Patent application number | Description | Published |
20110198497 | Method for producing a representation of an object by means of a particle beam, as well as a particle beam device for carrying out the method - A method for producing a representation of an object using a particle beam, as well as a particle beam device for carrying out the method are disclosed. The system described herein is based on the object of specifying the method and the particle beam device for producing a representation of an object such that images which are produced, in particular including FFT images, are as free as possible of artifacts which are not caused by the object to be examined. This is achieved in particular in that pixel lives, line flyback times and pixel pause times are varied in raster patterns. | 08-18-2011 |
20120256098 | Ion Beam System and Method of Operating Ion Beam System - An ion beam system comprises a voltage supply system | 10-11-2012 |
20130270437 | METHOD FOR PRODUCING A REPRESENTATION OF AN OBJECT BY MEANS OF A PARTICLE BEAM, AS WELL AS A PARTICLE BEAM DEVICE FOR CARRYING OUT THE METHOD - A method for producing a representation of an object using a particle beam, as well as a particle beam device for carrying out the method are disclosed. The system described herein is based on the object of specifying the method and the particle beam device for producing a representation of an object such that images which are produced, in particular including FFT images, are as free as possible of artifacts which are not caused by the object to be examined. This is achieved in particular in that pixel lives, line flyback times and pixel pause times are varied in raster patterns. | 10-17-2013 |
20140197328 | Ion Beam System and Method of Operating an Ion Beam System - An ion beam system comprises a voltage supply system | 07-17-2014 |
Patent application number | Description | Published |
20120244141 | Stratification of cancer patients for susceptibility to therapy with PTK2 inhibitors - A method for determining whether a cancer patient is susceptible to treatment with a protein tyrosine kinase 2 (PTK2) inhibitor, comprising detecting the expression of the E-cadherin protein in a cancer sample of said cancer patient, wherein an E-cadherin protein immunoreactivity score (IRS) of 0-2 indicates that the cancer patient is susceptible to treatment with a PTK2 inhibitor. The invention further encompasses treatment of a patient with a protein tyrosine kinase 2 (PTK2) inhibitor if it has been so determined that said patient is susceptible to such treatment. | 09-27-2012 |
20140205592 | Stratification of cancer patients for susceptibility to therapy with PTK2 inhibitors - The present invention relates to a method for determining whether a cancer patient is susceptible to treatment with a protein tyrosine kinase 2 (PTK2) inhibitor, comprising detecting the expression of the E-cadherin protein in a cancer sample of said cancer patient, wherein an E-cadherin protein immunoreactivity score (IRS) of 0-2 indicates that the cancer patient is susceptible to treatment with a PTK2 inhibitor. Said detection of the expression of the E-cadherin protein in a cancer sample of a cancer patient is preferably conducted by way of an immunohistochemistry (IHC) method. Said IHC method preferably employs a primary antibody which is specific for E-cadherin and a secondary antibody which specifically reacts with the primary antibody. The present invention also relates to a method of treating a cancer patient whose cancer is characterized by an E-cadherin protein immunoreactivity score (IRS) of 0-2, comprising administering to the patient a therapeutically effective amount of a PTK2 inhibitor. In a further aspect, the present invention relates to a PTK2 inhibitor for use in the treatment of a cancer patient whose cancer is characterized by an E-cadherin protein immunoreactivity score (IRS) of 0-2. The present invention also provides a method of screening for a therapeutically effective PTK2 inhibitor comprising the steps of (a) providing cancer cells or a cancer cell line which are characterized by an E-cadherin protein immunoreactivity score of 2, 1, or 0 (1 being preferred and 0 being even more preferred); (b) contacting the cancer cell or the cancer cell line of (a) with a PTK2 inhibitor; and (c) evaluating whether the PTK2 inhibitor negatively affects the cancer cell/cancer cell lines. In a further aspect, the present invention relates to a method for stratifying cancer patients that are susceptible to treatment with a PTK2 inhibitor, comprising determining the E-cadherin IRS score in a cancer sample of said patient, wherein an E-cadherin protein immunoreactivity score (IRS) of 0-2 (i.e. 2, 1, or 0) indicates that the cancer patient is susceptible to treatment with a PTK2 inhibitor. The present invention also relates to a pharmaceutical package comprising a PTK2 inhibitor, and (a) instructions and/or an imprint indicating that said PTK2 inhibitor is to be used for the treatment of patients which suffer from a cancer which is characterized by an E-cadherin protein immunoreactivity score of 2, 1, or 0 (1 being preferred and 0 being more preferred); and/or (b) instructions and/or an imprint indicating that said patient is to be stratified by a method of the present invention; and/or (c) means to carry out a method as defined herein. | 07-24-2014 |
Patent application number | Description | Published |
20140292332 | DEVICE, METHOD AND SYSTEM FOR CONTROLLING IMAGING METHODS AND SYSTEMS - In a computer-implemented method, device and system for controlling an imaging system, a specific absorption rate is calculated with a computation unit and an RF transmission signal of the imaging system is controlled with a control device. The process of controlling of the RF transmission signal includes disconnecting the RF transmission signal when a remaining period during which the RF transmission signal is harmless for the patient has been reduced to zero. | 10-02-2014 |
20140307764 | Operation of a Transmission Device of a Magnetic Resonance Device - A method for operating a transmission device of a magnetic resonance device is provided. In order to actuate coil elements of a radiofrequency coil with different phases, phase differences in a reference plane are taken into consideration. In a first calibration measurement to be performed once for each transmission path, a first phase of a transmitted radiofrequency signal is measured by an internal measuring device installed permanently in the transmission device spaced apart from the reference plane. A second phase of the transmitted radiofrequency signal is measured by a second, external measuring device to be connected to the reference plane for the first calibration measurement. At least one phase of the first phase and the second phase is taken into consideration in the phase-accurate actuating of the coil elements and/or for correcting further measurements with the internal measuring device. | 10-16-2014 |
20150022203 | Automatic HF Shim Configuration for Coils - In order to configure a transmission coil of a magnetic resonance imaging (MRI) system without taking a specific measurement object into account, the transmission coil is automatically detected and identified when the transmission coil is connected to the MRI system. A phase setting of a pulse to be transmitted by the detected transmission coil is identified based on at least the identified type of the transmission coil. The transmission coil is excited with the pulse having the identified phase and amplitude. | 01-22-2015 |
20150022206 | Hybrid Averaging Method for Specific Absorption Rate Supervision - In order to reduce the memory footprint used for monitoring specific absorption rate (SAR) in a magnetic resonance imaging (MRI) system, a hybrid sliding window method is provided. The method includes receiving a measured value once every first time interval, processing the measured value, and storing a value resulting from the processing in a first memory element. Measured values stored in second memory elements are summed every second time interval, where the first time interval is less than the second time interval. A representation of SAR is calculated every first time interval based on the value resulting from the processing and the sum of the measured values of the second memory elements. When the second time interval is reached, the value stored in the first memory element is moved to one of the second memory elements, and the value stored in the first memory element is reset to zero. | 01-22-2015 |
20150077108 | Measurement of Radio Frequency Excitation Pulses - The embodiments relate to methods for measurement of RF excitation pulses by a magnetic resonance device including the following acts: (1) sending of an RF excitation pulse by a radio-frequency system of the magnetic resonance device, (2) triggering of a receive event for capturing the RF excitation pulse by the control device of the magnetic resonance device, and (3) capturing of the sent RF excitation pulse in the form of excitation data by the radio frequency system. In certain embodiments, the excitation data is used for checking process execution sequences. | 03-19-2015 |
20150260807 | Circuit Arrangement for the Driving Electronics of a Magnetic Resonance System - A circuit arrangement for driving a transmission coil arrangement with at least two individual transmission coils of a magnetic resonance system for supplying a radiofrequency signal for producing alternating electromagnetic fields over at least two channels, with in each case a digital section and an analog section, is provided. In the digital section, in an envelope generator, base frequency signals that respectively generate an envelope are provided. The circuit arrangement also includes an intermediate frequency oscillator that generates a common intermediate frequency, a frequency mixer per channel for mixing the common intermediate frequency into the base frequency signals, and in the analog sections of the channels, respectively, second frequency mixers that mix a common radiofrequency signal into each base frequency signal. The envelope is transmitted, with the mixed-in intermediate frequency signal, and the total signal thus obtained is respectively conducted to an individual transmission coil via a respective amplifier. | 09-17-2015 |