Patent application number | Description | Published |
20110057549 | FLEXURAL VIBRATION PIECE, FLEXURAL VIBRATOR, AND ELECTRONIC DEVICE - A flexural vibration piece includes a base, and a vibrating arms extending therefrom, each pair of vibrating arms has a first groove formed in the extension direction of the vibrating arm in one main surface following the direction in which the pair of vibrating arms are aligned, and a second groove formed side by side to the first groove in another main surface, the sum of the depths of the first and second groove portions is greater than the interval between the one main surface and the other main surface, and a mass portion is provided on each of the pair of vibrating arms, on the one main surface which is the opening side of the first grooves formed toward the outer sides opposite the inner sides on which the vibrating arms face each other. | 03-10-2011 |
20110063041 | RESONATOR ELEMENT, RESONATOR, OSCILLATOR, AND ELECTRONIC DEVICE - A resonator element includes: a base portion; and a resonating arm extending in a first direction from the base portion, wherein the resonating arm includes a first surface, a second surface facing the first surface, a first side surface extending in the first direction so as to connect the first and second surfaces, and a second side surface facing the first side surface, wherein the resonating arm includes a first width portion having a first width and a second width portion provided at a root of the resonating arm so as to have a second width larger than the first width, wherein the resonating arm includes a groove portion provided on at least one of the first and second surfaces so as to extend in the first direction, the groove portion in the second width portion having a width larger than a width of the groove portion in the first width portion, and wherein a sum of the width between the groove portion in the second width portion and the first side surface and the width between the groove portion in the second width portion and the second side surface is smaller than a sum of the width between the groove portion in the first width portion and the first side surface and the width between the groove portion in the first width portion and the second side surface. | 03-17-2011 |
20110068876 | VIBRATING REED, VIBRATOR, OSCILLATOR, AND ELECTRONIC DEVICE - A vibrating reed includes: a base; at least one vibrating arm extending from the base; at least one support arm extending from the base, and at least a part of which extends in parallel to the vibrating arm; and at least one receiving section formed of a part of the support arm, the part extending to have a shape of a projection so that a distance from the vibrating arm is reduced. | 03-24-2011 |
20110109205 | VIBRATION DEVICE AND ELECTRONIC DEVICE - A vibration device includes: a vibrating reed including a base having a notch, a plurality of vibrating arms extending from the base, and each including an arm section, a weight section, and a groove section, and a support section, wherein a mechanical resonant frequency f of the vibrating reed is higher than a thermal relaxation frequency f | 05-12-2011 |
20110204985 | RESONATOR ELEMENT, RESONATOR, OSCILLATOR, AND ELECTRONIC DEVICE - A resonator element capable of improving impact resistance is provided. A quartz crystal resonator element is a resonator element formed by etching a Z plate which is cut at predetermined angles with respect to the crystal axes of a quartz crystal. The quartz crystal resonator element includes a base, a pair of resonating arms extending from the base in the Y-axis direction, and a positive X-axis notch and a negative X-axis notch formed by notching the base in the X-axis direction. The positive X-axis notch is formed by notching the base from the negative side of the X axis towards the positive side so that the width of the positive X-axis notch increases as it approaches the outer circumference. | 08-25-2011 |
20110215680 | RESONATOR ELEMENT, RESONATOR, OSCILLATOR, AND ELECTRONIC DEVICE - A resonator element includes: a base section; and at least one resonating arm formed so as to extend from the base section, and having a flexural vibrating section, wherein the flexural vibrating section includes a pair of principal surfaces formed along a direction in which the resonating arm performs a flexural vibration, and outer side surfaces intersecting with the principal surfaces of the resonating arm, the flexural vibrating section is provided with at least three groove sections, the groove sections are formed on both or either one of the principal surfaces in a direction intersecting with the principal surfaces, and at least a part or the whole of an outer wall formed of the outer side surface and the groove section and at least a part or the whole of an inner wall formed of the groove sections adjacent to each other are electrically vibrated in a flexural manner. | 09-08-2011 |
20110227452 | RESONATOR ELEMENT, RESONATOR, ELECTRONIC DEVICE, AND ELECTRONIC APPARATUS - A resonator element includes at least one resonating arm that vibrates in a torsional mode, wherein the resonating arm includes a structural portion having a first portion disposed in a first direction in a sectional view in the width direction and a second portion connected to the first portion so that the center of gravity departs from the center of gravity of the first portion in the first direction and a second direction perpendicular to the first direction, wherein the first portion vibrates in a stretch mode in the length direction of the resonating arm with an application of a voltage, and wherein the second portion does not substantially vibrate in the stretch mode in the length direction of the resonating arm with the application of the voltage or vibrates in a stretch mode with a phase different from that of the first portion. | 09-22-2011 |
20110227672 | RESONATOR ELEMENT, RESONATOR, OSCILLATOR, AND ELECTRONIC DEVICE - A resonator element includes a base portion in which a pair of notches is formed, a pair of resonating arms which is extended in parallel from one end side of a first portion of the base portion. The resonating arm is provided with a bottomed elongated groove which has an opening along at least one principal surface of both principal surfaces and a weight portion which is formed at the tip end side of the resonating arm on the opposite side of a root of the resonating arm attached to the base portion and which has a larger width than on the root side. The weight portion is formed so that the proportion of the length of the weight portion to the length from the root to the tip end side in a longitudinal direction of the resonating arm is within a range of 35% to 41%. | 09-22-2011 |
20110248600 | RESONATOR ELEMENT AND RESONATOR - A resonator element includes: at least one resonating arm which performs flexural vibration; a base portion connected to an end of the resonating arm; and a tapered portion which is axisymmetrical with respect to a centerline which bisects the width of the resonating arm, and which has a width increasing toward a portion of the tapered portion connected to the base portion from a portion of the tapered portion connected to the resonating arm, wherein assuming that the length and width of the resonating arm are L and W and the length and width of the tapered portion are Lt and Wt, the shape of the tapered portion is controlled to satisfy a taper length occupancy η=Lt/L and a taper width occupancy ξ=2 Wt/W. | 10-13-2011 |
20110248606 | RESONATOR ELEMENT, RESONATOR, AND PIEZOELECTRIC DEVICE - A resonator element includes: a laminate formed by laminating a plurality of piezoelectric substrates in which thickness-shear vibration occurs. | 10-13-2011 |
20120137775 | PIEZOELECTRIC RESONATING DEVICE, MANUFACTURING METHOD THEREOF, PIEZOELECTRIC RESONATOR, AND PIEZOELECTRIC OSCILLATOR - A piezoelectric substrate includes rod-shaped resonating arms; a base portion that connects one set of end portions of the respective resonating arms; weight portions which are formed on the other end portions of the respective resonating arms and which have a width larger than that of the respective resonating arms; and groove portions which are formed on each of the front and rear surfaces along the center line of vibration of the respective resonating arms. The piezoelectric substrate also includes excitation electrodes which are formed on each of the front and rear surfaces of the respective resonating arms including the inner side of the respective groove portions. A plurality of frequency adjustment slits extending in a straight line form along the longitudinal direction of the respective resonating arms are formed on the respective weight portions so as to penetrate through the front and rear surfaces of the weight portions. | 06-07-2012 |
20120216614 | PIEZOELECTRIC RESONATOR ELEMENT, PIEZOELECTRIC RESONATOR, PIEZOELECTRIC OSCILLATOR, RESONATOR GYRO ELEMENT, RESONATOR GYRO SENSOR, AND ELECTRONIC APPARATUS - A piezoelectric substrate includes vibrating arms, a base portion to which one end portion of each vibrating arm is connected, spindle portions formed in the other end portion of each vibrating arm, formed to have a large width, and having first groove portions formed therein, and second groove portions that are formed along the resonator center line of each vibrating arm, and flexure-torsional combined resonator is excited. A piezoelectric resonator element has flexural resonator of flexure-torsional combined resonator that is excited as its principal resonator and sets the cutting angle of the piezoelectric substrate, the widths and the depths of the first groove portion and the second groove portion, and the thickness of the vibrating arm such that the frequency-temperature characteristics represent third-order characteristics with respect to the temperature. | 08-30-2012 |
20130009717 | RESONATOR ELEMENT, RESONATOR, OSCILLATOR, AND ELECTRONIC DEVICE - A resonator element capable of improving impact resistance is provided. A quartz crystal resonator element is a resonator element formed by etching a Z plate which is cut at predetermined angles with respect to the crystal axes of a quartz crystal. The quartz crystal resonator element includes a base, a pair of resonating arms extending from the base in the Y-axis direction, and a positive X-axis notch and a negative X-axis notch formed by notching the base in the X-axis direction. The positive X-axis notch is formed by notching the base from the negative side of the X axis towards the positive side so that the width of the positive X-axis notch increases as it approaches the outer circumference. | 01-10-2013 |
20130015921 | RESONATOR ELEMENT, RESONATOR, OSCILLATOR, AND ELECTRONIC DEVICE - A resonator element capable of improving impact resistance is provided. A quartz crystal resonator element is a resonator element formed by etching a Z plate which is cut at predetermined angles with respect to the crystal axes of a quartz crystal. The quartz crystal resonator element includes a base, a pair of resonating arms extending from the base in the Y-axis direction, and a positive X-axis notch and a negative X-axis notch formed by notching the base in the X-axis direction. The positive X-axis notch is formed by notching the base from the negative side of the X axis towards the positive side so that the width of the positive X-axis notch increases as it approaches the outer circumference. | 01-17-2013 |
20140022024 | RESONATOR ELEMENT, RESONATOR, OSCILLATOR, AND ELECTRONIC APPARATUS - A resonator element includes a base section, at least one pair of vibrating arms protruding from the base section, a support arm protruding from the base section, and a first through hole provided to the support arm, and penetrating the support arm in a thickness direction, and is fixed to an object via an adhesive entering the first through hole. | 01-23-2014 |
20140029179 | RESONATOR ELEMENT, RESONATOR, OSCILLATOR, AND ELECTRONIC APPARATUS - A resonator element includes a base section, a pair of vibrating arms projecting from the base section in a +Y-axis direction, and arranged in an X-axis direction intersecting with the Y-axis direction with a distance in a plan view, and a support arm disposed between the pair of vibrating arms and projecting from the base section in the +Y-axis direction. The base section includes a first shrunk-width portion disposed on an opposite side to the side on which the support arm projects taking the center of the base section as a boundary, and within a range of the distance, and having a length in the X-axis direction gradually decreasing with a distance from the support arm in a plan view. | 01-30-2014 |
20140055206 | RESONATOR ELEMENT HAVING A NOTCHED BASE - A resonator element capable of improving impact resistance is provided. A quartz crystal resonator element is a resonator element formed by etching a Z plate which is cut at predetermined angles with respect to the crystal axes of a quartz crystal. The quartz crystal resonator element includes a base, a pair of resonating arms extending from the base in the Y-axis direction, and a positive X-axis notch and a negative X-axis notch formed by notching the base in the X-axis direction. The positive X-axis notch is formed by notching the base from the negative side of the X axis towards the positive side so that the width of the positive X-axis notch increases as it approaches the outer circumference. | 02-27-2014 |
20140152153 | PIEZOELECTRIC RESONATING DEVICE, MANUFACTURING METHOD THEREOF, PIEZOELECTRIC RESONATOR, AND PIEZOELECTRIC OSCILLATOR - A piezoelectric substrate includes rod-shaped resonating arms; a base portion that connects one set of end portions of the respective resonating arms; weight portions which are formed on the other end portions of the respective resonating arms and which have a width larger than that of the respective resonating arms; and groove portions which are formed on each of the front and rear surfaces along the center line of vibration of the respective resonating arms. The piezoelectric substrate also includes excitation electrodes which are formed on each of the front and rear surfaces of the respective resonating arms including the inner side of the respective groove portions. A plurality of frequency adjustment slits extending in a straight line form along the longitudinal direction of the respective resonating arms are formed on the respective weight portions so as to penetrate through the front and rear surfaces of the weight portions. | 06-05-2014 |
20140184018 | VIBRATOR, OSCILLATOR, ELECTRONIC APPARATUS, MOVING OBJECT, AND METHOD OF MANUFACTURING VIBRATOR - An MEMS vibrator includes a substrate, a fixation section disposed above a principal surface of the substrate, a support section extending from the fixation section, and a vibrating body (an upper electrode) separated from the substrate and supported by the support section in a node part of a vibration, and the vibrating body is a 2n-fold rotationally symmetric body having 2n beams radially extending from a node part of a vibration, wherein n is a natural number. | 07-03-2014 |
20140246737 | MEMS VIBRATOR, METHOD OF MANUFACTURING MEMS VIBRATOR, ELECTRONIC DEVICE, AND MOVING OBJECT - A MEMS vibrator includes an insulating portion, a first electrode provided on one surface of the insulating portion, a fixed portion, and a function portion, a second electrode provided so that at least a portion thereof overlaps the first electrode at a distance therefrom. The second electrode comes into contact with the function portion and extends from the fixed portion. | 09-04-2014 |
20140246949 | MEMS DEVICE, ELECTRONIC DEVICE, ELECTRONIC APPARATUS, AND MOVING OBJECT - A MEMS device includes a substrate and a vibrator. The vibrator includes a first conductive layer and a second conductive layer. The first conductive layer is arranged on a principal plane of the substrate and includes a first fixed electrode. The second conductive layer includes an upper electrode and a support electrode. The upper electrode is spaced apart from the first fixed electrode, has an area overlapping the first fixed electrode. The support electrode connects a second fixed electrode connected to the principal plane with one edge of the upper electrode. The upper electrode includes a plurality of driving electrodes divided by a slit-shaped notch extending in a direction from a vibration tip portion to a vibration base portion where the vibration base portion is the one edge of the upper electrode and the vibration tip portion is the other edge. | 09-04-2014 |
20140327342 | RESONATOR ELEMENT AND RESONATOR HAVING A TAPERED ARM NEXT TO THE BASE - A resonator element includes: at least one resonating arm which performs flexural vibration; a base portion connected to an end of the resonating arm; and a tapered portion which is axisymmetrical with respect to a centerline which bisects the width of the resonating arm, and which has a width increasing toward a portion of the tapered portion connected to the base portion from a portion of the tapered portion connected to the resonating arm, wherein assuming that the length and width of the resonating arm are L and W and the length and width of the tapered portion are Lt and Wt, the shape of the tapered portion is controlled to satisfy a taper length occupancy η=Lt/L and a taper width occupancy ξ=2 Wt/W. | 11-06-2014 |