Patent application number | Description | Published |
20090050981 | SEMICONDUCTOR DEVICE - A semiconductor device includes a first-type internal stress film formed of a silicon oxide film over source/drain regions of an nMISFET and a second-type internal stress film formed of a TEOS film over source/drain regions of a pMISFET. In a channel region of the nMISFET, a tensile stress is generated in the direction of movement of electrons due to the first-type internal stress film, so that the mobility of electrons is increased. In a channel region of the pMISFET, a compressive stress is generated in the direction of movement of holes due to the second-type internal stress film, so that the mobility of holes is increased. | 02-26-2009 |
20100171415 | LIGHT-EMITTING DEVICE AND DISPLAY APPARATUS - A light-emitting device includes a first electrode, a second electrode, a light-emitting layer between the first electrode and the second electrode, and banks that delimit the light-emitting layer. An upper surface of the light-emitting layer has a pair of sloping portions that each slope upward toward a lateral surface of one of the banks. The light-emitting layer is thicker about a lower boundary position than at a center of the light-emitting layer. The boundary position corresponds to an intersection of a lower surface of the light-emitting layer and the lateral surface of one of the banks. A width of each sloping portion is at least approximately 2 μm and at most approximately 10% of a width of the light-emitting layer. Thus, it is possible to obtain a light-emitting device having a long life and having less variation in the luminance and an organic EL display apparatus having such a light-emitting device. | 07-08-2010 |
20110101422 | SEMICONDUCTOR DEVICE - A semiconductor device includes a first-type internal stress film formed of a silicon oxide film over source/drain regions of an nMISFET and a second-type internal stress film formed of a TEOS film over source/drain regions of a pMISFET. In a channel region of the nMISFET, a tensile stress is generated in the direction of movement of electrons due to the first-type internal stress film, so that the mobility of electrons is increased. In a channel region of the pMISFET, a compressive stress is generated in the direction of movement of holes due to the second-type internal stress film, so that the mobility of holes is increased. | 05-05-2011 |
20120132935 | METHOD OF MANUFACTURING AN ORGANIC LIGHT-EMITTING ELEMENT, ORGANIC LIGHT-EMITTING ELEMENT, DISPLAY PANEL, AND DISPLAY DEVICE - A method of manufacturing an organic light-emitting element. A first layer is formed above a substrate, and exhibits hole injection properties. A bank material layer is formed above the first layer using a bank material. Banks are formed by patterning the bank material layer, and forming a resin film on a surface of the first layer by attaching a portion of the bank material layer to the first layer, the banks defining apertures corresponding to light-emitters, the resin material being the same as the bank material. A functional layer is formed by applying ink to the apertures that contacts the resin film. The ink contains an organic material. The functional layer includes an organic light-emitting layer. A second layer is formed above the functional layer and exhibits electron injection properties. The hole injection properties of the first layer are then degraded by applying electrical power to an element structure. | 05-31-2012 |
20120238068 | SEMICONDUCTOR DEVICE INCLUDING A STRESS FILM - A semiconductor device includes a first-type internal stress film formed of a silicon oxide film over source/drain regions of an nMISFET and a second-type internal stress film formed of a TEOS film over source/drain regions of a pMISFET. In a channel region of the nMISFET, a tensile stress is generated in the direction of movement of electrons due to the first-type internal stress film, so that the mobility of electrons is increased. In a channel region of the pMISFET, a compressive stress is generated in the direction of movement of holes due to the second-type internal stress film, so that the mobility of holes is increased. | 09-20-2012 |
20130285034 | ORGANIC EL DISPLAY PANEL - An organic EL display panel offering improved luminance includes: a substrate; pixel electrodes arranged in rows and columns; an insulating film coating the confronting edges of pixel electrodes adjacent in a column direction; banks each elongated in the column direction over a gap between pixel electrodes adjacent in the row direction; a hole transport layer in a gap between the banks; an organic light-emitting layer over the hole transport layer; and a common electrode over the organic light-emitting layer. Light is emitted from a first light-emitting portion and second light-emitting portions of the light-emitting layer. The first light-emitting portion is a portion above the pixel electrodes excluding where the insulating film is disposed. The second light-emitting portions are portions above both the pixel electrodes and the insulating film. | 10-31-2013 |
20130299813 | ORGANIC EL PANEL AND MANUFACTURING METHOD THEREOF - The present invention is to provide an organic EL panel that is able to prevent the problems resulting from the unnecessary bank residues at a relatively low cost and has excellent light-emitting characteristics and a long life, and manufacturing method of the organic EL panel. Specifically, an organic EL element is obtained by forming organic EL elements by sequentially laminating an anode, a transparent conductive film, a hole-injection layer, a buffer layer, an organic light-emitting layer, a cathode, and a passivation layer on one surface of a substrate. Each bank residue positioned on the surface of the hole-injection layer has a diameter not greater than 0.2 μm in one direction when the substrate is seen in plan view. Preferably, when the substrate is seen in plan view, the area of each bank residue is set to be not greater than 0.4 μm | 11-14-2013 |
20140231777 | METHOD OF MANUFACTURING AN ORGANIC LIGHT-EMITTING ELEMENT, ORGANIC LIGHT-EMITTING ELEMENT, DISPLAY PANEL, AND DISPLAY DEVICE - A method of manufacturing an organic light-emitting element is provided. A first layer is formed above a substrate, and exhibits hole injection properties. A bank material layer is formed above the first layer using a bank material. Banks are formed by patterning the bank material layer, and forming a resin film on a surface of the first layer by attaching a portion of the bank material layer to the first layer. The banks define apertures corresponding to light-emitters. The resin material is the same as the bank material. A functional layer is formed by applying ink to the apertures that contacts the resin film. The ink contains an organic material. The functional layer includes an organic light-emitting layer. A second layer is formed above the functional layer and exhibits electron injection properties. The hole injection properties of the first layer are degraded by applying electrical power to an element structure. | 08-21-2014 |
20150155516 | ORGANIC LIGHT-EMITTING ELEMENT AND PRODUCTION METHOD THEREFOR - An organic light-emitting element having a substrate, an anode on the substrate, a bank layer on or above the substrate that has an opening above the anode, a hole transport layer in the opening that contains organic material, an organic light-emitting layer on the hole transport layer that contains organic light-emitting material, and a cathode above the organic light-emitting layer. A portion of the hole transport layer is located between a periphery of the organic light-emitting layer and a side surface of the bank layer facing the opening. Carrier mobility of the hole transport layer is 1.0×10 | 06-04-2015 |
Patent application number | Description | Published |
20110241534 | PLASMA DISPLAY DEVICE - The present invention provides a plasma display device that has light emission properties with short persistence where green light has a persistence time of 3.5 msec or less, that is excellent in luminance, luminance degradation resistance, and color tone, and that is suitable for, for example, a stereoscopic image display device. The present invention provides a plasma display device including a plasma display panel in which a pair of substrates at least whose front side is transparent are disposed to oppose each other so as to form a discharge space between the substrates, barrier ribs for dividing the discharge space into a plurality of discharge spaces are disposed on at least one substrate, electrode groups are disposed on the substrates so as to produce discharge in the discharge spaces divided with the barrier ribs, and a green phosphor layer that emits light by the discharge is provided, wherein the green phosphor layer includes a mixed phosphor containing a short persistence Mn | 10-06-2011 |
20120104931 | PLASMA DISPLAY PANEL - A protective layer of a plasma display panel includes a base layer formed on a dielectric layer, and a plurality of aggregated particles dispersed on an entire surface of the base layer. Phosphor layers include a green phosphor layer containing an Mn | 05-03-2012 |
20130069520 | PLASMA-DISPLAY PANEL - A phosphor layer of a plasma display panel has a green phosphor layer containing Zn | 03-21-2013 |
20130069521 | PLASMA-DISPLAY PANEL - A phosphor layer of a plasma display panel has a green phosphor layer containing Zn | 03-21-2013 |
Patent application number | Description | Published |
20090066830 | FOCUS CONTROL DEVICE AND IMAGING DEVICE - An auto focus (AF) circuit includes a high-pass filter and band-pass filter having mutually different frequency characteristics. During contrast AF control prior to an actual shooting, AF evaluation values acquired by using the high-pass filter are used most preferentially in detecting the lens focusing position of a focus lens. In this way, the high-pass filter that emphasizes and extracts high frequency band components, which increase in image data when shooting a typical subject, is set to be used preferentially, thereby making it possible to perform high-precision focusing control with respect to various kinds of subjects. | 03-12-2009 |
20090092386 | Image pickup apparatus - An image pickup apparatus includes an imaging optical system; a display unit; a detecting unit performing focus detection in phase difference detection; a focusing unit performing focus control of a lens in the imaging optical system on the basis of the focus detection result; an imaging unit generating an image signal concerning an optical image of a subject; an electronic zoom unit zooming in or out the image of the subject displayed in the display unit on the basis of the image signal by performing signal processing; and a switching unit switching between an electronic zoom active state and an electronic zoom inactive state. The detecting unit includes a sensor unit including a first licensor and a second licensor; a setting unit that sets detection sections having the same section length in the first and second licensors; a focus detecting unit; and a section length controlling unit. | 04-09-2009 |
20090148147 | IMAGE-CAPTURING APPARATUS - An image-capturing apparatus includes an image-capturing optical system; a sensor unit having line sensors that receive light fluxes of an object, which have been transmitted through a pair of partial areas in an exit pupil of the image-capturing optical system; image-capturing elements having a pixel arrangement capable of generating an image signal and a focus detection pixel sequence, in which two or more pairs of pixels that receive the light fluxes of an object, are arranged in a predetermined direction; a continuous image-capturing unit configured to perform continuous image capturing of actually exposing the image-capturing elements; a signal generation unit configured to perform another exposure for the sensor unit; a first focus detection unit configured to perform focus detection of a phase-difference detection method; a second focus detection unit configured to perform focus detection; and a focus adjustment unit configured to perform focus adjustment. | 06-11-2009 |
20100284679 | IMAGING APPARATUS AND IMAGING LENS UNIT - An imaging apparatus includes: continuous imaging mode setting means for setting a continuous imaging mode in which a plurality of captured images including first and second captured images are continuously acquired; and diaphragm control means for controlling a diaphragm in an imaging optical system, wherein in the continuous imaging mode, the diaphragm control means does not drive the diaphragm during a first period from the time of exposure for the first captured image to the time of exposure for the second captured image but maintains the state of the diaphragm at the time of exposure for the first captured image until the time of exposure for the second captured image. | 11-11-2010 |
20110052167 | IMAGE PICKUP APPARATUS - An image pickup apparatus includes an imaging optical system; a display unit; a detecting unit performing focus detection in phase difference detection; a focusing unit performing focus control of a lens in the imaging optical system on the basis of the focus detection result; an imaging unit generating an image signal concerning an optical image of a subject; an electronic zoom unit zooming in or out the image of the subject displayed in the display unit on the basis of the image signal by performing signal processing; and a switching unit switching between an electronic zoom active state and an electronic zoom inactive state. The detecting unit includes a sensor unit including a first licensor and a second licensor; a setting unit that sets detection sections having the same section length in the first and second licensors; a focus detecting unit; and a section length controlling unit. | 03-03-2011 |
Patent application number | Description | Published |
20140103599 | SHEET CONVEYANCE DEVICE, DOCUMENT FEEDER, IMAGE FORMING APPARATUS, AND MULTI FEED DETECTION METHOD - A sheet conveyance device includes a paper feed section, a separation roller, a registration roller pair arranged downstream of the paper feed section, a conveyance roller pair arranged downstream of the registration roller pair, a multi feed sensor arranged between the paper feed section and the registration roller pair, and a document conveyance controller. When an original document arrives at the conveyance roller pair, the document conveyance controller suspends driving of the paper feed section and starts multi feed determination. | 04-17-2014 |
20140210152 | SHEET CONVEYANCE DEVICE, DOCUMENT CONVEYANCE DEVICE, AND IMAGE FORMING APPARATUS - In a sheet conveyance device, if a sheet has not been detected at a second position when a predetermined time has elapsed since the sheet has been detected at a first position, a separating portion switches operation thereof from a separating operation to a non-separating operation of conveying the sheet from upstream to downstream in a sheet conveyance path, and a sheet feed portion continues a feeding operation. If the sheet has not been detected at the second position by the time a predetermined time has elapsed since the separating portion has started the non-separating operation, the separating portion and the sheet feed portion stop driving, and if the sheet has been detected at the second position by the time, the separating portion switches operation thereof from the non-separating operation to the separating operation, and the sheet feed portion continues the feeding operation. | 07-31-2014 |
Patent application number | Description | Published |
20110020848 | METHOD FOR DETECTION OF PNEUMOCOCCUS - To provide an immunological detection method which can detect or quantify a pneumococcal antigen in a sample derived from a living body conveniently, rapidly, and with high sensitivity, and an antibody for use in the method. The present invention provides an antibody which specifically recognizes a pneumococcal F-antigen; a method for detecting or quantitating a pneumococcal antigen, characterized in that the method detects or quantitates a pneumococcal F-antigen in a sample derived from a living body through immunological assay employing the antibody; and a kit for detecting a pneumococcal antigen, the kit containing the antibody. | 01-27-2011 |
20120122245 | ALLOYED METAL COLLOID - Provided is a metal colloid having higher visibility and higher sensitivity than a gold colloid and a Au-core Pt-shell composite colloid and suitable as a labeling agent for use in a test such as an immunoassay. An alloyed Au/Pt composite colloid formed by mixing a gold salt and a platinum salt with at least one reducing agent selected from the group consisting of an amino acid and a derivative thereof, an oligopeptide and a derivative thereof, and an amino sugar in the presence of an alkali, thereby reducing the gold salt and platinum salt. | 05-17-2012 |
20150025226 | MONOCLONAL ANTIBODY FOR ANALYZING HIGH-MOLECULAR WEIGHT ADIPONECTIN AND UTILIZATION OF SAME - A monoclonal antibody that does not show a crossreactivity with middle-molecular weight (MMW) adiponectin and specifically reacts with high-molecular weight (HMW) adiponectin alone is disclosed. The monoclonal antibody of the present invention can be produced by using HMW adiponectin as an antigen. According to the monoclonal antibody of the present invention, a convenient, high-accurate, and versatile reagent for analyzing HMW adiponectin can be provided. | 01-22-2015 |
Patent application number | Description | Published |
20100248438 | SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - In a semiconductor substrate in a first section, a channel region having an impurity concentration peak in an interior of the semiconductor substrate is formed, and in the semiconductor substrate in a second section and a third section, channel regions having an impurity concentration peak at a position close to a surface of the substrate are formed. Then, extension regions are formed in the first section, the second section and the third section. After that, the substrate is thermally treated to eliminate defects produced in the extension regions. Then, using gate electrodes and side-wall spacers as a mask, source/drain regions are formed in the first section, the second section and the third section. | 09-30-2010 |
20110073954 | SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - In a semiconductor substrate in a first section, a channel region having an impurity concentration peak in an interior of the semiconductor substrate is formed, and in the semiconductor substrate in a second section and a third section, channel regions having an impurity concentration peak at a position close to a surface of the substrate are formed. Then, extension regions are formed in the first section, the second section and the third section. After that, the substrate is thermally treated to eliminate defects produced in the extension regions. Then, using gate electrodes and side-wall spacers as a mask, source/drain regions are formed in the first section, the second section and the third section. | 03-31-2011 |
20120056271 | SEMICONDUCTOR DEVICE - A semiconductor device includes a first, second, and third MIS transistors of a first conductivity type respectively including a first, second, and third gate electrodes on a first, second, and third active regions of a semiconductor substrate with a first, second, and third gate insulating films interposed therebetween. The first gate insulating film is formed of a first silicon oxide film and a first high-k insulating film on the first silicon oxide film. The second gate insulating film is formed of a second silicon oxide film and a second high-k insulating film on the second silicon oxide film. The third gate insulating film is formed of a third silicon oxide film and a third high-k insulating film on the third silicon oxide film. The second silicon oxide film has a same thickness as the first silicon oxide film, and a greater thickness than the third silicon oxide film. | 03-08-2012 |
20120146154 | SEMICONDUCTOR DEVICE - A semiconductor device includes a first and a second MIS transistor. The first and second MIS transistors include a first and a second gate electrode formed on a first and a second active region with a first and a second gate insulating film being formed therebetween, first and second sidewalls including a first and a second inner sidewall formed on side surfaces of the first and second gate electrodes and having an L-shaped cross-section, and first and second source/drain regions formed in the first and second active regions laterally outside the first and second sidewalls. The first source/drain regions include a silicon compound layer formed in trenches provided in the first active region and causes a first stress in a gate length direction of a channel region in the first active region. A width of the first inner sidewall is smaller than a width of the second inner sidewall. | 06-14-2012 |
20120280328 | SEMICONDUCTOR DEVICE - A semiconductor device includes a first-conductivity-type first MIS transistor and a second-conductivity-type second MIS transistor. The first and second MIS transistors include a first and a second gate insulating film formed on a first and a second active region surrounded by a separation region of a semiconductor substrate, and a first and a second gate electrode formed on the first and second gate insulating films. The first and second gate insulating films are separated from each other on a first separation region of the separation region. A distance s between first ends of the first and second active regions facing each other with the first separation region being interposed therebetween, and a protrusion amount d | 11-08-2012 |