Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Akitoshi Yamada, Yokohama-Shi JP

Akitoshi Yamada, Yokohama-Shi JP

Patent application numberDescriptionPublished
20090059269RECORDING APPARATUS IMAGE SUPPLY DEVICE AND RECORDING SYSTEM AND CONTROL METHOD AND PROGRAM THEREOF - When a print command that designates a layout recording function by its upper layer, and designates a frame print function by its lower layer is transmitted from a camera to a printer, the printer determines a layout print function that prints a plurality of images on a single sheet, based on the upper layer. In a case where the printer can determine the lower layer of the command, the printer acquires details of a layout. In a case where the printer cannot determine the lower layer of the command, the printer determines a normal frame print function. The printer prints a normal layout image or special frame image in accordance with the determined layout of images.03-05-2009
20090073463IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND COMPUTER-READABLE RECORDING MEDIUM - An image processing apparatus that processes an input image to generate an output image to be recorded on a recording medium includes a first obtaining unit configured to obtain a size of the input image, a second obtaining unit configured to obtain a size of the recording medium, a setting unit configured to set, in two directions orthogonal to each other, an overrunning amount caused if the input image were recorded on the recording medium without a margin, a calculating unit configured to calculate a scaling factor in each of the two directions using the size of the recording medium, the overrunning amount, and the size of the input image, and a generating unit configured to perform a scaling operation on the input image in the two directions based on the respective scaling factors to generate an output image.03-19-2009
20090161138IMAGE READING APPARATUS, MULTIFUNCTION PRINTER APPARATUS, AND IMAGE PROCESSING METHOD - This invention is directed to a method capable of performing appropriate under color removal in image original reading. According to this method, under color removal of the original is performed as follows. A printing medium without any printed image is read by primary and complementary color readings. A brightness signal distribution is generated by converting, using a provisional table, each of image data generated by the reading methods. The lowest one of signal levels is selected from each of the distributions. In correspondence with each of the primary and complementary color readings, a conversion table is formed, which converts the image data to make a pixel value corresponding to the selected lowest one of the signal levels to a value representing white. Under color removal of the image data is performed using a corresponding conversion table in accordance with the reading method of the image original.06-25-2009
20090161139IMAGE READING APPARATUS, MULTIFUNCTION PRINTER APPARATUS, AND IMAGE PROCESSING METHOD - This invention is directed to provide a method capable of performing filter processing suitable for each of different image reading methods. This method includes the steps of causing a light emitting unit to sequentially irradiate an image original with light components of three primary colors and read the image original, and causing the light emitting unit to simultaneously irradiate the image original with one of three different color combinations, which includes two of the light components of three primary colors, and read the image original. The method further includes the step of processing image data obtained based on the reflected light received by the light receiving unit after changing a filter to be used for image processing depending on whether reading of the image original is primary color reading or complementary color reading.06-25-2009
20090161182IMAGE READING APPARATUS, MULTIFUNCTION PRINTER APPARATUS, AND IMAGE PROCESSING METHOD - This invention is directed to a method capable of performing satisfactory image reading by absorbing variations in each apparatus. According to this method, in primary color reading, light emitting unit sequentially irradiates an image original with light components of three primary colors and reads the image original, and in complementary color reading, the light emitting unit simultaneously irradiates the image original with one of three different color combinations, which includes two of the light components of three primary colors, and reads the image original. Each of the primary and complementary color readings includes image processing of executing shading correction of image data based on calibration data obtained by calibrating the light emitting unit when reading the image original.06-25-2009
20090161954PROCESSING METHOD AND APPARATUS - A processing apparatus processes input pixel data by referring to pixel data of peripheral pixels. The processing apparatus divides an input image in a first direction, inputs pixel data of a divided image divided in the first direction in a second direction crossing the first direction at a right angle, and memorizes the inputted pixel data. When a pixel to be referred to for processing the memorized pixel data is not included in the divided image, the processing apparatus outputs pixel data of the reference pixel based on the memorized pixel data, and processes the memorized pixel data by referring to the pixel data of the reference pixel.06-25-2009
20100157395IMAGE READING APPARATUS, MULTIFUNCTION PRINTER APPARATUS, AND IMAGE PROCESSING METHOD - This invention is directed to an image reading apparatus. In the apparatus, reading an original by irradiating it with light of three primary colors, respectively, and by receiving the reflected light is performed as follows. More specifically, an operation mode is designated, and conditions used to perform image reading are set in accordance with the designated mode. Under the set conditions, the image reading is performed according to a method of irradiating an original sequentially with beams of the three primary colors and reading the beams reflected by the original. Alternatively, under the set conditions, image reading is performed according to a method of irradiating an original simultaneously with beams of two primary colors in each of three different combinations of the three primary colors and reading the beams reflected by the original. Instead, image reading is executed twice according to these two methods.06-24-2010
20100245445PRINTING APPARATUS, PRINTING METHOD AND IMAGE PROCESSOR - A printing apparatus and a printing method are provided which, even if a print position misalignment occurs between a plurality of print scans during a multipass printing, can minimize density variations in a unit area reliably and stably, thus producing an image without density unevenness. For this purpose, multi-grayscale-level image data is converted into a plurality of dot arrangement patterns that determine individual subpixels either to be printed or not to be printed with a dot. Then, these dot arrangement patterns are printed overlappingly on a print medium in different print scans of the print head. At this time, the plurality of dot arrangement patterns are so arranged that, if these dot arrangement patterns are shifted from one another, a change in the dot-overlapping area ratio will be smaller than when the dots are arranged separately so that they do not overlap one another.09-30-2010
20100245446PRINTING APPARATUS AND PRINTING METHOD - In a 2M-pass printing operation that forms dots including overlapping dots, this invention makes an arrangement to ensure that the number of overlapping dots that are printed in a unit area in pairs of passes each straddling a print medium convey operation executed between an Mth pass and an (M+1)st pass is greater than the number of overlapping dots that are printed in pairs of passes straddling any other convey operation. This arrangement can cause two dots of the overlapping dots to be separated from each other in the event of a print position misalignment, preventing a possible density fall even in a unit area where the largest density reduction is feared to occur at time of the print position misalignment.09-30-2010
20100290090IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM - In order to eliminate image deterioration based on the characteristics of an output device upon execution of edge emphasis processing, an image processing apparatus includes a setting unit which sets a print characteristic on the print medium, a region setting unit which sets a region, a brightness value derivation unit which derives brightness values, a first derivative derivation which derives first derivatives of the brightness values, an edge direction determination unit which determines an edge direction of brightness, an emphasis level determination unit which determines an emphasis level of a pixel value based on the first derivatives, and a replacement unit which calculates second derivatives of brightness values and replaces a pixel value of a pixel of interest based on the sign of the second derivative.11-18-2010
20100302599IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM - In order to provide an edge emphasis technique that can eliminate image deterioration of a digital image, an image processing apparatus includes a region setting unit which sets a region including a pixel of interest, a brightness value derivation unit which derives brightness values of the pixels, a first derivative derivation unit which derives first derivatives of the brightness values derived by the brightness value derivation unit, an edge direction determination unit which determines an edge direction of brightness at a position of the pixel of interest based on the results of the first derivatives, a range determination unit which determines a range, and a replacement unit which replaces the pixel value of the pixel of interest.12-02-2010
20100309520IMAGE SUPPLY DEVICE, CONTROL METHOD OF THE DEVICE, AND PRINTING SYSTEM - In this invention, to enable printing of an image that has undergone an image process or print process complying with the desire of a user on an image supply device side, real object handles and virtual object handles are set to, of images to be supplied to the printing device, images that require a predetermined image process and remaining images, respectively. A print job including the object handle of a print target image is issued in accordance with a print instruction. If the handle of an image requested by the printing device in response to the issued print job is a virtual object handle, the predetermined image process is executed for image data corresponding to the handle, and the processed image data is supplied to the printing device.12-09-2010
20100321737IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - When multi-pass printing is performed, the dot overlap rate (ratio of the number of dots that overlap and are to be printed in the same pixel area by the plurality of relative movements with respect to the total number of dots to be printed in a pixel area by the plurality of relative movements) in pixel areas having medium-density where density unevenness caused by density fluctuation easily stands out is made higher than the dot overlap rate in pixel areas having low-density and pixel areas having high-density. By doing so density unevenness caused by density fluctuation is suppressed. In addition, the dot overlap rate in pixel areas having low-density and pixel areas having high-density is low, so it is possible to reduce graininess in low-density areas and suppress a decrease in density in high-density areas.12-23-2010
20100328690IMAGE PROCESSING DEVICE AND IMAGE PROCESSING APPARATUS - An image processing device processes image data, which expresses an image and is edited to image data including, in correspondence with each pixel of the image, a pixel value field that holds a pixel value of the pixel and an attribute value field that holds an attribute value. The image processing device includes a first and a second image processing module, and a connection module that is connected to the first and second image processing modules, and moves the image data from one image processing module to the other image processing module. At least one of the image processing modules has a first function to output an image processing result for a pixel value of the input image data as an output pixel value, and a second function to output an image processing result for a pixel value of the input image data as an output attribute value.12-30-2010
20110001991IMAGE PROCESSING DEVICE AND IMAGE PROCESSING APPARATUS - An image processing device includes a first and a second image processing module including an image processing unit, and a connection module that is connected to the first and second image processing modules, and moves an image data from one image processing module to the other image processing module. At least one of the image processing modules includes a weighted average processing unit that calculates, based on a weighting coefficient included in an attribute value, a weighted average of a pixel value of the input image data and a image processed pixel value, and an output unit which outputs at least one of the image processed pixel value and the weighted-averaged pixel value.01-06-2011
20110001992IMAGE PROCESSING APPARATUS - An image processing apparatus comprising: a generation unit configured to determine characteristic information associated with image data which expresses an image, to generate an attribute value based on the determination result, and to set the attribute value in an attribute value field included in the image data; and an image processing device configured to apply an image process to a pixel value set in a pixel value field included in the image data, based on the attribute value set in the attribute value field.01-06-2011
20110043838IMAGE PROCESSING DEVICE AND IMAGE PROCESSING METHOD - When recording is performed in a pixel region by M (M is an integer equal to or larger than 2) passes with N (N is an integer equal to or larger than 2) recording element groups, density variation due to a deviation between recording positions of dots that are recorded by different passes is suppressed while a load of data processing is decreased.02-24-2011
20110075174IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - The image processing apparatus executes quantization processing of second multi-valued image data that corresponds to a second relative movement of a plurality of relative movements based on first multi-valued image data that corresponds to a first relative movement of the plurality of relative movements, and executes quantization processing of the first multi-valued image data based on the second multi-valued image data. This makes it possible to output a high-quality image having excellent robustness and reduced graininess by controlling the overlap rate of dots that are printed by the first relative movement and the dots that are printed by the second relative movement.03-31-2011
20110080615IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - The present invention suppresses data processing load and processing time when generating density data for the same color that corresponds to a plurality of printing scans (or plurality of printing element groups) of a printing head and printing medium. In order to accomplish this, input image data is converted to a plurality of density data by referencing a three-dimensional lookup table that performs one-to-one correlation of input image data with a plurality of density data that corresponds to a plurality of relative movements (or plurality of printing element groups). By doing so, it is possible to perform a process of generating density data (CMYK) that corresponds to a plurality of relative movements (or plurality of printing element groups) from input image data at once, and thus it is possible to suppress an increase in data processing load and processing time.04-07-2011
20110085183IMAGE PROCESSOR AND IMAGE PROCESSING METHOD - Inputted image data is converted to M number of multi-value data having a lower resolution than the inputted image data, and after quantization processing has been performed for each of the M number of multi-value data, an image is printed by M number of relative movements (M-pass printing) that corresponds to the M number of quantized data. By doing so, when compared with the case in which a resolution reduction process is not performed, it is possible to suppress the number of pixels that become the object of quantization processing, and it becomes possible to output an image with no fluctuation in image density or density unevenness without a decrease in the processing speed.04-14-2011
20110085189IMAGE PROCESSOR AND IMAGE PROCESSING METHOD - Provided is an image processor and image processing method that are capable of suppressing both density unevenness and graininess that occur due to deviation of the printing position of dots that are printed by a plurality of relative movements (or a plurality of printing element groups). In order to accomplish this, the dot overlap rate of an image characteristic in which density unevenness stands out is made higher than the dot overlap rate of an image characteristic in which other defects stand out more than the density unevenness. By doing so, it is possible to suitably adjust the dot overlap rate according to an image characteristic, and to output an image having no density unevenness or graininess.04-14-2011
20110090538IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - Multi-valued image data corresponding to a pixel area is divided into the first scanning multi-valued data, first and second scanning common multi-valued data, and second scanning multi-valued data. A quantization processing is executed on each of the multi-valued data to generate first scanning quantized data, first and second scanning common quantized data, and second scanning quantized data. After that, these pieces of quantized data are combined for each scanning to generate first scanning combined quantized data and second scanning combined quantized data. According to this, the amount of pixels where dots are both recorded by performing a scanning by plural times (the amount of overlapping dots) is controlled, and while suppressing the image density variations, the granularity is held to a low level.04-21-2011
20110116115IMAGE PROCESSOR AND IMAGE PROCESSING METHOD - There are provided an image processing method and an image processor which realize the processing of restricting image degradations such as “dot delay”, “banding” and “wind ripple” with a simpler circuit construction. Therefore, after the regular quantization processing is performed, in a pixel in a prohibition position the processing of limiting a predetermined quantized value to change into another quantized value is performed corresponding to the obtained quantized value and the position information of the pixel of interest. By doing this, even in the low level of the density value, it is possible to realize at a low cost the construction in which dots having different sizes are mixed for printing.05-19-2011
20110122178IMAGE PROCESSOR AND IMAGE PROCESSING METHOD - Provided are an image processor and an image processing method that are capable of suppressing both density unevenness due to printing position shifts among a group of dots printed by a plurality of relative movements (or a plurality of printing element groups) and graininess. In order to accomplish this, a dot overlap rate in the printing mode in which the density unevenness stands out is made higher than the dot overlap rate in the printing mode in which other defects stand out more than the density unevenness. By doing so, it is possible to suitably adjust the dot overlap rate according to the image characteristic, and output an image having no density unevenness or graininess.05-26-2011
20110128561IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - When the number (M) of passes is smaller than a threshold value, a first processing mode is selected. In the first processing mode, multivalued image data is divided into pieces of multivalued data corresponding to passes and a common multivalued data for a plurality of passes, the pieces of multivalued data are individually binarized to generate pieces of binary data corresponding to the passes, and the common multivalued data is binarized to generate common binary data for these passes. On the other hand, when the number (M) of passes is equal to or larger than the threshold value, a second processing mode is selected. In the second processing mode, multivalued image data is binarized and the binary data is divided into pieces of binary data corresponding to passes with a mask.06-02-2011
20110135201IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND IMAGE PROCESSING PROGRAM - There is provided an image processing apparatus for applying an adjusting process to an image including multicolor image signals. An image area including a pixel to be processed is extracted, and one representative signal value is generated from signal values corresponding to a plurality of colors of pixels included in the image area (S06-09-2011
20110141176IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - In image processing it is possible to adequately reduce density unevenness and graininess according to the duty of the image data. More specifically, when dividing multi-valued data and generating 2-pass multi-pass printing data, in addition to the divided multi-valued data for each of the two passes, divided multi-valued data that is common to both of the two passes is also generated. Moreover, the quantized data of that common multi-valued data is reflected on the quantized data of each pass. Furthermore, when generating quantized data, the division ratio when generating common data in the division of multi-valued data is set according to the duty (gradation value) of the multi-valued data. By doing so it becomes possible to adequately reduce the density unevenness and graininess according to the duty of the image data.06-16-2011
20110141499IMAGE PROCESSING DEVICE AND IMAGE PROCESSING APPARATUS - An image processing device processes image data, which is edited to image data including, in correspondence with each pixel of an object included in the image, a pixel value field that holds a pixel value of the pixel and an attribute value field that holds an attribute value. The image processing device includes a generation unit which includes a table that holds characteristic data and an address of the characteristics data, generates an attribute value based on information of a position of a pixel in the image and the table, sets the attribute value in the attribute value field, an image processing unit which applies an image process to a pixel value set in the pixel value field based on the set attribute value, and a connection module moves the image data from the generation unit to the image processing unit.06-16-2011
20110141523IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - In image processing, it is possible to suitably reduce density unevenness and graininess according to the ink used in printing. More specifically, when dividing multi-valued data and generating data for 2-pass multi-pass printing, in addition to divided multi-valued data for each of the two passes, divided multi-valued data that is common to the two passes is also generated. Moreover, quantized data of that common multi-valued data is reflected on the quantized data for each of the passes. Furthermore, when generating the quantized data, the division ratios used when generating the common data using the aforementioned multi-valued data division are set according to the colors of ink used in printing. By doing so, it becomes possible to suitably reduce density unevenness and graininess according to the colors used in printing.06-16-2011
20110141524IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - When dividing multi-valued data and generating data for two-pass multi-pass printing, in addition to divided multi-valued data that are divided for each of the two passes, divided multi-valued data that is common to both of the two passes is generated. Moreover, quantized data of that common multi-valued data is reflected onto the quantized data for each pass. Furthermore, when generating quantized data, division ratios that are used when generating the common data by the multi-valued data division described above are set according to the image characteristics (whether or not the area is flesh color) of the multi-valued data. Thereby, it is possible to perform high-quality printing regardless of the image characteristics by taking a suitable balance between suppressing density unevenness and suppressing graininess.06-16-2011
20110148964RECORDING APPARATUS AND RECORDING SYSTEM - When a gradation mask is used to distribute image data to be recorded by overlapping portions in an overlapping head, color unevenness is generated in an image recorded by the overlapping portions due to a displacement in impact positions caused by an assembly error. As a result, accurate colorimetric measurement of patches recorded by the overlapping portion cannot be performed. To solve such a problem, a distribution ratio by which the image data is distributed to the overlapping portions is set to be approximately constant when recording a test pattern for performing color correction, as compared to when normally recording the image.06-23-2011
20110148969INK-JET RECORDING APPARATUS AND INK-JET RECORDING SYSTEM - In an overlapping head including a plurality of recording head chips overlapped to each other, a color shift can occur between a color recorded by an overlapping region and a color recorded by a non-overlapping region, which cannot be corrected by a density correction using head shading or the like. To correct such a color shift, a test pattern is recorded by the overlapping region and the non-overlapping region and colors of the recorded test pattern are measured. Color correction data to be used in correction of colors of an image to be recorded is generated based on a result of the measurement of the colors.06-23-2011
20110149305IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - In image processing, it is possible to suppress density fluctuation and keep graininess low as well as obtain a good balance of the processing load. More specifically, when dividing multi-valued data and generating two-pass multi-pass printing data, divided multi-valued data that is common to the two passes is generated in addition to the divided multi-valued data for each of the two passes. Moreover, quantized data of that common multi-valued data is reflected on the quantized data for each pass. Furthermore, when generating quantized data, a process of generating common data by the aforementioned data division, or a process of performing quantization first without dividing the multi-valued data and then dividing the quantized 2-pass data is selectively performed according to the printing position on printing medium.06-23-2011
20110234661IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - An image processing apparatus and an image processing method are provided which, when forming an image using a plurality of different inks, can produce a satisfactory image free from problematical levels of density unevenness, graininess and insufficient density with any of these inks. To this end, when printing on pixel areas of a print medium by a plurality of relative movements between the printing unit and the print medium, the dot overlap rate of an ink that tends to show density unevenness is set higher than that of an ink that tends to show other image impairments more conspicuously than the density unevenness. This results in a good image that eliminates such image impairments as density unevenness, graininess and density insufficiency in the entire color gamut.09-29-2011
20110235071IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - An image processing apparatus and an image processing method are provided which, when forming an image using a plurality of different sizes of dots, can produce a satisfactory image free from problematical levels of density unevenness, graininess and insufficient density with any of these dot sizes. To this end, when printing on pixel areas of a print medium by a plurality of relative movements between the printing unit and the print medium, the dot overlap rate of a dot size that tends to show density unevenness is set higher than that of a dot size that tends to show other image impairments more conspicuously than the density unevenness. This results in a satisfactory image that eliminates such image impairments as density unevenness, graininess and density insufficiency in the entire grayscale range.09-29-2011
20110285777IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, INKJET PRINTING APPARATUS AND DATA GENERATING APPARATUS - An image processing apparatus, an image processing method, an inkjet printing apparatus and a data generating apparatus are provided that can reduce, when a plurality of types of inks are used to print an image, the color unevenness that is caused by the variation of ejecting characteristics among a plurality of nozzles. A conversion table for correcting, based on an ejecting characteristic, a multi dimensional color printed by ejecting at least two types of inks on a common region on a printing medium is used to correct a plurality of color signals corresponding to these inks.11-24-2011
20110285778IMAGE PROCESSING APPARATUS, INK JET PRINTING APPARATUS, AND IMAGE PROCESSING METHOD - Printing heads of combinations of four ink colors and seven printing characteristic ranks are previously used to print an image for measurement, and table parameters corresponding to all of the combinations of nozzle ink colors and printing characteristic ranks are obtained on the basis of a measurement result of this image for measurement and stored in a memory. Then, when printing is actually performed in a printer, a primary color image for measurement is printed for each nozzle of a printing head for each of four ink colors. A printing characteristic rank for each nozzle is obtained for each of four ink colors based on a measurement result of this image for measurement, and a table parameter is selected that corresponds to the same combination as the combination of the obtained printing characteristic rank of each nozzle of four ink colors, by referring to the memory.11-24-2011
20110285779IMAGE PROCESSOR, PRINTING APPARATUS, AND IMAGE PROCESSING METHOD - An image processor, a printing apparatus, and an image processing method are provided that can reduce, when a plurality of types of inks are used to print an image, the color unevenness that is caused by the variation of ejecting characteristics among a pluralities of nozzles. To realize this, for a color formed by overlapping at least two colors of inks, parameters are prepared that are determined so as to reduce the color difference in the printing medium due to the variation of the ejecting characteristic among the respective pluralities of nozzles. During printing, the parameters are used to correct the first color signal owned by the individual pixels to the second color signal.11-24-2011
20110285780DATA PROCESSING APPARATUS AND DATA PROCESSING METHOD - The present invention reduces an uneven color of a color having two or more colors of inks, the uneven color occurring due to manufacturing variations of ink ejection nozzles and so on. Each of a plurality of correction tables that is assigned to each predetermined number of nozzles that are used for printing on a common region in the print medium, of a plurality of nozzle arrays formed on a print head, each of the nozzle arrays ejecting a plurality of inks including a first ink and a second ink whose color is different from the color of the first ink, is generated on the basis of at least an ink ejection property of nozzles ejecting the first and second inks.11-24-2011
20110286020IMAGE PROCESSOR AND IMAGE PROCESSING METHOD - The present invention is intended to provide an image processor that can reduce color unevenness occurring in a composite color image formed by overlapping different types of inks due to a variation in printing characteristic among a plurality of nozzles while suppressing a reduction in processing speed in generation of printing data. The image processor converts a color signal indicating the image represented by a plurality of elements to a color signal corresponding to the plurality of inks with use of a conversion table determined on the basis of ejection characteristics of nozzle groups corresponding to the plurality of inks so as to suppress color unevenness occurring in a composite color image due to a variation in ejection characteristic among the plurality of nozzles.11-24-2011
20110316911IMAGE PROCESSOR, IMAGE PROCESSING METHOD AND INKJET PRINTER - There is provided an image processing method in which in a full line type inkjet printer using a connecting head having an overlap region, even if a conveyance direction of a print medium is more or less inclined, a density change or degradation of graininess is not introduced. Therefore, an image data in a non-overlap region is distributed to a plurality of nozzle arrays such that ink is ejected from all the plurality of the nozzle arrays. On the other hand, a region where a print allowance rate changes in the overlap region is divided into plural regions, and the image data is distributed to the plurality of the nozzle arrays such that these regions are located to be shifted.12-29-2011
20110316920EJECTION CHARACTERISTICS EVALUATION APPARATUS AND EJECTION CHARACTERISTICS EVALUATION METHOD FOR INKJET PRINTING APPARATUS, AND INKJET PRINTING APPARATUS - The present invention prints a plurality of ejection characteristics detection patterns with different print duties. Each of the patterns is divided into areas with a certain number of pixels, and each area is read with a plurality of different read colors. Based on the read values by the read color for each area, evaluation values by the read color that indicates ejection variation volume that is the difference between ink ejection volume to each area and standard ink ejection volume are set. A weighted average is obtained by applying the weight determined by reading accuracy of a reading unit to evaluation values by color for each area with different print duties formed by the same nozzle. The ejection characteristics of a nozzle that prints each of the areas are evaluated using the weighted average value.12-29-2011
20110316921IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - When an image is recorded using a multichip recording head including a plurality of chips each having a plurality of nozzle arrays, a change in image density can occur due to a registration error between chips in an overlapping part where two chips are connected. To suppress the change in image density, input image data is distributed to two chips such that there are dots overlapping each other between the two chips in the overlapping part.12-29-2011
20110317177IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND RECORDING APPARATUS - An image processing apparatus includes a first generation unit configured to generate N pieces of same color multi-valued image data, a second generation unit configured to generate N pieces of quantized data by performing quantization processing on the N pieces of same color multi-valued image data, and a third generation unit configured to divide at least one piece of the N pieces of quantized data into a plurality of quantized data and generate M pieces of quantized data corresponding to the M relative movements. The M pieces of quantized data includes quantized data corresponding to an edge portion of the recording element group and quantized data corresponding to a central portion of the recording element group, and a recording duty of the quantized data corresponding to the edge portion is set lower than a recording duty of the quantized data corresponding to the central portion.12-29-2011
20120081436IMAGE PROCESSOR AND IMAGE PROCESSING METHOD - When printing an image using a plurality of inks, color unevenness caused by variations in ejection characteristics among nozzles is corrected at suitable timings in accordance with change in the color unevenness over time, and favorable image output without noticeably color unevenness is maintained. For this purpose, parameters are prepared, for colors formed by combinations of at least two colors of ink, the parameters being determined so as to reduce differences in coloration on a print medium caused by individual variations in the ejection characteristics of a plurality of nozzles. When printing, a first color signal included in individual pixels is corrected for a second color signal by using the parameters. Information regarding the ejection volume characteristics of a plurality of nozzles is acquired as appropriate, and by estimating changes in coloration from this information, suitable timings for overwriting such parameters are determined.04-05-2012
20120081439IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, INKJET PRINTING APPARATUS, AND INKJET PRINTING METHOD - The invention decreases the enlargement of memory and processing time for the correction of image data carried out to reduce image deterioration caused by nozzle ejection characteristic variation in an inkjet printing apparatus. Print heads are provided with pluralities of chips that have nozzle arrays formed from a plurality of nozzles. Coupled portions and non-overlap portions are formed on each chip. An image processing apparatus sets input image data, which correspond to nozzle regions that are defined in nozzle arrays along the alignment direction of the nozzles of the print head and that are composed of a plurality of nozzles, as processing blocks. The input image data is processed according to parameters defined for each of those processing blocks. The boundaries of the nozzle regions corresponding to the input image data of the processing blocks are established according to the boundaries of the overlap portions and the non-overlap portions.04-05-2012
20120081441IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PRINTER - Provided is an image processing apparatus that can accurately and efficiently reduce color unevenness that occurs in a color image, which is formed by color mixture of a plurality of different types of inks, due to a variation in ejection characteristic among nozzles. The inks are respectively ejected from the nozzle arrays to print patches; regions where color correction for test color images should be performed are specified; a different types of color correction processing for color signals corresponding to the color correction regions are performed to print color correction patches; a color correction patch to be used is selected; on the basis of selected color correction processing, a table parameter corresponding to a nozzle is formed; when the plurality of color correction patches are formed, only correction candidate values having larger color differences than a predetermined threshold value in a uniform color space are generated for color signals.04-05-2012
20120081442IMAGE PROCESSING APPARATUS, PRINTING APPARATUS, AND IMAGE PROCESSING METHOD - Area information is obtained with respect to a specified color and nozzle position having color unevenness. Then, coordinate information indicating a nozzle position corresponding to the above area information is obtained in a printing head or nozzle array corresponding to an ink color relating to the specified color information. Next, the number of candidate correction values or candidate patches is obtained on the basis of nozzle coordinates obtained corresponding to the area, by referring to a table. In this table, for example, the number of candidate correction values is small at a nozzle position where an effect due to the variations of nozzle ejection characteristics such as a nozzle ejection volume is small and a change direction is constant, and the number of candidate correction values is large at a nozzle position where an effect due to variations of nozzle ejection characteristics is large.04-05-2012
20120081443INKJET PRINTING APPARATUS, INKJET PRINTING METHOD, IMAGE PROCESSOR AND IMAGE PROCESSING METHOD - In the present invention, joint sections and non-joint sections are formed in nozzle arrays of a plurality of chips arranged in a print head. Correction values for correcting input image data are calculated for reducing color difference caused by variation in the ejection characteristics of the nozzles. In this calculation of correction values, first a first correction value corresponding to first nozzles that form a color measurement area is calculated based on the color measurement value obtained by measuring the color of a discrete color measurement area included in a patch formed by a nozzle array. Next, a second correction value for correcting input image data corresponding to second nozzles of the nozzle array is calculated based on the first correction value. Different complementary processing is used when calculating the second correction value corresponding to a non-joint section, and when calculating the second correction value corresponding to a joint section.04-05-2012
20120081444IMAGE PROCESSING APPARATUS, PRINTING APPARATUS, AND IMAGE PROCESSING METHOD - Provided are an image processing apparatus and an image processing method capable of reducing color unevenness due to variations in ejection characteristics among a plurality of nozzles when printing an image using a plurality of inks. To that end, a first image which is made up a color with noticeable color unevenness and similar colors is printed onto a print medium. The user then specifies a color and a nozzle position where color unevenness has occurred. On the basis of these results, parameters are set for a correction table referenced by are MCS processor. In so doing, it becomes possible to address the factor causing the color unevenness, and mitigate the effects of color unevenness in a focused way without incurring increases in processor load, memory requirements, or processing time as compared to the case of calibrating all lattice points.04-05-2012
20120081449INKJET PRINTER, IMAGE PROCESSOR, AND IMAGE PROCESSING METHOD - In the present invention, a first calculation unit calculates, based on image data obtained by reading with a reading unit a plurality of patches formed on a printing medium by a plurality of nozzle regions constituting nozzle array of a printing head, respective color specification values of a plurality of correction regions corresponding to a plurality of nozzle regions constituting the nozzle array. Then, a target value setting unit sets, based on the calculated color specification values of the plurality of correction regions, a target color specification value of the patch. Further, a second calculation unit calculates a difference between each of the color specification values of the plurality of correction regions and the target color specification value as a correction amount. After that, based on the correction amount calculated, image data corresponding to an image printed by each of the plurality of nozzle regions are corrected.04-05-2012
20120081768IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PRINTER - An image processing apparatus is provided that is capable of very accurately and efficiently reducing uneven color caused by variation in ejection characteristics among nozzles that eject ink and that occurs in a color image that is formed by mixing a plurality of different kinds of ink. A patch is printed by ejected ink from a plurality of nozzles, a region is specified so as to perform color correction in a test color image that is printed on a printing medium, a plurality of different color correction processing is performed on color signals that correspond to a color correction region, a plurality of color correction patches are printed, a color correction patch to be used is selected from among the plurality of different color correction patches and table parameters that correspond to the nozzles are created based on the selected color correction processing.04-05-2012
20120113183INKJET RECORDING APPARATUS AND INKJET RECORDING METHOD - When the width of a recording head is greater than the width of a recording medium having a maximum conveyable width, a recorded image corresponding to ejecting ports in the entire area of the recording head cannot be corrected. Multiple correction test patterns are recorded using ejecting ports in part of the recording head, and correction data for correcting an image corresponding to ejecting ports in the entire area of the recording head on the basis of the colorimetric result of the test patterns. In this way, image data to be recorded by the ejecting ports in the entire area of the recording head is corrected.05-10-2012
20120268759IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM - In order to eliminate image deterioration based on the characteristics of an output device upon execution of edge emphasis processing, an image processing apparatus includes a setting unit which sets a print characteristic on the print medium, a region setting unit which sets a region, a brightness value derivation unit which derives brightness values, a first derivative derivation which derives first derivatives of the brightness values, an edge direction determination unit which determines an edge direction of brightness, an emphasis level determination unit which determines an emphasis level of a pixel value based on the first derivatives, and a replacement unit which calculates second derivatives of brightness values and replaces a pixel value of a pixel of interest based on the sign of the second derivative.10-25-2012
20120327151INKJET RECORDING APPARATUS AND INKJET RECORDING METHOD - When the width of a recording head is greater than the width of a recording medium having a maximum conveyable width, a recorded image corresponding to ejecting ports in the entire area of the recording head cannot be corrected. Multiple correction test patterns are recorded using ejecting ports in part of the recording head, and correction data for correcting an image corresponding to ejecting ports in the entire area of the recording head on the basis of the colorimetric result of the test patterns. In this way, image data to be recorded by the ejecting ports in the entire area of the recording head is corrected.12-27-2012
20130249989IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - An image processing apparatus includes an acquiring unit which acquires first image data indicating a first gray-scale value of an image having a first attribute and a second image data indicating a second gray-scale value of an image having a second attribute that is different from the first attribute, a correcting unit which corrects the first gray-scale value and the second gray-scale value acquired by the acquiring unit on basis of information on an ejection characteristic of a discharge head to different extents, the discharge head ejecting liquid to be used for forming the first image and the second image on a recording medium with dots.09-26-2013
20130250364IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - An image processing apparatus for generating dot data to form an image by forming dots on a recording medium includes a receiving unit, a first, second, and third generating unit, and a correcting unit. The receiving unit receives first and second image data included in image data. The first generating unit generates, per the first image data, first ink color data representing a multi-valued signal value corresponding to an ink color. The second generating unit generates, per the second image data, second ink color data representing a multi-valued signal value corresponding to an ink color. The correcting unit corrects the signal value represented by the generated first and second ink color data. The third generating unit generates, per the first and second ink color data of which the signal values have been corrected, the dot data representing existence of formation of dots to form an image.09-26-2013
20140016141IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM - An image processing apparatus includes an acquiring unit configured to acquire first image data representing gradation of a black character image, and second image data having a resolution lower than that of the first image data and representing gradation of a color image; a first generating unit configured to generate first dot data in accordance with a gradation value of each pixel in the first image data acquired by the acquiring unit; and a second generating unit configured to assign a number of dots to each pixel in the second image data, the number being greater than the maximum number of dots to be assigned by the first generating unit to each pixel in the first image data, and generating dot data for forming an image having an image attribute, in accordance with a gradation value of each pixel in the second image data acquired by the acquiring unit.01-16-2014
20140055518IMAGE PROCESSING APPARATUS, PRINTING APPARATUS, AND IMAGE PROCESSING METHOD - Provided are an image processing apparatus and an image processing method capable of reducing color unevenness due to variations in ejection characteristics among a plurality of nozzles when printing an image using a plurality of inks. To that end, a first image which is made up a color with noticeable color unevenness and similar colors is printed onto a print medium. The user then specifies a color and a nozzle position where color unevenness has occurred. On the basis of these results, parameters are set for a correction table referenced by an MCS processor. In so doing, it becomes possible to address the factor causing the color unevenness, and mitigate the effects of color unevenness in a focused way without incurring increases in processor load, memory requirements, or processing time as compared to the case of calibrating all lattice points.02-27-2014
20140139852IMAGE PROCESSING APPARATUS, PRINTING APPARATUS, AND IMAGE PROCESSING METHOD - As viewed for each processing unit in HS processing, a processing unit width is more than 1 pixel, so that threshold arrangement corresponding to a target quality of an image intended by a dither matrix is kept while a possibility of avoiding the zero number of dots from being generated can be enhanced. Moreover, the threshold arrangement is kept while a possibility of generating the same number of dots in processing units can be enhanced. Consequently, the threshold arrangement corresponding to a predetermined target quality of an image intended by a dither matrix is kept while it is possible to reduce occurrence of an uneven density caused by the HS processing. Thus, it is possible to prevent the threshold arrangement from being limited by the HS according to the degree of the reduction.05-22-2014
20140139853IMAGE PROCESSING APPARATUS, PRINTING APPARATUS, AND IMAGE PROCESSING METHOD - When an input image is shifted by 640 pixels from a test pattern with reference to the position of a nozzle, the remainder is obtained by dividing 640 pixels by pixels of the dither matrix in an x direction. For example, when the size of the dither matrix in the x direction is 256 pixels, the dither matrix is shifted by 128 pixels in a direction reverse to the x direction. In this manner, the phase of the dither matrix at the time of the quantization during test pattern printing matches the phase of the dither matrix at the time of the quantization during input image printing. Consequently, unevenness of the dither matrix at a position N becomes the same in both of the test pattern and the input image. The HS correction to density unevenness caused by the unevenness of the dither matrix becomes suitable for the input image.05-22-2014
20140139854IMAGE PROCESSING APPARATUS, PRINTING APPARATUS, AND IMAGE PROCESSING METHOD - Nozzles in a print head are arrayed in a density of 600 dpi. Moreover, a dither matrix has a size of 16 pixels×16 pixels in 600 dpi. The dither matrix is repeatedly used. In the meantime, each of rectangles represents an HS processing unit. WHS=3 pixels. As a consequence, the relationship of a least common multiple below is established in a nozzle array direction: 3×WD=16×WHS. In this case, the cycle of interference unevenness can be prolonged to the least common multiple between WD and WHS, that is, 48 pixels (3WD). In this manner, the size of the dither matrix is not an integral multiple of the HS processing unit width, so that the cycle of interference unevenness can be prolonged more than the size of the dither matrix. Thus, the interference unevenness can be hardly recognized.05-22-2014
20140139855IMAGE PROCESSING APPARATUS, PRINTING APPARATUS, AND IMAGE PROCESSING METHOD - One dither mask having a highest spacial frequency is selected from a plurality of dither masks. Next, a granularity is obtained with reference to a table based on the selected dither mask and an ejection amount level per area. Moreover, a difference in granularity between adjacent areas is calculated with respect to all of the areas. A maximum value is obtained out of the obtained differences in granularity, and then, the maximum difference in granularity is compared with a determination threshold. When the maximum difference in granularity is the threshold or greater, it is determined whether or not a dither mask having a spacial frequency lower than that of the selected dither mask is stored in a memory. When there are dither masks having lower spacial frequencies, a dither mask having a spacial frequency lower by one level than that of the selected dither mask is selected.05-22-2014
20140139885DITHER PATTERN FORMING METHOD AND DITHER PATTERN - In order to print a unit area of a print medium by a first printing scan and a second printing scan, dither patterns are formed which can control the arrangement of dots on the print medium without adverse effects of density unevenness and graininess, that are caused by printing position displacement. Regarding first and second dither patterns, information indicating whether or not a threshold is already set to a reference pixel and one or more pixels around the reference pixel in the first dither pattern is obtained for cases where each pixel in the first dither pattern is the reference pixel. A pixel in the second dither pattern to which a predetermined pixel is to be set is determined based on the obtained information. The first and second dither patterns formed in the above manner are associated with the first printing scan and the second printing scan, respectively.05-22-2014
20140184676DATA PROCESSING APPARATUS AND DATA PROCESSING METHOD - The present invention reduces an uneven color of a color having two or more colors of inks, the uneven color occurring due to manufacturing variations of ink ejection nozzles and so on. Each of a plurality of correction tables that is assigned to each predetermined number of nozzles that are used for printing on a common region in the print medium, of a plurality of nozzle arrays formed on a print head, each of the nozzle arrays ejecting a plurality of inks including a first ink and a second ink whose color is different from the color of the first ink, is generated on the basis of at least an ink ejection property of nozzles ejecting the first and second inks.07-03-2014
20140218753IMAGE PROCESSING METHOD AND IMAGE PROCESSING APPARATUS - In low-resolution processing (reduction processing) in which input image data is separated into character print data and image print data to generate print data of lower resolution than that of the input image data, if a plurality of pixels is simply reduction-processed to one pixel, color of a color image surrounding a character may change. In an image processing method, calculation for performing reduction processing so that the plurality of pixels in the input image data corresponds to one pixel in the print data is performed as follows. A ratio of using a pixel value of a character attribute pixel in the calculation is set to 0, or set smaller than a ratio of using a pixel value of an image attribute pixel. As a result, a change in the color of the color image surrounding the character can be prevented.08-07-2014
20150022580IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - Because the ejection state of a printing element in a printing apparatus may vary at all times, an inspection item for inspecting a printed image may be set in consideration of the ejection state of the printing element. An inspection item for inspecting a printed image may be set based on information including a temperature characteristic of a printing head and a state of ink such as an elapsed time from the last ejection. This allows image inspection that matches with variations in the ejection state of the printing element.01-22-2015
20150022863IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - An image processing apparatus executes color conversion so that when printing is performed based on image data compressed and decompressed with a lossy compression method, the image data reproduces expected colors of the image data before compression. More specifically, a range of a signal value of a black image affected by compression of image data, such as black character to be printed with black ink, is obtained, and a color separation table is generated such that color ink is not used but black ink is used within this range. This allows the image data to reproduce expected colors of the image data before compression when printing is performed based on the image data compressed and decompressed with a lossy compression method.01-22-2015

Patent applications by Akitoshi Yamada, Yokohama-Shi JP

Website © 2015 Advameg, Inc.