Patent application number | Description | Published |
20080223149 | Measuring transducer of vibration-Type - The measuring transducer includes: a measuring tube vibrating, at least at times, during operation and serving for conveying a medium, wherein the measuring tube communicates with a pipeline via an inlet tube piece at an inlet end and an outlet tube piece at an outlet end; a counteroscillator, which is affixed to the measuring tube on the inlet end to form a first coupling zone and affixed to the measuring tube on the outlet end to form a second coupling zone; a sensor arrangement secured, at least in part, to the counteroscillator for registering oscillations at least of the measuring tube; an exciter mechanism secured, at least in part, to the counteroscillator for driving at least the measuring tube; a transducer housing affixed to the inlet tube piece and the outlet tube piece; and connection lines, especially connection lines for the exciter mechanism and/or for the sensor arrangement, of which connection lines at least one is secured at least sectionally along the counteroscillator and secured at least pointwise thereto, as well as to the transducer housing. The connection lines are routed essentially symmetrically with respect to a principal axis of inertia of the inner part formed by means of measuring tube and counteroscillator, especially mirror-symmetrically with respect to at least one principal axis of inertia of the counteroscillator, whereby an essentially symmetrical damping force per unit length can be assured in the measuring transducer. | 09-18-2008 |
20080223150 | Measuring transducer of vibration-type - A measuring transducer includes: a measuring tube vibrating, at least at times, during operation and serving for conveying a medium, wherein the measuring tube communicates with a pipeline via an inlet tube piece on an inlet side and an outlet tube piece on an outlet side; a counteroscillator, which is affixed to the measuring tube on the inlet and outlet sides to form coupling zones; an cantilever coupled with the measuring tube on the inlet side; an cantilever coupled with the measuring tube on the outlet side; a sensor arrangement secured, at least in part, to the counteroscillator for registering oscillations at least of the measuring tube; an exciter mechanism secured, at least in part, to the counteroscillator for driving at least the measuring tube; a transducer housing affixed to the inlet tube piece and to the outlet tube piece; as well as connection lines, of which at least one is secured at least pointwise to the transducer housing and at least pointwise to an inner part of the measuring transducer formed by means of measuring tube, counteroscillator and the two cantilevers. A section at least of the one connection line extends freely suspended between two mutually spaced tie-down points. One of the tie-down points is located on the inner part of the measuring transducer and the other on the transducer housing. The two tie-down points are so placed that a relative distance therebetween remains essentially unchanged, even when the measuring tube is vibrating. | 09-18-2008 |
20080250871 | Measuring transducer of vibration-type - A measuring transducer includes: A measuring tube vibrating, at least at times, during operation and serving for conveying a medium, wherein the measuring tube communicates with a pipeline via an inlet tube piece at an inlet end and an outlet tube piece at an outlet end; a counteroscillator, which is affixed to the measuring tube on the inlet end to form a first coupling zone and affixed to the measuring tube on the outlet end to form a second coupling zone; and a transducer housing affixed to the inlet tube piece and the outlet tube piece. An exciter mechanism, for driving at least the measuring tube, and a sensor arrangement, for registering oscillations at least of the measuring tube, are, in each case, secured, at least in part, to the counteroscillator. Additionally, on the inlet side, an cantilever is so coupled in the region of the coupling zone with the inlet tube piece and the measuring tube, that the center of mass of the cantilever lies in the region of the inlet tube piece, and, on the outlet side, an cantilever is so coupled in the region of the coupling zone with the outlet tube piece and the measuring tube, that the center of mass of the cantilever lies in the region of the outlet tube piece. Furthermore, the measuring transducer includes connection lines, especially connection lines for the exciter mechanism and/or for the sensor arrangement, with at least one of the connection lines being secured to at least one of the two cantilevers. | 10-16-2008 |
20090145244 | Measuring transducer of vibration-type - A measuring transducer includes: a measuring tube vibrating at least at times and serving for conveying medium to be measured; a counteroscillator, which is affixed to the measuring tube on an inlet-side, to form a first coupling zone, and to the measuring tube on an outlet-side, to form a second coupling zone; an exciter mechanism for driving at least the measuring tube; as well as a sensor arrangement for registering oscillations at least of the measuring tube. During operation, the measuring tube executes, at least at times and/or at least in part, bending oscillations about an imaginary bending oscillation axis, which imaginarily connects the two coupling zones with one another. Additionally, at least a first spring element and a second spring element are included, with each of the at least two spring elements being affixed to the measuring tube and the counteroscillator spaced both from each of the two coupling zones as well as also from the exciter mechanism. | 06-11-2009 |
20090173169 | Measuring transducer of vibration-type - The measuring transducer includes: a measuring tube vibrating, at least at times, and serving for conveying medium to be measured; a counteroscillator, which is affixed to the measuring tube on an inlet-side, to form a first coupling zone, and to the measuring tube on an outlet-side, to form a second coupling zone; at least one oscillation exciter for driving at least the measuring tube; as well as at least one oscillation sensor for registering oscillations at least of the measuring tube. During operation, the measuring tube executes, at least at times and/or at least in part, bending oscillations about an imaginary bending oscillation axis, which imaginarily connects the two coupling zones with one another. The oscillation sensor includes a coil, especially a coil affixed to the counteroscillator, as well as, magnetically coupled with the coil, a permanent magnet, which is placed within a magnet cup composed at least partially of magnetically conductive material and which is held to a cup base, especially a cup base secured to the measuring tube. Additionally, it is provided in the measuring transducer of the invention that a cup wall of the magnet cup, especially an essentially circular-cylindrical and/or tubular, cup wall, especially a cup wall extending essentially in the direction of the counteroscillator, has at least one slit, especially a slit extending at least sectionally in the direction of oscillations of the measuring tube relative to the counteroscillator. | 07-09-2009 |
20090241646 | Viscometer - The viscometer provides a viscosity value (X | 10-01-2009 |
20100095783 | In-line measuring device - An in line measuring device, includes a measuring transducer having: a least one measuring tube vibrating, during operation, and serving for conveying, a two- or multiphase, flowable medium; an exciter mechanism for producing vibrations of the at least one measuring tube; a sensor arrangement for registering vibrations of the measuring tube and for delivering an oscillation measurement signal representing oscillations of the measuring tube, and a measuring device electronics electrically coupled with the measuring transducer. The measuring device electronics delivers, at least one exciter signal driving the exciter mechanism, and, in such a manner that the at least one measuring tube, during operation,—driven by the exciter mechanism driven by means of the at least one exciter signal—is excited, to execute vibrations in a wanted mode of the measuring transducer, in which it, at least partially, executes bending oscillations about an imaginary bending oscillation axis of the measuring transducer, Moreover, the measuring device electronics ascertains, a damping value of first type, which represents, instantaneously, a damping of vibrations of the at least one measuring tube, which opposes the bending oscillations of the at least one measuring tube corresponding to the Coriolis mode. | 04-22-2010 |
20100095784 | In-line measuring device - An inline measuring device, includes a measuring transducer having: at least one measuring tube vibrating, during operation, and serving for conveying, at least at times, a two- or multiphase, flowable medium; an exciter mechanism for producing vibrations of the measuring tube; and a sensor arrangement for registering vibrations of the measuring tube and for delivering oscillation measurement signal representing oscillations of the measuring tube. Measuring device electronics electrically coupled with the measuring transducer. The measuring device electronics delivers, at least one exciter signal driving the exciter mechanism, and, ascertains a damping value of a first type, which represents, instantaneously, a damping of vibrations of the at least one measuring tube induced by medium conveyed in the at least one measuring tube and antisymmetric with reference to an imaginary central plane of the at least one measuring tube coplanar with a cross section of the measuring tube, and/or which represents, instantaneously, a damping of vibrations of the at least one measuring tube induced by medium conveyed in the at least one measuring tube. | 04-22-2010 |
20100095785 | In-line measuring device - An in line measuring device, includes a measuring transducer of the vibration-type having: at least one measuring tube vibrating, at least at times, during operation, and serving for conveying, at least at times, a two- or multiphase, flowable medium; an exciter mechanism acting on the measuring tube for producing vibrations of the at least one measuring tube; and a sensor arrangement for registering vibrations of the at least one measuring tube and for delivering at least one oscillation measurement signal representing oscillations of the measuring tube. The in line measuring device further includes measuring device electronics electrically coupled with the measuring transducer. The measuring device electronics delivers, at least at times, at least one exciter signal driving the exciter mechanism, and, at least at times, ascertains a damping value of first type, which represents a change of damping opposing the vibrations of the measuring tube within a predeterminable time interval. | 04-22-2010 |
20100236338 | Measuring transducer of vibration-type, as well as an in-line measuring device having such a measuring transducer - A measuring transducer comprising: a transducer housing, of which an inlet-side, housing end is formed by means of an inlet-side, flow divider having exactly four flow openings spaced, in each case, from one another and an outlet-side, housing end is formed by means of an outlet-side, flow divider having exactly four flow openings spaced, in each case, from one another; as well as exactly four, straight, measuring tubes connected to the flow dividers for guiding flowing medium along flow paths connected in parallel. The measuring transducer includes an electromechanical exciter mechanism for producing and/or maintaining mechanical oscillations of the four measuring tubes. The measuring tubes are excitable pairwise to execute opposite phase bending oscillations in, in each case, a shared imaginary plane of oscillation. | 09-23-2010 |
20100242623 | Measuring system for media flowing in a pipeline - The measuring system of the invention comprises: A measuring transducer of vibration-type, through which medium flows during operation and which serves for producing oscillatory signals dependent on a viscosity of the flowing medium and/or a Reynolds number of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for driven the measuring transducer and for evaluating oscillatory signals delivered by the measuring transducer. The measuring transducer includes: An inlet-side flow divider ( | 09-30-2010 |
20100242624 | Measuring transducer of vibration-type, as well as an in-line measuring device having such a measuring transducer - The measuring transducer serves for registering at least one physical, measured variable of a flowable medium guided in a pipeline and/or for producing Coriolis forces serving for registering a mass flow rate of a flowable medium guided in a pipeline. For such purpose, the measuring transducer comprises: A transducer housing ( | 09-30-2010 |
20100251830 | Measuring system for media flowing in a pipeline - The measuring system of the invention comprises: A measuring transducer of vibration-type, through which medium flows during operation and which serves for producing oscillatory signals dependent on a viscosity of the flowing medium and/or a Reynolds number of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for driven the measuring transducer and for evaluating oscillatory signals delivered by the measuring transducer. The measuring transducer includes: An inlet-side flow divider ( | 10-07-2010 |
20100281998 | Method for detecting blockage in a cariolis flow measuring device - A method for detecting blockage of a measuring tube of a Coriolis flow measuring device, which has at least two measuring tubes. For this, the at least two measuring tubes are excited by at least one exciter to execute mechanical oscillations, mechanical oscillations of the measuring tubes are registered by at least one sensor and at least one measurement signal representing the mechanical oscillations is produced. At least one produced measurement signal is analyzed for the occurrence of a deviation of a resonance frequency of one measuring tube relative to a resonance frequency of the at least one other measuring tube. In case such a deviation occurs, blockage of a measuring tube is established. | 11-11-2010 |
20100281999 | Method for determining measuring tube wall thickness of a coriolis, flow measuring device - A method for determining tube wall thickness of at least one measuring tube of a Coriolis, flow measuring device, wherein the Coriolis, flow measuring device has an oscillatory system, which includes at least one measuring tube, and at least one exciter, by which the oscillatory system is excitable to execute mechanical oscillations. In the method, at least one excitation input variable of the at least one exciter and at least one response variable of oscillations of the oscillatory system caused thereby are registered. Additionally, a tube wall thickness of the at least one measuring tube is ascertained by inserting the excitation input variable and the response variable into a transfer equation. | 11-11-2010 |
20110113896 | Measuring system with a tube arrangement having two measuring tubes flowed through in parallel, as well as method for monitoring the arrangement - For monitoring the tube arrangement, the measuring system of the invention includes, connected to the transmitter electronics, a temperature measuring arrangement having a first temperature sensor for producing a temperature signal dependent on a temperature of a first of the measuring tubes of the tube arrangement and at least a second temperature sensor for producing a temperature signal dependent on a temperature of a second of the measuring tubes of the tube arrangement. In the method of the invention, it is provided that, in the case of medium flowing through the tube arrangement, a temperature difference existing between the at least two measuring tubes as a result plugging is ascertained and, in case the ascertained temperature difference deviates from a predetermined limit value for the temperature difference representing a non-plugged tube arrangement, a partial plugging of the tube arrangement, especially a plugging of exactly one of the measuring tubes, is signaled. | 05-19-2011 |
20110146383 | Measuring transducer of vibration-type, as well as an in-line measuring device having such a measuring transducer - The measuring transducer serves for registering at least one physical, measured variable of a flowable medium guided in a pipeline and/or for producing Coriolis forces serving for registering a mass flow rate of a flowable medium guided in a pipeline. For such purpose, the measuring transducer comprises: A transducer housing ( | 06-23-2011 |
20110146416 | Measuring transducer of vibration-type, as well as an in-line measuring device having such a measuring transducer - The measuring transducer serves for registering at least one physical, measured variable of a flowable medium guided in a pipeline and/or for producing Coriolis forces serving for registering a mass flow rate of a flowable medium guided in a pipeline. For such purpose, the measuring transducer comprises: A transducer housing ( | 06-23-2011 |
20110167907 | Measuring transducer of vibration-type - The measuring transducer comprises: a transducer housing, of which an inlet-side, housing end is formed by means of a flow divider including four flow openings spaced, and an outlet-side, formed by means of a flow divider including four flow openings spaced, from one another. A tube arrangement including four curved measuring tubes connected to the flow dividers for guiding flowing medium along flow paths connected in parallel. Each measuring tubes opens with an inlet-side, measuring tube end into one of the flow openings of the flow divider and with an outlet-side, measuring tube end into one the flow openings of the flow divider. The two flow dividers are embodied and arranged in the measuring transducer, so that the tube arrangement extends both between a first and a second of the measuring tubes and between a third and a fourth of the measuring tubes. An imaginary longitudinal-section plane, with respect to which the tube arrangement is mirror symmetric and perpendicular to the imaginary longitudinal-section plane, an imaginary longitudinal-section plane, with respect to which the tube arrangement likewise is mirror symmetric. An electromechanical exciter mechanism of the measuring transducer serves for producing and/or maintaining mechanical oscillations of the four measuring tubes. | 07-14-2011 |
20110197681 | MEASURING TRANSDUCER OF VIBRATION-TYPE WITH TWO COUNTEROSCILLATOR ARMS - Measuring transducer of vibration-type for a fluid flowing in a pipeline. The measuring transducer includes, in such case, a curved measuring tube for conveying the fluid, a counteroscillator having two counteroscillator arms, which are arranged on both sides of the measuring tube, and which, in each case, essentially follow the curve of the measuring tube, and which are coupled to one another in such a manner, that, during operation, they oscillate in phase with one another, and which are affixed to the measuring tube on the inlet side and outlet sides for forming corresponding coupling zones. The measuring transducer also includes an exciter mechanism, via which, during operation, the measuring tube and the counteroscillator are excitable to oscillations of opposite phase to one another. In such case, the counteroscillator arms are formed from a different material than the measuring tube, and the material of the counteroscillator arms has a thermal expansion coefficient essentially equal to that of the material of the measuring tube. | 08-18-2011 |
20110219857 | Viscometer - The viscometer provides a viscosity value (X | 09-15-2011 |
20110259123 | MEASURING TRANSDUER OF VIBRATION-TYPE, AS WELL AS AN IN-LINE MEASURING DEVICE HAVING SUCH A MEASURING TRANSDUCER - A measuring transducer includes: a transducer housing with an inlet-side flow divider having exactly four flow openings and an outlet-side flow divider having exactly four flow openings; as well as exactly four, straight, measuring tubes connected to the flow dividers. Each of the four measuring tubes opens into one the flow openings of the inlet-side flow divider and into one the flow openings of the outlet-side flow divide. Additionally, the measuring transducer includes an electromechanical exciter mechanism for producing and/or maintaining mechanical oscillations of the measuring tubes such that the measuring tubes are excitable pairwise to execute opposite phase bending oscillations in a shared imaginary plane of oscillation. | 10-27-2011 |
20110265580 | Measuring transducer of vibration-type and measuring system formed therewith - A measuring transducer comprises: a transducer housing, of which an inlet-side is formed by means of an inlet-side, flow divider having exactly four flow openings spaced from one another and an outlet-side formed by means of an outlet-side, flow divider having exactly four flow openings from one another; a tube arrangement having exactly four, curved, or bent, measuring tubes connected to the flow dividers for guiding flowing medium along flow paths connected in parallel. Each of the four measuring tubes opens with an inlet-side, measuring tube end into one of the flow openings of the flow divider and with an outlet-side, measuring tube end into one the flow openings of the flow divider. Two flow dividers are arranged in the measuring transducer. An electromechanical exciter mechanism is provided. | 11-03-2011 |
20120042732 | MEASURING SYSTEM HAVING A MEASURING TRANSDUCER OF VIBRATION-TYPE - A measuring system comprises: a measuring transducer of vibration type, through which fluid flows during operation, and which produces oscillation signals corresponding to parameters of the flowing fluid; as well as a transmitter electronics (TE), which is electrically coupled with the measuring transducer, and serves for activating the measuring transducer and for evaluating oscillation signals delivered by the measuring transducer. The measuring transducer (MT) includes: At least one measuring tube ( | 02-23-2012 |
20120060626 | METHOD FOR DETECTING PLUGGING IN A CORIOLIS FLOW MEASURING DEVICE - A method for detecting complete or partial plugging of a measuring tube of a Coriolis flow measuring device, which is insertable into a pipeline, and which has a measuring transducer of the vibration type having at least two measuring tubes connected for parallel flow. The method includes, in such case, the steps of measuring a subset flow occurring in a subset of the measuring tubes, and comparing a subset flow value obtained from this measurement with a reference value to be expected for this subset. The reference value is, in such case, determined from a total mass flow determined in the context of a Coriolis mass flow measuring. Additionally, the method includes the step of detecting plugging of at least one measuring tube of the measuring transducer, if the subset flow value deviates from the reference value by more than a limit value. | 03-15-2012 |
20120073384 | MEASURING SYSTEM HAVING A MEASURING TRANSDUCER OF VIBRATION-TYPE - A measuring system comprises a measuring transducer which includes: a transducer housing with an inlet-side flow divider having exactly four, mutually spaced flow openings and an outlet-side housing end having exactly four, mutually spaced flow openings; four measuring tubes connected to the flow dividers for guiding flowing medium along flow paths connected in parallel; an electromechanical, exciter mechanism for producing and/or maintaining mechanical oscillations of the four measuring tubes; as well as a vibration sensor arrangement reacting to vibrations of the measuring tubes for producing oscillation measurement signals representing vibrations of the measuring tubes. Transmitter electronics includes a driver circuit for the exciter mechanism, and a measuring circuit. The measuring circuit of the measuring system of the invention corrects a change of at least one characteristic variable of the oscillation measurement signals delivered from the measuring transducer. | 03-29-2012 |
20120090407 | MEASURING SYSTEM HAVING A MEASURING TRANSDUCER OF VIBRATION-TYPE - A measuring system comprises: a measuring transducer for producing oscillation measurement signals; and transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating oscillation measurement signals delivered by the measuring transducer. The measuring transducer includes: a transducer housing, a first housing end housing end, first flow divider having exactly four flow openings, an outlet-side, second housing end formed by means of an outlet-side, second flow divider having exactly four flow openings mutually spaced from one another, and a tube arrangement having exactly four, straight, measuring tubes forming flow paths arranged for parallel flow and connected to the flow dividers, an electromechanical exciter mechanism for producing and/or maintaining mechanical oscillations of the four measuring tubes and a vibration sensor arrangement reacting to vibrations of the measuring tubes. | 04-19-2012 |
20120123705 | Measuring system having a measuring transducer of vibration-type - A measuring system comprises: a measuring transducer; transmitter electronics; at least one measuring tube; and at least one oscillation exciter. The transmitter electronics delivers a driver signal for the at least one oscillation exciter, and for feeding electrical, excitation power into the at least one oscillation exciter. The driver signal, has a sinusoidal signal component which corresponds to an instantaneous eigenfrequency, and in which the at least one measuring tube can execute, or executes, eigenoscillations about a resting position. The eigenoscillations have an oscillation node and in the region of the wanted, oscillatory length exactly one oscillatory antinode. The driver signal has, a sinusoidal signal component with a signal frequency, which deviates from each instantaneous eigenfrequency of each natural mode of oscillation of the at least one measuring tube, in each case, by more than 1 Hz and/or by more than 1% of said eigenfrequency. | 05-17-2012 |
20120167697 | MEASURING TRANSDUCER OF THE VIBRATION TYPE AS WELL AS MEASURING SYSTEM FORMED THEREWITH - A measuring transducer comprises: a housing, with an inlet-side flow divider having four flow openings, and an outlet-side end having four flow openings; a tube arrangement having four tubes connected to the flow dividers; and a first coupling element. An exciter mechanism for producing and/or maintaining mechanical oscillations of the four measuring tubes. The first coupling element includes a deformation body and four connecting struts, of which connected with a first strut end and with the first measuring tube, a second connecting strut is connected with a first strut end and with a second strut end with the second measuring tube, a third connecting strut and with a second strut end with the first measuring tube, and a fourth connecting strut is connected with a first strut end and with a second strut end with the fourth measuring tube. | 07-05-2012 |
20120222479 | METHOD FOR DETECTING PLUGGING IN A CORIOLIS FLOW MEASURING DEVICE - A method for detecting plugging of a measuring tube. Heat is supplied to a medium conveyed in a first measuring tube by means of at least one heating element, or heat is removed from the medium conveyed in a first measuring tube by means of at least one cooling element. At least one temperature sensor, which is thermally coupled to the medium conveyed in the first measuring tube, temperature is registered. Additionally, a first comparison variable, which is characteristic for heat transport by the medium in the first measuring tube, is determined based on the supplying of heat or removing of heat, as well as on the temperature registering, and this comparison variable is compared with a reference variable. Plugging of at least one measuring tube of the measuring transducer is detected if the first comparison variable deviates from the reference variable by more than a limit value. | 09-06-2012 |
20120255369 | MEASURING TRANSDUCER OF VIBRATION-TYPE AS WELL AS METHOD FOR ITS MANUFACTURE - A measuring transducer comprises a housing, and a tube arrangement formed by means of at least two tubes extending within the housing. At least one tube is embodied as a measuring tube serving for conveying flowing medium and another tube is mechanically connected with the tube by means of a coupling element to form an inlet-side coupling zone and by means of a coupling element. The coupling element is arranged equally far removed from the housing end. One coupling element has, about an imaginary longitudinal axis of the tube arrangement imaginarily connecting a center of mass of the coupling element and a center of mass of the other coupling element, with an angle of intersection equal to that with the other coupling element, a bending stiffness, which deviates from a bending stiffness of the other coupling element about said imaginary longitudinal axis of the tube arrangement. | 10-11-2012 |
20120255370 | Method for Trimming a Tube - A method for trimming a tube with at least one stiffening element placed on its tube wall to a target bending stiffness, wherein the tube has first an interim bending stiffness, which is greater than the target bending stiffness. For the purpose of reducing the interim bending stiffness of the tube to the target bending stiffness, it is provided in the method of the invention that volume of the stiffening element is removed, for instance, by means of a laser. | 10-11-2012 |
20120255371 | FREQUENCY TUNING METHOD FOR A TUBE ARRANGEMENT - The method serves for changing at least one eigenfrequency of a tube arrangement formed by means of at least one tube particularly, however, also for tuning the interim eigenfrequency to a desired eigenfrequency deviating therefrom and referred to as a target eigenfrequency. The tube has a tube wall, of metal and/or an at least sectionally circularly cylindrical, tube wall as well as a stiffening element of metal and/or a stiffening element of material connectable with the material of the tube by material bonding and/or a platelet shaped, stiffening element, placed on the tube wall and co-determining the interim eigenfrequency of the tube arrangement. For the purpose of changing the interim eigenfrequency, it is provided, that volume is removed from the stiffening element, for instance, by means of laser. | 10-11-2012 |
20130031973 | METHOD FOR DETECTING ACCRETION OR ABRASION IN A FLOW MEASURING DEVICE - A method for detecting accretion or abrasion on a first measuring tube of a flow measuring device. A first temperature as a function of time is registered via a first temperature sensor, which is arranged on the first measuring tube in such a manner that, between the first temperature sensor and the medium, at least one measuring tube wall of the first measuring tube is embodied. Parallel in time, a second reference temperature as a function of time is registered by a second temperature sensor, which is spaced from the first temperature sensor and thermally coupled to the medium. Therefrom, at least one variable characteristic is determined, and accretion or abrasion on the first measuring tube is detected, if the at least one determined characteristic variable or a variable derived therefrom deviates by more than a limit value from a predetermined reference variable. | 02-07-2013 |
20130133436 | MEASURING SYSTEM FOR MEDIA FLOWING IN A PIPELINE - The measuring system comprises: a measuring transducer, for producing oscillatory signals dependent on a viscosity of the flowing medium and/or a Reynolds number of the flowing medium; transmitter electronics for driven the measuring transducer and for evaluating oscillatory signals delivered by the measuring transducer. The measuring transducer includes: an inlet-side flow divider; an outlet-side flow divider; at least two, mutually parallel, straight, measuring tubes, connected to the flow dividers; and an electromechanical exciter mechanism for exciting and maintaining mechanical oscillations of the two measuring tubes. Each of the two measuring tubes opens with an inlet-side measuring tube end into a flow opening and with an outlet-side. The transmitter electronics feeds, by means of an electrical driver signal supplied to the exciter mechanism, electrical excitation power into the exciter mechanism, while the exciter mechanism converts electrical excitation power partially into opposite-equal torsional oscillations of the at least two measuring tubes. | 05-30-2013 |
20130291652 | Measuring transducer of vibration-type - A measuring transducer serves for producing vibration signals corresponding to parameters of a flowing medium comprises a measuring transducer housing having housing ends and, extending within the measuring transducer housing between its housing ends, a tube arrangement formed by means of at least two tubes. Of the two tubes, at least one tube serves as a measuring tube conveying flowing medium and the other tube is mechanically connected with the tube by means of a first coupling element to form an inlet-side coupling zone and by means of a second coupling element to form an outlet-side coupling zone. At least the first coupling element has in a region extending between the tubes a slit having at least one closed end. Slit has a maximal slit width and a maximal slit length, which is greater than the maximal slit width. Placed partially within the slit is a connecting element, which contacts a slit edge enclosing said slit. | 11-07-2013 |
20140000374 | Messaufnehmer vom Vibrationstyp sowie damit gebildetes Messsystem | 01-02-2014 |
20140144246 | METHOD FOR ASCERTAINING FLOW OF A MEDIUM THROUGH A MEASURING TUBE - A method and flow measuring device for ascertaining flow of a medium through a measuring tube based on at least a first measurement signal, which depends at least on the flow velocity of the medium in the measuring tube, wherein the first measurement signal is registered, wherein an additional, second measurement signal is registered, which depends on the flow cross sectional area of the medium in the measuring tube and is independent of the flow velocity of the medium in the measuring tube, and wherein flow is ascertained as a function of the first and second measurement signals. | 05-29-2014 |
20140352454 | Measuring Transducer of Vibration-Type with Four Curved Measuring Tubes - The measuring transducer comprises: a transducer housing ( | 12-04-2014 |
20150040647 | VISCOMETER - The viscometer provides a viscosity value (X | 02-12-2015 |