures for Cardiac Arrhythmias - A method and system for patient-specific planning and guidance of an ablation procedure for cardiac arrhythmia is disclosed. A patient-specific anatomical heart model is generated based on pre-operative cardiac image data. The patient-specific anatomical heart model is registered to a coordinate system of intra-operative images acquired during the ablation procedure. One or more ablation site guidance maps are generated based on the registered patient-specific anatomical heart model and intra-operative patient-specific measurements acquired during the ablation procedure. The ablation site guidance maps may include myocardium diffusion and action potential duration maps. The ablation site guidance maps are generated using a computational model of cardiac electrophysiology which is personalized by fitting parameters of the cardiac electrophysiology model using the intra-operative patient-specific measurements. The ablation site guidance maps are displayed by a display device during the ablation procedure.01-23-2014
20140024932Computation of Hemodynamic Quantities From Angiographic Data - Methods for computing hemodynamic quantities include: (a) acquiring angiography data from a patient; (b) calculating a flow and/or calculating a change in pressure in a blood vessel of the patient based on the angiography data; and (c) computing the hemodynamic quantity based on the flow and/or the change in pressure. Systems for computing hemodynamic quantities and computer readable storage media are described.01-23-2014
20140058715Method and System for Non-Invasive Functional Assessment of Coronary Artery Stenosis - A method and system for non-invasive assessment of coronary artery stenosis is disclosed. Patient-specific anatomical measurements of the coronary arteries are extracted from medical image data of a patient acquired during rest state. Patient-specific rest state boundary conditions of a model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Patient-specific rest state boundary conditions of the model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Hyperemic blood flow and pressure across at least one stenosis region of the coronary arteries are simulated using the model of coronary circulation and the patient-specific hyperemic boundary conditions. Fractional flow reserve (FFR) is calculated for the at least one stenosis region based on the simulated hyperemic blood flow and pressure.02-27-2014
20140088935VISCOELASTIC MODELING OF BLOOD VESSELS - A method for modeling a blood vessel includes: (a) modeling a first segment of the blood vessel based on medical imaging data acquired from a subject; (b) computing a first modeling parameter at an interior point of the first segment; and (c) computing a second modeling parameter at a boundary point of the first segment using a viscoelastic wall model. Systems for modeling a blood vessel are described03-27-2014
20140136174System and Method for Patient Specific Modeling of Liver Tumor Ablation - A method and system for tumor ablation planning and guidance based on a patient-specific model of liver tumor ablation is disclosed. A patient-specific anatomical model of the liver and circulatory system of the liver is estimated from 3D medical image data of a patient. Blood flow in the liver and the circulatory system of the liver is simulated based on the patient-specific anatomical model. Heat diffusion due to ablation is simulated based on a virtual ablation probe position and the simulated blood flow in the liver and the venous system of the liver. Cellular necrosis in the liver is simulated based on the simulated heat diffusion. A visualization of a simulated necrosis region is generated and displayed to the user for decision making and optimal therapy planning and guidance.05-15-2014
20140187942Needle Enhancement in Diagnostic Ultrasound Imaging - A needle is enhanced in a medical diagnostic ultrasound image. The image intensities associated with a needle in an image are adaptively increased and/or enhanced by compounding from a plurality of ultrasound images. Filtering methods and probabilistic methods are used to locate possible needle locations. In one approach, possible needles are found in component frames that are acquired at the same time but at different beam orientations. The possible needles are associated with each other across the component frames and false detections are removed based on the associations. In one embodiment of needle detection in an ultrasound component frame, lines are found first. The lines are then searched to find possible needle segments. In another embodiment, data from different times may be used to find needle motion and differences from a reference, providing the features in additional to features from a single component frame for needle detection.07-03-2014
20140207715DATA DRIVEN REDUCTION OF MULTI-SCALE MODELS - A method of computing physiological measurements resulting from a multi-scale physiological system using a data-driven model includes generating a database of physiological measurements associated with a multi-scale physiological system. A computer uses dimensionality reduction techniques on the database to identify a reduced set of components explaining the multi-scale physiological system. The computer learns a data-driven model of the multi-scale physiological system from the database. Then, new input parameters are received by the computer and used to compute new physiological measurements using the data-driven model. New derived physiological indicators are computed by the computer based on the reduced set of components. Once computed, the new derived physiological indicators may be displayed along with the new physiological measurements.07-24-2014
20140236547PATIENT-SPECIFIC AUTOMATED TUNING OF BOUNDARY CONDITIONS FOR DISTAL VESSEL TREE - Boundary conditions for a distal vessel tree are modeled and tuned to a specific patient. Measurements from the patient are used to find reference compliance and resistance for the root of the distal vessel tree model. The reference compliance and resistance are used to tune properties of a structured tree model, such as by iteratively solving for the properties while matching the compliance and resistance of the structured tree model to the patient-specific reference compliance and reference resistance. The tuned structured tree is then used to calculate boundary conditions for computing flow of a scanned vessel of the patient.08-21-2014
20140249399Determining Functional Severity of Stenosis - A method for determining functional severity of a stenosis includes: (a) generating a simulated perfusion map from a calculated blood flow; (b) comparing the simulated perfusion map to a measured perfusion map to identify a degree of mismatch therebetween, the measured perfusion map representing perfusion in a patient; (c) modifying a parameter in a model used in calculating the blood flow when the degree of mismatch meets or exceeds a predefined threshold; (d) computing a hemodynamic quantity from the simulated perfusion map when the degree of mismatch is less than the predefined threshold, the hemodynamic quantity being indicative of the functional severity of the stenosis; and (e) displaying the hemodynamic quantity. Systems for determining functional severity of a stenosis are described.09-04-2014
20140296842Patient Specific Planning and Simulation of Ablative Procedures - Patient specific temperature distribution in organs, due to an ablative device, is simulated. The effects of ablation are modeled. The modeling is patient specific. The vessel structure for a given patient, segmented from medical images, is accounted for as a heat sink in the model of biological heat transfer. A temperature map is generated to show the effects of ablation in a pre-operative analysis. Temperature maps resulting from different ablation currents and ablation device positions may be used to determine a more optimal location of the ablative device for a given patient. Other models may be included, such as accounting for the tissue damage during the ablation.10-02-2014
20140314292METHOD AND SYSTEM FOR INTEGRATED RADIOLOGICAL AND PATHOLOGICAL INFORMATION FOR DIAGNOSIS, THERAPY SELECTION, AND MONITORING - A method and system for integrating radiological and pathological information for cancer diagnosis, therapy selection, and monitoring is disclosed. A radiological image of a patient, such as a magnetic resonance (MR), computed tomography (CT), positron emission tomography (PET), or ultrasound image, is received. A location corresponding to each of one or more biopsy samples is determined in the at least one radiological image. An integrated display is used to display a histological image corresponding to the each biopsy samples, the radiological image, and the location corresponding to each biopsy samples in the radiological image. Pathological information and radiological information are integrated by combining features extracted from the histological images and the features extracted from the corresponding locations in the radiological image for cancer grading, prognosis prediction, and therapy selection.10-23-2014
20150042646System and Method for Patient Specific Planning and Guidance of Electrophysiology Interventions - A method and system for patient-specific planning and guidance of electrophysiological interventions is disclosed. A patient-specific anatomical heart model is generated from cardiac image data of a patient. A patient-specific cardiac electrophysiology model is generated based on the patient-specific anatomical heart model and patient-specific electrophysiology measurements. Virtual electrophysiological interventions are performed using the patient-specific cardiac electrophysiology model. A simulated electrocardiogram (ECG) signal is calculated in response to each virtual electrophysiological intervention.02-12-2015
20150045644System and Method for Estimating Artery Compliance and Resistance from 4D Cardiac Images and Pressure Measurements - A method and system for estimating arterial compliance and resistance based on medical image data and pressure measurements is disclosed. An arterial inflow estimate over a plurality of time points is determined based on medical image data of a patient. An arterial pressure measurement of the patient is received. At least one cardiac cycle of the arterial pressure measurement is synchronized with at least one cardiac cycle of the arterial inflow measurement. Arterial compliance and resistance of the patient is estimated based on the arterial inflow estimate and the synchronized arterial pressure measurement.02-12-2015
20150051888FRAMEWORK FOR PERSONALIZATION OF CORONARY FLOW COMPUTATIONS DURING REST AND HYPEREMIA - Embodiments relate to non-invasively determining coronary circulation parameters during a rest state and a hyperemic state for a patient. The blood flow in the coronary arteries during a hyperemic state provides a functional assessment of the patient's coronary vessel tree. Imaging techniques are used to obtain an anatomical model of the patient's coronary tree. Rest boundary conditions are computed based on non-invasive measurements taken at a rest state, and estimated hyperemic boundary conditions are computed. A feedback control system performs a simulation matching the rest state utilizing a model based on the anatomical model and a plurality of controllers, each controller relating to respective output variables of the coronary tree. The model parameters are adjusted for the output variables to be in agreement with the rest state measurements, and the hyperemic boundary conditions are accordingly adjusted. The hyperemic boundary conditions are used to compute coronary flow and coronary pressure variables.02-19-2015
20150063649Method and System for Blood Flow Velocity Reconstruction From Medical Images - A method and system for blood flow velocity reconstruction from medical image data is disclosed. Flow system geometry of a flow conduit is generated from medical image data. The flow system velocity includes an inlet, walls, and one or more outlets of the flow conduit. A measured velocity field is extracted from the medical image data. Inlet and wall fluxes are estimated based on the measured velocity field or other external measurements. Outlet fluxes are estimated such that mass conservation is constrained based on the inlet and wall fluxes. A reconstructed velocity field is calculated by solving flux-constrained Poisson (FCP) equations that are constrained by the estimated output fluxes03-05-2015
20150065864Method and System for Functional Assessment of Renal Artery Stenosis from Medical Images - A method and system for non-invasive assessment of renal artery stenosis is disclosed. A patient-specific anatomical model of at least a portion of the renal arteries and aorta is generated from medical image data of a patient. Patient-specific boundary conditions of a computational model of blood flow in the portion of the renal arteries and aorta are estimated based on the patient-specific anatomical model. Blood flow and pressure are simulated in the portion of the renal arteries and aorta using the computational model based on the patient-specific boundary conditions. At least one hemodynamic quantity characterizing functional severity of a renal stenosis region is calculated based on the simulated blood flow and pressure in the portion of the renal arteries and aorta.03-05-2015
20150073765SYSTEM AND METHOD FOR PREDICTION OF RESPIRATORY MOTION FROM 3D THORACIC IMAGES - A method and system for prediction of respiratory motion from 3D thoracic images is disclosed. A patient-specific anatomical model of the respiratory system is generated from 3D thoracic images of a patient. The patient-specific anatomical model of the respiratory system is deformed using a biomechanical model. The biomechanical model is personalized for the patient by estimating a patient-specific thoracic pressure force field to drive the biomechanical model. Respiratory motion of the patient is predicted using the personalized biomechanical model driven by the patient-specific thoracic pressure force field.03-12-2015

Patent applications by Ali Kamen, Skillman, NJ US

Website © 2015 Advameg, Inc.