Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


36th week of 2013 patent applcation highlights part 15
Patent application numberTitlePublished
20130229156BATTERY MONITORING IN ELECTRIC VEHICLES, HYBRID ELECTRIC VEHICLES AND OTHER APPLICATIONS - A method for monitoring the condition of at least one cell of a battery, used in an electric or hybrid electric vehicle. The battery is connected to a power converter to supply electrical power to an electrical load. The method includes the steps of: controlling the power converter to vary the input impedance of the power converter to draw a varying current from the cell; sensing the voltage across the cell and the current drawn in response to varying the impedance of the power converter; calculating from the sensed voltage and current the complex impedance of the cell; and comparing the calculated complex impedance with information indicative of a correlation between (i) the complex impedance and (ii) information indicative of the condition of the cell, to give an indication of the condition of the cell. The varying current may be actively varied or passively varied.2013-09-05
20130229157HIGH PERMITTIVITY LOW LEAKAGE CAPACITOR AND ENERGY STORING DEVICE - A method is provided for making a high permittivity dielectric material for use in capacitors. Several high permittivity materials in an organic nonconductive media with enhanced properties and methods for making the same are disclosed. A general method for the formation of thin films of some particular dielectric material is disclosed, wherein the use of organic polymers, shellac, silicone oil, and/or zein formulations are utilized to produce low conductivity dielectric coatings. Additionally, a method whereby the formation of certain transition metal salts as salt or oxide matrices is demonstrated at low temperatures utilizing mild reducing agents. Further, a circuit structure and associated method of operation for the recovery and regeneration of the leakage current from the long-term storage capacitors is provided in order to enhance the manufacturing yield and utility performance of such devices.2013-09-05
20130229158Managed Multi-Phase Operation - Systems and methods for maximum deviation multi-phase operation provide techniques for controlling voltage regulators and tap changers in a multi-phase system to operate within a maximum deviation window. The maximum deviation window comprises a low boundary value and a high boundary value. In an example embodiment, systems and methods provide techniques for setting the low boundary value and the high boundary value. In another example embodiment, systems and methods provide techniques for optimized power factor correction in a multi-phase system2013-09-05
20130229159Multi-Phase Operation with Single Phase Control - A multi-phase control system having multi-phase operation with single phase control includes a main control module, a lineman module, and an add-on lineman module. The main control module and the lineman module control, automatically or manually, the first phase and first phase tap changer of a multi-phase system. The add-on lineman module and the main control module control, automatically or manually, additional phases of the multi-phase system. In certain example embodiments, the multi-phase control system detects when a line voltage of an additional phase is de-energized and allows the tap changer of the additional phase to be powered by a line voltage of the first phase. In certain example embodiments, the tap changer of a de-energized phase is powered by an external power supply.2013-09-05
20130229160OPERATION CONTROLLER, DC-DC CONVERTER CONTROLLER, AND DC-DC CONVERTER - An operation controller has a reference voltage generator, a starter circuit, and a switch element. The reference voltage generator is connected to an enable terminal to which an enable signal is supplied. After the enable signal is supplied and a start signal is generated, the reference voltage generator generates a reference voltage up to a stable value. After the reference voltage rises to the stable value, it generates a stop signal. When the enable signal is supplied, the starter circuit generates the start signal, and supplies it to the reference voltage generator. When the enable signal is no longer supplied or the stop signal is generated, the start signal is terminated. The switch element has one end connected to the enable terminal and the other end supplied with a prescribed voltage; it turns on when the start signal is generated, and turns off when the start signal is terminated.2013-09-05
20130229161MODULATING DETERMINATION APPARATUS, MODULATING DETERMINATION METHOD, AND POWER SUPPLY CIRCUIT THEREOF - A modulating determination apparatus, a modulating determination method, and a power supply circuit thereof are provided. The modulating determination apparatus is electrically connected to an examined circuit and includes a driver circuit and a comparison circuit. The driver circuit provides an impulse signal to a first end of the examined circuit. The comparison circuit is coupled to the first end of the examined circuit to obtain a first detected electric value of the first end. The comparison circuit calculates a difference value between the first detected electric value and a second detected electric value. The comparison circuit produces a comparison result by comparing the difference value with a threshold value. The comparison result indicates whether the examined circuit comprises a passive component, which is used to decide either a first modulating scheme or a second modulating scheme for modulating the power supply circuit to supply an output power.2013-09-05
20130229162MANUAL MULTI-PHASE VOLTAGE CONTROL - Aspects of manual multi-phase voltage control are described. In one embodiment, a voltage regulator controller includes switches for coupling power from an energized phase to a de-energized phase. For example, the voltage regulator controller may include a first power switch electrically coupled to drive circuitry of a first voltage regulator, a first phase output voltage of a multi-phase power delivery system, and a second phase output voltage of the multi-phase power delivery system. In certain aspects, the first power switch selectively toggles an electrical coupling between the drive circuitry of the first voltage regulator and one of the first phase output voltage and the second phase output voltage. Powering a voltage regulator of a de-energized phase with power from an energized phase may peg the operation of the voltage regulator, as necessary, to maintain the balance of the power distribution system, for example.2013-09-05
20130229163OVERVOLTAGE PROTECTION CIRCUIT AND ELECTRONIC DEVICE - An overvoltage protection circuit is arranged in an electronic device for providing a proper working voltage to the electronic device. The overvoltage protection circuit includes a first selecting circuit and a second selecting circuit connected in parallel to the first selecting circuit between a voltage input port and a voltage output port of the overvoltage protecting circuit. When an input voltage from the input port is less than a first value, the input voltage is output to the output port directly through the first selecting circuit, and when the input voltage is greater than the first value, the input voltage is output to the output port after the value of the input voltage is reduced through the second selecting circuit.2013-09-05
20130229164VOLTAGE DISCHARGE OPTIMIZATION - One embodiment of an apparatus to control and sense a voltage through a single node can include a comparator to monitor single node voltage, a transistor to discharge voltage through the single node and control logic. The control logic can have at least two operational phases when actively controlling the voltage through the single node. In a first phase, the control logic can configure the comparator to determine if the single node voltage is greater than a reference voltage. In a second phase, the control logic can configure the transistor to discharge voltage through the single node when the comparator has previously indicated that the single node voltage is greater than a reference voltage. The control logic can alternatively execute first and second phases to discharge the voltage to a predetermined level.2013-09-05
20130229165AC COUPLED SINGLE-ENDED LVDS RECEIVING CIRCUIT COMPRISING LOW-PASS FILTER AND VOLTAGE REGULATOR - A receiving circuit is provided that can accurately detect a clock signal that has a single phase and a small amplitude. A receiving circuit includes an AC coupled circuit 2013-09-05
20130229166PROGRAMMABLE SLEW RATE POWER SWITCH - An apparatus is configured to provide a voltage rising at the output with a programmable slew rate. The apparatus comprises a ramp-up control circuit module for supplying an increasing output voltage that is output to a load circuit. The ramp-up control circuit comprises an amplifier that receives the output of a plurality of selectable mirrored current sources that build up voltage across a capacitor for programming a selected linear slew rate for the increasing output voltage. The apparatus further comprises a glitch filter circuit for stabilizing the increasing output voltage so as to minimize glitches, including current and voltage stress, in the output voltage.2013-09-05
20130229167MULTICHANNEL DC-DC CONVERTER - In a multichannel DC-DC converter that reduces radiation noise to a minimum, a wiring line between the coil conductor of a channel having the smallest load current and the switching IC, among the coil conductors defining a plurality of channels, is the longest connection wiring line, such that a channel having the smallest load current is connected to a wiring line that is most likely to radiate noise and radiation noise is reduced to a minimum. A connection wiring line connected to a coil conductor having the largest load current among the plurality of coil conductors is the shortest connection wiring line. A channel having the largest load current is connected to a wiring line that is least likely to radiate noise and, as a result, radiation noise is further reduced.2013-09-05
20130229168MICROORGANISM NUMBER MEASUREMENT DEVICE - A microorganism number-measuring apparatus includes: a container holder for holding container having an opening in the upper surface of the container, with the opening being positioned upward; and a rotary driver for rotating a liquid accommodated in container held by the holder, about the rotary axis in the up-and-down direction. Moreover, the apparatus includes: an electrode inserting part for inserting measurement chip to a position from above container held by the holder, via the opening, with the position being closer to the container's inner surface than to the container's center axis and being away from the container's inner surface with a predetermined distance; and a measurement unit for measuring microorganisms using measurement electrode of measurement chip inserted into container by the electrode inserting part. The electrode inserting part holds measurement chip, in a state of measurement electrode facing the container's inner-surface.2013-09-05
20130229169VOLTAGE DETECTION DEVICE - A voltage detection device includes: a plurality of voltage-detecting ICs installed in order to detect voltages of a plurality of blocks of a secondary battery, each of the voltage-detecting ICs being installed for each of the blocks; and an interruption control unit that controls interruption operations of the voltage-detecting ICs. After resetting all of the voltage-detecting ICs by transmitting a trigger signal to all of the voltage detecting ICs, the interruption control unit transmits a control signal in which an address of a voltage-detecting IC allowed to execute an interruption operation is designated. Each of the voltage-detecting ICs receives the control signal within a designated time set in advance, executes the interruption operation when an address of its own is designated, and is left reset when the address of its own is not designated.2013-09-05
20130229170TONE DETECTOR - A tone detector is disclosed that is realizable in digital embodiment on a single integrated circuit die and does not require external components, such as a discrete capacitor. An input connects to a comparator, which in turn connects to one or more edge detectors and a flip flop. The edge detector outputs a pulse responsive to a detected edge. A counter is reset by the pulses from the edge detectors thereby preventing the counter from reaching a maximum value, which would otherwise be output from the counter and provided to a flip flop to clock in the comparator output at the D input to the flip flop. In operation, the comparator generates a rail to rail signal responsive to a received tone, which in turn is clocked through the flip flop as a logic high output indicating presence of a tone.2013-09-05
20130229171COMPACT, TWO STAGE, ZERO FLUX ELECTRONICALLY COMPENSATED CURRENT OR VOLTAGE TRANSDUCER EMPLOYING DUAL MAGNETIC CORES HAVING SUBSTANTIALLY DISSIMILAR MAGNETIC CHARACTERISTICS - A device for sensing electrical current or voltage in an electrical distribution system using an actively compensated current ratio transformer that includes a first magnetic core having a first permeability and a second magnetic core having a second permeability higher than the first permeability. A primary winding having P turns is coupled with the first and second magnetic cores, a measurement winding having M turns is coupled with the first and second magnetic cores so that current in the primary winding induces current in the measurement winding, and a sense winding having S turns is coupled with the second magnetic core. An amplifier coupled to the sense winding receives a voltage developed across the sense winding and produces a compensation current in response to the received voltage. The amplifier has an output coupled to the sense winding to feed the compensation current through the sense winding to reduce the voltage developed across the sense winding voltage to substantially zero. A burden resistor is coupled to the measurement winding and the sense winding for receiving the sum of the current induced in the measurement winding and the compensation current.2013-09-05
20130229172REFRIGERATOR AND OPERATION METHOD THEREOF - According to the present invention, a refrigerator that may save power rates is provided. The refrigerator according to the present invention includes a door; a communication unit; a sensing unit; a memory unit; an output unit; and a controller configured to sense an opening state of the door, obtain power consumption information consumed as the door is opened from the memory unit considering at least one of the opening state of the door and an attribute of the door and configured to output through the output unit power rates information corresponding to the power consumption information, considering power information received through the communication unit.2013-09-05
20130229173METHOD FOR MEASURING CURRENT IN AN ELECTRIC NETWORK - A method for measuring current in an electric network comprising at least one first electric line. The method includes fitting the first line with a circuit breaker having a protection coil and having a wall traversed by a magnetic field emitted by the protection coil; arranging on the wall of the circuit breaker a synchronous three-axis digital magnetometer on a semiconductor chip; by way of the digital magnetometer, measuring at least one component of a magnetic field emitted by the coil; and determining the value of a current traversing the electric line from the measured component.2013-09-05
20130229174Proximity Sensor and Method For Determining The Proximity To An Electrically Conductive Body - The invention relates to a proximity sensor and a method for determining the proximity to an electrically conductive body. By means of a transmitting arrangement, to this end an alternating magnetic field is transmitted at a selected frequency an alternating magnetic field registered by a receiving arrangement. Moreover, frequencies of the registered alternating magnetic field, which are outside a predefined frequency band comprising the selected frequency and have an amplitude value above a predefined threshold value, are detected by means of a detection means. In a control logic, by means of a blocking circuit, frequencies of a predefined frequency band comprising the detected frequency or a plurality of predefined frequency bands comprising in each case one of the detected frequencies, are defined as blocked frequencies. Moreover, a frequency following the respective selected frequency and different from the selected frequency and the blocked frequencies, denoted hereinafter as the following frequency of the respectively selected frequency, is defined in a selection controller. By means of a time control of the control logic, the following frequency of a selected frequency is continuously selected as a newly selected frequency for a new time window following immediately after or chronologically spaced apart from the selected time window.2013-09-05
20130229175MAGNETIC FIELD SENSING METHODS AND MEGNETIC FIELD SENSING APPARATUSES USING TUNNELING MAGNETO-RESISTOR DEVICES - Magnetic field sensing method and apparatus of this disclosure uses two tunneling magneto-resistor (TMR) devices. Angles of the free magnetizations of the two TMR devices with respect to a fixed direction are set in a first to fourth period. In the first to fourth period, the two TMR devices act as a TMR sensing unit and a zero-field reference unit by turns, and each of the conductance difference between the sensing unit and the zero field reference unit is also obtained in each of the first to fourth period. Finally, the four conductance differences are summed up.2013-09-05
20130229176Method for Determining a Set of B1 Field Maps - A method for determining a set of B1 field maps for different transmit channels includes determining a first partial B1 field map having absolute B1 amplitudes for each transmit channel. A gradient echo technique operating with a single gradient echo image is used to determine a relative partial B1 field map having relative B1 amplitudes for each transmit channel. A spatial weighting function for mapping the relative B1 amplitudes onto absolute B1 amplitudes is determined taking into account the first partial B1 field maps and the relative partial B1 field maps of all the transmit channels. The spatial weighting function is used to determine second partial B1 field maps from the relative partial B1 field maps. The B1 field map for each transmit channel is determined from the first and the second partial B1 field map for the respective transmit channel taking into account the subregions and/or the error values.2013-09-05
20130229177Apparatus for Real-Time Phase Correction for Diffusion-Weighted Magnetic Resonance Imaging Using Adaptive RF Pulses - Phase error in MR imaging is corrected in real time by providing adaptive RF pulses and corresponding adaptive magnetic field gradients to mitigate the effect of phase error in the imaging subject. A real time phase error map is obtained, and then adaptive RF pulses and corresponding field gradients are applied that remove the problematic effects of the phase error. Depending on details of the MR imaging mode being employed, there are several ways this removal can be done. Phase error can be cancelled by providing RF pulses that make the phase in the imaging subject uniform. Another approach is to make the adaptive RF pulses insensitive to the phase errors that are present.2013-09-05
20130229178Local Screen and Method for the Screening Out of Magnetic Resonance Signals - A local screen screens out magnetic resonance signals of an object under examination during magnetic resonance imaging with a magnetic resonance device. The local screen includes a plurality of electrically conductive local screen elements that are arranged such that no direct electrically conductive connection pertains between the local screen elements. The local screen further includes a carrier device for accommodating the local screen elements and a number of switching devices that are connected in an electrically conductive manner to the local screen element, and are embodied such that the electrical resistance may be controlled by a number of screen control signals. In addition, the local screen includes a number of screen control signal inputs for the number of screen control signals.2013-09-05
20130229179NMR DEVICE FOR DETECTION OF ANALYTES - This invention relates generally to detection devices having one or more small wells each surrounded by, or in close proximity to, an NMR micro coil, each well containing a liquid sample with magnetic nanoparticles that self-assemble or disperse in the presence of a target analyte, thereby altering the measured NMR properties of the liquid sample. The device may be used, for example, as a portable unit for point of care diagnosis and/or field use, or the device may be implanted for continuous or intermittent monitoring of one or more biological species of interest in a patient.2013-09-05
20130229180Emission of High Frequency Pulses in a Magnetic Resonance Tomography System - A method for emitting a sequence of high frequency pulses that may have different envelopes in a magnetic resonance tomography system is provided. A digital instruction signal that specifies the envelope for the high frequency pulses that are to be emitted is received. A digital control signal is transmitted to a high frequency unit for generating high frequency pulses, depending on the instruction signal. A test signal that allows notification of a current overload situation is received. The current control signal is reduced if the test signal indicates an overload situation.2013-09-05
20130229181Magnetic Resonance Facility Having a Cylindrical Patient Receiving Unit and Patient Capsule - A magnetic resonance facility having a cylindrical patient receiving unit includes a high-frequency shield. The high-frequency shield is disposed to enclose the patient receiving unit and shield at least one high-frequency coil from a gradient coil arrangement. The high-frequency shield is extendable to form a shielded chamber that shields the high-frequency coil from high-frequency signals outside the shielded chamber.2013-09-05
20130229182Gradient coil with correction windings and method for production thereof - In a coil arrangement for nuclear magnetic resonance comprising a main coil (2013-09-05
20130229183Cylindrical Gradient Coil Arrangement for a Magnetic Resonance Device - A cylindrical gradient coil arrangement is provided for a magnetic resonance device. The arrangement includes at least one conductive structure that forms at least one gradient coil and a cooling device that uses a cooling fluid to cool the at least one conductive structure. The arrangement includes an outer carrier structure and an inner carrier structure. The outer carrier structure includes two tubular, coaxial outer sections with different diameters. The inner, tubular carrier structure is arranged between and coaxially with the outer sections. The conductive structure is placed on the inner carrier structure. The inner carrier structure is spaced from the outer sections by a clearance. The clearance forms a cooling channel through which the cooling fluid of the cooling device may flow. The inner carrier structure is fastened to the outer carrier structure at least in a point-by-point manner.2013-09-05
20130229184Stationary Source for Marine Electromagnetic Surveying - Disclosed are methods and systems for using electromagnetic sources that are substantially stationary in a body of water while electromagnetic field signals are detected with electromagnetic sensors towed through the body of water. An embodiment discloses an apparatus comprising: a vessel; a first electromagnetic source coupled to the vessel and configured to have a dipole moment oriented in a first direction; and a second electromagnetic source coupled to the vessel and configured to have a dipole moment oriented in a second direction, wherein the second direction is generally orthogonal to the first direction. Another embodiment discloses a system comprising: a sensor streamer configured for towing in a body of water, wherein the sensor streamer comprises a plurality of electromagnetic sensors disposed at spaced apart positions; and an electromagnetic source assembly configured for deployment at a substantially stationary position in the body of water.2013-09-05
20130229185TRAILER LIGHT TESTER - The present invention is a trailer light tester that includes a 7-way plug that is inserted into and connected to a trailer to check a plurality of various trailer lights of the trailer, an elongated casing and a turning and stop light switch that is disposed on the elongated casing. The trailer light tester also includes a taillight and marker light switch that is disposed on the elongated casing, a rechargeable battery that powers the elongated casing and a plurality of circuit breakers that are housed in the interior of the elongated casing and protect the trailer light tester against a short or damage from an excessive amount of current.2013-09-05
20130229186SWITCH FAILURE DETECTION DEVICE, BATTERY PACK INCLUDING THE SAME, AND METHOD OF DETECTING FAILURE OF ELECTRONIC SWITCH - A switch failure detection device includes a switch, a rectifier, a switch voltage detection circuit, and a controller. The switch is connected in a path in which a charging current to and a discharging current flow. The rectifier passes a discharging current by bypassing the switch when the switch is turned off. The detection circuit detects a voltage between an input and an output of the switch. The controller is configured to: determine whether the electric storage device is in a discharging state; send an off-command signal to the switch if the electric storage device is in the discharging state; receive the voltage; determine an input-output voltage of the switch based on the voltage; determine whether the input-output voltage is lower than a first reference voltage; and determine the switch has a turn-off problem if the input-output voltage is lower than the first reference voltage.2013-09-05
20130229187System and Method for Monitoring Electrolyte Levels in a Battery - A measuring device is used in conjunction with a programmable controller for monitoring electrolyte levels in the battery. According to one implementation, the measuring device is located in a battery and is configured to detect when the electrolyte level in the battery falls below a particular level. The controller is in electrical communication with the electrolyte detection device. The controller is configured to: (i) receive a signal from the electrolyte level detection device indicating when the electrolyte level in the battery has fallen below the particular level; (ii) introduce a wait-period after the signal is received; and (iii) enable an indicator to indicate that the electrolyte level in the battery should be refilled when the wait-period expires.2013-09-05
20130229188SYSTEM AND METHOD FOR TESTING ELECTRICAL CIRCUITS USING A PHOTOELECTROCHEMICAL EFFECT - A test system for medical devices that does not require physical contact with an electrical site along a conductive path is described. Not having to physical contact an electrical site while performing an electrical continuity test avoids potential damage to the site. The test system includes a fluidic channel that dispenses an electrolytic solution onto a first electrical site on the conductive path. A light source irradiates the first site to thereby induce a photoelectrochemical (PEC) effect at an interface thereof. The PEC effect produces a change in both the potential (i.e., voltage) and current carrying ability in the conductive path. That voltage or current is measured at a second site to determine whether there is electrical continuity or discontinuity between the sites on the conductive path.2013-09-05
20130229189Defect Detection on Characteristically Capacitive Circuit Nodes - A test circuit for detecting a leakage defect in a circuit under test includes a test stimulus circuit operative to drive an otherwise defect-free, characteristically capacitive node in the circuit under test to a prescribed voltage level, and an observation circuit having at least one threshold and adapted for connection with at least one node in the circuit under test. The observation circuit is operative to detect a voltage level of the node in the circuit under test and to generate an output signal indicative of whether the voltage level of the node is less than the threshold. The voltage level of the node being less than the threshold is indicative of a first type of leakage defect, and the voltage level of the node being greater than the threshold is indicative of a second type of leakage defect.2013-09-05
20130229190TEST CHIP, TEST BOARD AND RELIABILITY TESTING METHOD - Multiple test circuits are formed in a test board for each test chip. Alternatively and/or additionally, a test circuit extends through at least two layers among metallization layers of the test chip.2013-09-05
20130229191METHOD AND DEVICE FOR TESTING AN ELECTRONIC APPLIANCE - A method and a device for testing an electronic appliance for determining at least one variable of a system. The electronic appliance is designed in the form of a sensor. The method includes defining an expected minimum and/or maximum value of the variable and producing an electric signal by means of the electronic appliance depending on the variable. The method also includes detecting at least one value of a parameter of the produced electric signal and defining an expected minimum and/or maximum value of the parameter depending on the defined minimum and/or maximum value of the variable of the system. A determination is made, based on whether the detected value of the parameter is greater than the minimum value defined for the parameter and/or smaller than the maximum value, whether there is a malfunction of the electronic appliance provoked by an external electromagnetic interference field.2013-09-05
20130229192MEASURING SYSTEM FOR MONITORING AT LEAST ONE PHASE OF A SYSTEM - A measuring system is disclosed for monitoring at least one phase of a system. A measuring module includes a signal acquisition module and a signal further processing module. The signal acquisition module is formed by an ASIC. A printed circuit board includes a voltage sensor and the signal acquisition module includes current sensors and a voltage sensor connection connected to the voltage sensor in an electrically conductive manner, for each phase to be monitored. The signal further processing module is connected to the signal acquisition module and can evaluate current and voltage values which have been determined. The signal further processing module includes, output devices which can be used to output serial data and digital signals for control purposes.2013-09-05
20130229193ELECTROSTATIC CAPACITANCE SENSOR - An electrostatic capacitance sensor 2013-09-05
20130229194Sensor Element, Method of Making the Same, and Sensor Device Including the Same - A sensor element includes a first conductive electrode having a first conductive member electrically coupled thereto; an absorptive dielectric layer comprising a polymer of intrinsic microporosity; and a second conductive electrode having a second conductive member electrically coupled thereto. The second conductive electrode comprises at least one noble metal, has a thickness of from 4 to 10 nanometers and is permeable to at least one organic vapor. The absorptive dielectric layer is at least partially disposed between the first conductive electrode and the second conductive electrode. A method of making the sensor element, and sensor device containing it, are also disclosed.2013-09-05
20130229195POTENTIOMETER DEGRADATION EVALUATING METHOD - In a method for evaluating degradation of a potentiometer, a plurality of evaluation items, from minor to major, are established as evaluation items for degradation in performance prior to failure of a potentiometer. The degradation of the potentiometer in performance of the plurality of evaluation items is evaluated in terms of stages, in a specific sequence.2013-09-05
20130229196VARIABLE PRESSURE FOUR-POINT COATED PROBE PIN DEVICE AND METHOD - A variable pressure probe pin device, including: a housing with a channel having a first longitudinal axis; a probe at least partially disposed in the channel and including a plurality of probe pins configured to measure a property of a conductive layer; and a fluid pressure system configured to supply pressurized fluid o the channel to control a position of the probe within the channel. The housing or the probe is displaceable such that the plurality of probe pins contact the conductive layer.2013-09-05
20130229197TEST APPARATUS - A main power supply is arranged such that its output terminal Po is connected to a power supply terminal of a DUT via a power supply line, and is configured to feedback control an output voltage V2013-09-05
20130229198METHODOLOGIES AND TEST CONFIGURATIONS FOR TESTING THERMAL INTERFACE MATERIALS - Methodologies and test configurations are provided for testing thermal interface materials and, in particular, methodologies and test configurations are provided for testing thermal interface materials used for testing integrated circuits. A test methodology includes applying a thermal interface material on a device under test. The test methodology further includes monitoring the device under test with a plurality of temperature sensors. The test methodology further includes determining whether any of the plurality of temperature sensors increases above a steady state.2013-09-05
20130229199TESTING APPARATUS FOR PERFORMING AVALANCHE TEST - A testing apparatus for performing an avalanche test includes a wafer chuck configured to retain a wafer having a plurality of transistors, wherein the wafer chuck includes an insulating body and a plurality of conductors embedded in the insulating body. In one embodiment of the present invention, the device holder includes a plurality of conductors having horizontal sides and longitudinal sides, a plurality of insulating horizontal lines positioned at the horizontal sides, and a plurality of insulating longitudinal lines positioned at the longitudinal sides and intersecting the horizontal lines.2013-09-05
20130229200TESTING APPARATUS FOR PERFORMING AN AVALANCHE TEST AND METHOD THEREOF - A testing apparatus for performing an avalanche test comprises a wafer chuck configured to retain a wafer having a plurality of transistors, an inductor with a first end connected to a drain terminal of the transistor, a power source configured to provide a current to a second end of the inductor through a switch, a meter connected to a source terminal of the transistor through the wafer chuck, and a driver configured to synchronously control the operation of the switch and the operation of the transistor.2013-09-05
20130229201TEST ASSEMBLY FOR VERIFYING HEAT SPREADER GROUNDING IN A PRODUCTION TEST - A test assembly (2013-09-05
20130229202POWER TEST APPARATUS FOR POWER SUPPLY - A power test board for a power supply includes a main board and a load circuit. The load circuit includes at least one switch, at least one control circuit, and at least one load resistor. A number of the load resistor being same with a number of the control circuit, each load resistor is electronically connected to one of the at least one control circuit. Toggling of the at least one switch to electronically connect to the control circuit causes the control circuit to be electronically connected to the power supply, the at least one control circuit is turned on, and the at least one load resistor is activated to serve as a load of the power supply.2013-09-05
20130229203METHOD AND DEVICE FOR OFF-LINE TESTING OF ELECTRIC MOTORS - A method for off-line testing of an electric motor is disclosed. The motor having at least one stator winding, and a rotor arranged along a rotation axis. The method includes applying a periodic test signal to the at least one stator winding; collecting first measuring data, related to a physical quantity of the at least one stator winding while the rotor is being rotated about the rotation axis, from one or more waveform periods of the test signal, detecting first peak values of the first measuring data; forming second measuring data based on the first detected peak values, detecting second peak values of the second measuring data for the at least one stator winding; determining a mutual relationship between the at least a portion of the second peak values; and, providing, if the mutual relationship deviates from a predetermined relationship, a signal indicating a fault in the rotor. Also disclosed is an apparatus for performing the disclosed methods.2013-09-05
20130229204Resilient Integrated Circuit Architecture - The exemplary embodiments provide a resilient integrated circuit. An exemplary IC comprises a plurality of composite circuit elements, a state machine element (SME), and a plurality of communication elements. Each composite circuit element comprises an element interface and a selected circuit element which may vary by element type, and which may be configurable. The state machine element assigns various functions based on element type, such as assigning a first configuration to a first element type, assigning a second configuration to a second element type, and providing a first data link for the corresponding assignments. In response to detection of a fault or failure, the state machine element re-assigns the first configuration to another composite circuit element and creates a second data link for performance of the same function. The assignment, routing, fault detection, and re-assignment and data re-routing can occur in real time for a wide variety of programs and algorithms, providing for the IC to continue the same functioning despite defects which may arise during operation.2013-09-05
20130229205PROGRAMMABLE LOGIC DEVICE - A programmable logic device includes a plurality of arithmetic circuits; a configuration changing circuit for changing a logic state of each of the plurality of arithmetic circuits by rewriting configuration data; a power supply control circuit for switching between start and stop of supply of power supply voltage to the plurality of arithmetic circuits; a state memory circuit for storing data on configuration, data on a state of power supply voltage, data on use frequency, and data on last use of each of the plurality of arithmetic circuits; and an arithmetic state control circuit for controlling the configuration changing circuit and the power supply control circuit in accordance with the data stored in the state memory circuit. One of the plurality of arithmetic circuits includes a transistor comprising an oxide semiconductor film in a channel formation region.2013-09-05
20130229206Systems and Methods for Compression of High-Frequency Signals - Systems and methods for compressing high-frequency signals are described in certain embodiments herein. According to certain embodiments, a high-frequency signal can be converted into a lower frequency signal so that it can be processed by one or more devices in a lower frequency infrastructure. In certain embodiments, the high-frequency signal can be compressed by certain signal conditioning components and an algorithm executed by a computer processor to at least receive a high-frequency signal, correct the high-frequency signal, determine a number of samples to be taken from the high-frequency signal (i.e., sample the high-frequency signal), store a value associated with the sampled signal, and generate a waveform that includes lower frequency content that may represent the original, high-frequency signal.2013-09-05
20130229207FLOATING GATE DRIVER WITH BETTER SAFE OPERATION AREA AND NOISE IMMUNITY, AND METHOD FOR LEVEL SHIFTING A SWITCH SIGNAL - A floating gate driver includes a level shifter to transmit a set signal and a reset signal to a first output terminal and a second output terminal, respectively. The level shifter includes a first high-voltage transistor, a first current limiter and a first input transistor connected in series between the first output terminal and a ground terminal, and a second high-voltage transistor, a second current limiter and a second input transistor connected in series between the second output terminal and the ground terminal, and the first and second high-voltage transistors are remained on. With this arrangement, the level shifter can transmit signals from low side to high side under better safe operating area and has better noise immunity.2013-09-05
20130229208DRIVE CIRCUIT FOR SWITCHING ELEMENTS - A first-path connects an input-terminal and an output-terminal of a high-potential-side switching-element and includes a high-potential-side rectifying-device and a high-potential-side passive-element. A second-path connects the output-terminal of the high-potential-side switching-element and the output-terminal of a low-potential-side switching-element and includes a low-potential-side rectifying-device and a low-potential-side passive-element. A high-potential-side applying-unit applies voltage to a connecting point between the high-potential-side rectifying-device and the high-potential-side passive-element. A high-potential-side determining-unit determines that an overcurrent is flowing between the input-terminal and the output-terminal of the high-potential-side switching-element by using a first-value. A limiting-unit limits a current between the low-potential-side rectifying-device and the output-terminal of the high-potential-side switching-element if the overcurrent is flowing. A low-potential-side applying-unit applies voltage to a connecting point between the low-potential-side rectifying-device and the low-potential-side passive-element. A low-potential-side determining-unit determines that an overcurrent is flowing between the input-terminal and the output-terminal of the high-potential-side or low-potential-side switching element by using a second-value.2013-09-05
20130229209DRIVE UNIT FOR SWITCHING ELEMENT - A drive unit includes a charging unit which charges an opening/closing control terminal of a switching element to switch a drive state. The switching element includes a sensing terminal which outputs a minute current having a correlation with current flowing between input and output terminals of the switching element. The sensing terminal and either of the output terminal or a member having a potential equal to that of the output terminal are connected via a sensing resistor. The drive unit further includes an active gate control unit which changes a charge rate based on comparison of sensing voltage, which is a potential difference across the sensing resistor, or a rate of change of the sensing voltage with a specified value. The specified value is set based on individual-difference information of the switching element which indicates a characteristic, which affects the sensing voltage, when the drive state is switched.2013-09-05
20130229210ON-CHIP POWER-COMBINING FOR HIGH-POWER SCHOTTKY DIODE BASED FREQUENCY MULTIPLIERS - A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.2013-09-05
20130229211TRANSMISSION/RECEPTION DEVICE AND INFORMATION PROCESSING DEVICE - A transmission/reception device includes a transmission circuit configured to apply a delay to at least one of a positive signal and a negative signal of differential signals to be sent to another device, detect a direction of a differential signal skew between the positive signal and the negative signal, to at least one of which the delay is applied, and control the delay in a manner as to reduce the differential signal skew; and a reception circuit configured to apply a delay to at least one of a positive signal and a negative signal of differential signals sent from another transmission/reception device, detect a direction of a differential signal skew between the positive signal and the negative signal, to at least one of which the delay is applied, and control the delay in a manner as to reduce the differential signal skew.2013-09-05
20130229212PHASE LOCKED LOOP WITH DIGITAL COMPENSATION FOR ANALOG INTEGRATION - A method of performing modulation of a data signal at a phase-locked loop (PLL) includes generating, at an upper frequency port of the PLL, a digital loop signal based at least in part on the data signal. The method further includes differentiating the digital loop signal to generate a digital input signal and converting the digital input signal to an analog current signal. A first feedback signal is generated based on the analog current signal. The method further includes generating, at a lower frequency port of the PLL, a second feedback signal based on the first feedback signal and further based on the data signal. According to further embodiments, apparatuses and a computer-readable medium are disclosed.2013-09-05
20130229213CAPACITOR LEAKAGE COMPENSATION FOR PLL LOOP FILTER CAPACITOR - An output portion of a charge pump receives control signals from a phase frequency detector and in response outputs positive current pulses and negative current pulses to a loop filter. A current control portion of the charge pump controls the output portion such that the magnitudes of the positive and negative current pulses are the same. Within the current control portion there is a “Charge Pump Output Voltage Replica Node” (CPOVRN). The voltage on this CPOVRN is maintained to be the same as a voltage on the charge pump output node. A capacitor leakage compensation circuit indirectly senses the voltage across a leaking capacitor of the loop filter by sensing the voltage on the CPOVRN. The compensation circuit imposes the sensed voltage across a replica capacitor, mirrors a current leaking through the replica, and supplies the mirrored current in the form of a compensation current to the leaking capacitor.2013-09-05
20130229214SEMICONDUCTOR DEVICE GENERATING PHASE-CONTROLLED CLOCK SIGNAL - The semiconductor device includes a frequency detection circuit that outputs a frequency detection signal based on a frequency of a first clock signal; a phase comparison circuit that compares a phase of the first clock signal with a phase of a reference clock signal and outputs a phase comparison signal according to a result of the comparison; and a phase adjustment circuit that outputs a second clock signal by shifting the phase of the first clock signal according to the phase comparison signal. An amount of the phase of the first clock signal according to the phase comparison signal is variable according to the frequency detection signal.2013-09-05
20130229215Variable Resistance for Driver Circuit Dithering - A dither circuit yielding a variable resistance.2013-09-05
20130229216SIGNAL DUTY CYCLE DETECTOR AND CALIBRATION SYSTEM - A duty cycle detector and calibration system is disclosed. In some embodiments, a duty cycle calibration system includes a first tuning circuit operative to receive an input signal, tune a duty cycle of the input signal to within a first error range, and provide a first output signal. A second tuning circuit tunes a duty cycle of the first output signal to within a second error range and provides a second output signal, where the second error range has more precision than the first error range. A duty cycle detector provides a duty cycle detection signal indicative of a duty cycle of the second output signal, and logic controls the first and second tuning circuits based upon the duty cycle detection signal.2013-09-05
20130229217DYNAMIC LATCH AND DATA OUTPUT DEVICE COMPRISING SAME - A dynamic latch comprises a floating node, a storage node, a write transistor connected to the floating node and the storage node and configured to write data of the floating node to the storage node, and a read transistor connected to the floating node and configured to read the data of the storage node.2013-09-05
20130229218LATCH CIRCUIT AND SEMICONDUCTOR DEVICE - A nonvolatile latch circuit is provided. In the latch circuit, a transistor in which a channel region is formed with an oxide semiconductor, which is a wide band gap semiconductor, is included, and data is stored in a node formed by one terminal of a capacitor and one of a source and a drain of the transistor, and is brought into a floating state when the transistor is turned off. After that, even when charge stored in the node is insufficient at time of restoring the data, charge is supplied by feedback; therefore, time necessary for restoring the data can be shortened and even when the power supply is restarted in the state of storing data, the data can be restored at high speed.2013-09-05
20130229219Digital Input Unit - A digital input unit for an automation device includes at least one current drawing DC input channel for connecting a transducer operated at a nominal DC voltage, where the input channel is configured to set the current based on an input voltage (UEM) according to an input characteristic curve. Measures are proposed, as a result of which the digital input unit is suitable for connecting transducers of different supply voltages, where the digital input unit is operable with a reduced power loss.2013-09-05
20130229220SYSTEM FOR A CLOCK SHIFTER CIRCUIT - A clock shifter circuit may receive a input clock in a first voltage domain and may generate a level-shifted output clock in a second voltage domain. The circuit may include a cross-coupled pair of transistor switches and a pair of capacitors. Each switch may have a drain coupled to one of the capacitors, a source coupled to a circuit supply voltage, and a gate coupled to the other capacitor. One capacitor may receive a true input clock version, while the other may receive a complement version. Each capacitor, in an alternating manner, may activate an opposing transistor switch to charge its capacitor during an active phase of its respective input clock. The circuit may generate the output clock from an output node connected between one of the transistor switches and its capacitor. The output clock may drive a load directly coupled to the output node.2013-09-05
20130229221CONTROL CHIP FOR COMMUNICATING WITH WIRED CONNECTION INTERFACE BY USING ONE CONFIGURABLE PIN SELECTIVELY SERVING AS INPUT PIN OR OUTPUT PIN - A control chip includes a configurable pin and a control logic. The configurable pin is arranged for coupling a first pin and a second pin of a high-definition multimedia interface (HDMI) connector. The control logic is arranged for controlling the configurable pin to switch between a first operation mode and a second operation mode. The configurable pin serves as an input pin when operating in the first operation mode, and the configurable pin serves as an output pin when operating in the second operation mode. For example, the input pin is arranged for receiving a power supply signal derived from a +2013-09-05
20130229222LOW VOLTAGE ANTIFUSE PROGRAMMING CIRCUIT AND METHOD - A circuit for programming a fuse is disclosed. The circuit includes a voltage supply terminal (Vp) and a latch circuit comprising a p-channel transistor and an n-channel transistor (2013-09-05
20130229223Tunable Fin-SCR for Robust ESD Protection - One embodiment of the present invention relates to a silicon-controlled-rectifier (SCR). The SCR includes a longitudinal silicon fin extending between an anode and a cathode and including a junction region there between. One or more first transverse fins traverses the longitudinal fin at one or more respective tapping points positioned between the anode and the junction region. Other devices and methods are also disclosed.2013-09-05
20130229224Capacitance Detecting Apparatus and Capacitive Touch Control System Using the Same - A capacitance detecting apparatus, coupled to a capacitor to be measured, includes a first capacitor, a second capacitor, a control module and a judging module. The first and second capacitors are coupled to the capacitor to be measured via an input node. The control module provides a first voltage-drop variation to the first capacitor and a second voltage-drop variation to the capacitor to be measured to introduce a third voltage-drop variation to the second capacitor. The first and second voltage-drop variations cause charge flowing from the first capacitor to the input node have a same sign with charge flowing from the input node to the capacitor to be measured. The judging module determines capacitance of the capacitor to be measured according to capacitance of the first and second capacitors as well as the first, second and third voltage-drop variations.2013-09-05
20130229225METHODS AND APPARATUS RELATED TO AN IMPROVED COMPLEMENTARY MOSFET SWITCH - In one general aspect, an apparatus can include a complementary switch circuit including a first portion and a second portion, and a first driver circuit coupled to the first portion of the complementary switch circuit. The apparatus can include a positive charge pump device coupled to the first driver, and a second driver circuit coupled to the second portion of the complementary switch circuit. The apparatus can also include a negative charge pump device coupled to the second driver circuit.2013-09-05
20130229226Charge Pump Device - A charge pump device includes a charge pump circuit, for generating an output voltage according to a driving signal, a comparing circuit, for generating a comparison result according to the output voltage and a reference voltage, a detecting circuit, for detecting a frequency range of a ripple of the output voltage according to the comparison result and generating a detection result, and a driving stage, for generating the driving signal according to the comparison result, and adjusting a driving capability corresponding to the driving signal according to the detection result.2013-09-05
20130229227AMPLIFICATION APPARATUS - A first amplification section and a second amplification section included in an amplification apparatus amplify two constant amplitude signals generated by vector decomposition. An impedance inverting circuit inverts the impedance of the signal amplified by the second amplification section. A combining circuit corrects the phases of the signal amplified by the first amplification section and the signal whose impedance is inverted by the impedance inverting circuit, and combines and outputs these signals. The combining circuit includes a line which is (λ/4)+γ in length and which is an asymmetrical circuit element and a line which is (λ/4)−δ in length and which is an asymmetrical circuit element.2013-09-05
20130229228Noise Optimized Envelope Tracking System for Power Amplifiers - A radio frequency (RF) power amplifier system that comprises a power amplifier configured to amplify an RF input signal to generate an RF output signal. The power amplifier has a gain that is controlled by a supply voltage to the power amplifier. An amplitude detector is configured to generate an amplitude signal indicative of an amplitude of the RF input signal. A power supply generates the supply voltage to the power amplifier based on the amplitude signal indicative of the amplitude of the RF input signal. The gain of the power amplifier is allowed to have variations over the amplitude range of the RF input signal in favor of having a supply voltage that is monotonic relative to the amplitude of the RF input signal across an amplitude range of the RF input signal.2013-09-05
20130229229DEVICE AND METHOD FOR INCREASING OUTPUT EFFICIENCY OF MOBILE COMMUNICATION TERMINAL - An apparatus and a method for raising an output efficiency in a mobile communication terminal are provided. The apparatus includes a supply modulator and a power amplifier. The supply modulator includes a DC-DC converter, a voltage regulator, and a switching regulator. The supply modulator modulates an envelope component of an input signal to generate power. The power amplifier amplifies a phase component of the input signal using the power generated by the supply modulator as a power source of a collector/drain. The DC-DC converter raises battery power of the mobile communication terminal. The voltage regulator determines an output voltage of the supply modulator using the power raised by the DC-DC converter. The switching regulator determines an output current of the supply regulator using the battery power of the mobile communication terminal.2013-09-05
20130229230CASCADED CLASS D AMPLIFIER WITH IMPROVED LINEARITY - An amplifier includes first and second stages. The first stage includes an input node for receiving an analog input signal, an analog digital converter for converting the analog input signal to a digital input signal, and a first switching circuit for outputting a first analog intermediate output signal in response to receiving a digital pulse width modulated signal that is based on the digital input signal. The second stage is configured to receive a pulse width modulation quantization error of the first stage, scale the pulse width modulation quantization error of the first stage by a gain factor to produce a scaled pulse width modulation quantization error of the first stage, and output a second analog intermediate output signal based on the scaled pulse width modulation quantization error of the first stage. A summation circuit combines the first and second analog intermediate output signals to generate an amplified output signal.2013-09-05
20130229231DIFFERENTIAL CIRCUIT COMPENSATING GAIN ENHANCEMENT DUE TO SELF HEATING OF TRANSISTORS - A differential circuit with a function to compensate the gain enhancement due to the self-heating of the transistor is disclosed. The differential circuit includes an equalizer unit coupled with one of paired transistors. The other of the paired transistor receives the input signal to be amplified. The base level, or the base-emitter bias, is oppositely modulated by the input signal through the common emitter, which causes the modification of the base current. The equalizer unit reduces the variation of the base level only in low frequencies where the self-heating effect of the transistor appears.2013-09-05
20130229232Amplifier Bandwidth Extension for High-Speed Tranceivers - There is presented a high bandwidth circuit for high-speed transceivers. The circuit may comprise an amplifier combining capacitor splitting, inductance tree structures, and various bandwidth extension techniques such as shunt peaking, series peaking, and T-coil peaking to support data rates of 45 Gbs/s and above while reducing data jitter. The inductance elements of the inductance tree structures may also comprise high impedance transmission lines, simplifying implementation. Additionally, the readily identifiable metal structures of inductors and t-coils, the equal partitioning of the load capacitors, and the symmetrical inductance tree structures may simplify transceiver implementation for, but not limited to, a clock data recovery circuit.2013-09-05
20130229233DOHERTY POWER AMPLIFIER APPARATUS AND POWER AMPLIFICATION METHOD - A Doherty power amplifier apparatus and power amplification method are disclosed in the present invention. The apparatus includes a main power amplifier apparatus and an auxiliary power amplifier apparatus, and the main power amplifier apparatus is configured to adopt a High Voltage Heterojunction Bipolar Transistor (HVHBT) device to amplify signal power, and the auxiliary power amplifier apparatus is configured to adopt a High Electron Mobility Transistor (HEMT) device to amplify signal power. A power amplification efficiency of a whole Doherty power amplifier will be enhanced substantially according to the present invention.2013-09-05
20130229234ENHANCED DOHERTY AMPLIFIER WITH ASYMMETRICAL SEMICONDUCTORS - Amplifier units and methods of use are described herein. A amplifier unit includes a first amplifier and a second amplifier connected in parallel, the first amplifier and the second amplifier comprising semiconductor devices that are not the same amplifier design. The present application also discloses a signal input line connected to the first amplifier and the second amplifier. A signal output line is also disclosed which is connected to the first amplifier and the second amplifier.2013-09-05
20130229235HIGH-FREQUENCY AMPLIFIER, AND HIGH-FREQUENCY MODULE AND WIRELESS TRANSCEIVER USING SAME - There are provided a high-frequency amplifier and a high-frequency module having a high efficiency for an extensive input modulated signal power, and base station/mobile wireless machines using the amplifier or the module.2013-09-05
20130229236OPTICAL RECEIVER BASED ON A DECISION FEEDBACK EQUALIZER - An optical receiver, a method of operating an optical receiver, a correction based transimpedance amplifier circuit, and a method of adjusting an output of a transimpedance amplifier. In one embodiment, the optical receiver comprises an optical-to-electrical converter, a transimpedance amplifier, and a correction circuit. The optical-to-electrical converter is provided for receiving an optical signal and converting the optical signal to an electrical signal. The transimpedance amplifier is provided for receiving the electrical signal from the converter and for generating from the electrical signal an amplified electrical signal. The amplified electrical signal has inter symbol interference resulting from a reduced bandwidth of the transimpedance amplifier. The correction circuit is provided for receiving the electrical signal from the amplifier and for generating, from the electrical signal, an output signal including corrections for the inter symbol interference in the amplified electrical signal effectively increasing a bandwidth of the optical receiver.2013-09-05
20130229237HIGH-FREQUENCY AMPLIFIER - A high-frequency amplifier includes: a first transistor having a source connected to ground; a second transistor forming a cascode circuit with the first transistor; a series circuit connected between a gate of the second transistor and the ground, the series circuit being formed by a first resistive element and a series resonant circuit connected in series with each other; and a second resistive element connected in parallel to the series circuit. The high-frequency amplifier can achieve low distortion characteristics while ensuring operational stability in a wide band.2013-09-05
20130229238LOW VOLTAGE, WIDE FREQUENCY RANGE OSCILLATOR - A wide frequency, low voltage oscillator includes multiple delay elements, in which each delay element includes two inverters coupled through a latching element into a differential-type configuration. Two current-source PMOS devices bias the latching element in a high-gain region at low-voltage. By coupling these current-source PMOS devices into the delay elements, the start-up voltage of the latching element is reduced. Each delay element is also biased using a replica bias circuit that scales the supply/control voltage of the oscillator and provides the scaled supply/control voltage to control the lower rail of oscillation amplitude. By coupling the replica bias circuit to the lower rail, the lower rail of the oscillation amplitude follows the changes to the supply/control voltage.2013-09-05
20130229239LANGE COUPLER AND FABRICATION METHOD - A Lange coupler comprises an unbroken peripheral ground conductor surrounding input, through, coupled and isolated conductor strips coupled to input, through, coupled and isolated ports of the Lange coupler respectively, wherein the peripheral ground conductor and input and through conductor strips are arranged on a first metal layer.2013-09-05
20130229240ELECTROMAGNETIC WAVE PROPAGATION MEDIUM - When a wavelength of an electromagnetic wave in an electromagnetic wave propagation space (2013-09-05
20130229241MULTILAYER BAND PASS FILTER - In a multilayer band pass filter, via-electrodes and strip electrodes define inductors of LC parallel resonators in four stages. A capacitor electrode and a ground electrode define a capacitor of a first-stage LC parallel resonator. A capacitor electrode and the ground electrode define a capacitor of a fourth-stage LC parallel resonator. Capacitor electrodes define a second-stage LC parallel resonator. Capacitor electrodes define a third-stage LC parallel resonator. Among four or more of the LC parallel resonators, the coupling between certain LC parallel resonators is easily defined, and the attenuation characteristic of a filter is definable with a high degree of freedom.2013-09-05
20130229242ELASTIC WAVE FILTER DEVICE - An elastic wave filter device includes a ladder filter unit, a first inductor, a second inductor, and a capacitor. The ladder filter unit includes at least three parallel arms including a first parallel arm. The first inductor is connected between the first parallel arm and a ground potential. The second inductor is connected between at least two of the parallel arms, other than the first parallel arm among the at least three parallel arms, and the ground potential. The capacitor is connected between a connection point of the first parallel arm and the first inductor and a connection point of the second inductor and the at least two parallel arms.2013-09-05
20130229243Tuneable Filter - A tuneable filter comprising 2013-09-05
20130229244SYSTEM AND METHOD FOR PROVIDING AN INTERCHANGEABLE DIELECTRIC FILTER WITHIN A WAVEGUIDE - A system including a first dielectric filter including a plurality of resonators, a second dielectric filter including a plurality of resonators, and a hollow waveguide configured to receive the first dielectric filter or the second dielectric filter by separating the hollow waveguide into at least a first part and a second part. A width of the plurality of resonators matches a width of a groove within the hollow waveguide to allow insertion of the first dielectric filter or the second dielectric filter into the hollow waveguide where sides of the resonators are in contact with inner sides of the groove of the hollow waveguide. Another embodiment of a system and a method are also disclosed.2013-09-05
20130229245DRIVING DEVICE AND RELAY - A relay has a driving device that includes a magnet portion, two electromagnets, a yoke portion fixed to the above elements, and a rocking armature. The magnet portion includes a ferrite permanent magnet polarized in a direction perpendicular to the yoke portion and a bearing surface facing way from the yoke portion. Each electromagnet includes an iron core fixed to the yoke portion and a coil wound thereon. The two iron cores are arranged at opposite sides of the magnet portion. The rocking armature includes two arms connected to each other with an included angle formed therebetween and a convex joint of the two arms. The convex joint abuts against the bearing surface and the rocking armature pivots about the convex joint between a first position and a second position in which the rocking armature contacts a respective one of the iron cores.2013-09-05
20130229246LATCHING RELAY - A latching relay has a fixed iron core including an exciting coil wound around an intermediate portion and a magnetic pole piece at two ends; movable iron pieces sandwiching a permanent magnet between two bar-shaped iron pieces disposed in parallel with each other, and are fixed with a holder; and a switchable electrical contact portion. The fixed iron core and the movable iron pieces are disposed facing each other to insert each of the magnetic pole pieces on two sides of the fixed iron core to be spaced apart in a space between the two bar-shaped iron pieces of two end portions of the movable iron pieces. The movable iron pieces are supported pivotally in a direction in which the two bar-shaped iron pieces are aligned. The movable iron pieces are linked to the electrical contact portion, and the movable iron pieces perform a switching of the electrical contact portion.2013-09-05
20130229247ELECTROMAGNETIC CONTACTOR - An electromagnetic contactor has a contact device including a pair of fixed contacts disposed to maintain a predetermined distance and a movable contact disposed to be capable of contacting to and separating from the pair of fixed contacts. An insulating cover covering all except a contact portion contacting with the movable contact is mounted on the pair of fixed contacts.2013-09-05
20130229248ELECTROMAGNETIC CONTACTOR - An electromagnetic contactor has an arc extinguishing chamber housing a contact mechanism having a pair of fixed contacts and a movable contact that contacts with the pair of fixed contacts. The arc extinguishing chamber has a plate-shaped fixed contact support insulating substrate including through holes to fix at least the pair of fixed contacts and formed with a metal foil on an outer peripheral circumferential edge of one surface by a metalizing process. The pair of fixed contacts and a metal cylindrical body are brazed and joined to the metal foils of the fixed contact support insulating substrate, and an insulating cylindrical body is disposed on an inner peripheral surface of the metal cylindrical body.2013-09-05
20130229249Method For Making Magnetic Components With M-Phase Coupling, And Related Inductor Structures - An M phase coupled inductor includes a magnetic core including a first end magnetic element, a second end magnetic element, and M legs disposed between and connecting the first and second end magnetic elements. M is an integer greater than one. The coupled inductor further includes M windings, where each winding has a substantially rectangular cross section. Each one of the M windings is at least partially wound about a respective leg.2013-09-05
20130229250Magnetic Component Structure - An improved magnetic component structure, wherein the structure comprises a base and two iron cores, in which the base includes a centrally through winding axle tube and the openings at both the left and right ends of the winding axle tube individually extend out a baffle. Additionally, the two iron cores are caps, in which a core column extends out from the center of the iron core toward the opening of the winding axle tube, and the core column can be inserted to the centrally through part of the winding axle tube. Therefore, the two iron cores can be clip installed between the two sets of pin parts of the base and left and right assembled to the base such that the base combined with the two iron cores can be installed upright on one side having the notch of a drive circuit board in an LED light tube.2013-09-05
20130229251ELECTRONIC DEVICE AND MANUFACTURING METHOD THEREOF - An electronic device comprising a first magnetic powder, a second magnetic powder and a conducting wire buried in the mixture of the first magnetic powder and the second magnetic powder is provided. The conducting wire comprises an insulating encapsulant and a conducting metal encapsulated by the insulating encapsulant. The Vicker's Hardness of the first magnetic powder is greater than the Vicker's Hardness of the second magnetic powder, and the mean particle diameter of the first magnetic powder is larger than the mean particle diameter of the second magnetic powder. By means of the hardness difference of the first magnetic powder and the second magnetic powder, the mixture of the first magnetic powder and the second magnetic powder and the conducting wire buried therein are combined to form an integral magnetic body at the temperature lower than the melting point of the insulating encapsulant.2013-09-05
20130229252COMMON MODE NOISE FILTER - A common mode noise filter includes: a first magnetic body and a second magnetic body; a non-magnetic body sandwiched between the first magnetic body and second magnetic body; and a first coil conductor and a second coil conductor of planar shape which are embedded in the non-magnetic body and positioned on the first magnetic body side and second magnetic body side in the non-magnetic body in a manner facing each other in a non-contact state; wherein a first lead conductor that connects one end of the first coil conductor to a first external terminal is embedded in the non-magnetic body 13, while a second lead conductor that connects one end of the second coil conductor to a third external terminal is embedded in the non-magnetic body.2013-09-05
20130229253LAMINATED ELECTRONIC COMPONENT AND METHOD OF MANUFACTURING LAMINATED ELECTRONIC COMPONENT - A laminated electronic component includes a first magnetic material portion, a low-magnetic-permeability portion laminated on the first magnetic material portion, a second magnetic material portion laminated on the low-magnetic-permeability portion, at least one annular or spiral coil disposed within the low-magnetic-permeability portion, and a plurality of columnar magnetic material portions disposed within the low-magnetic-permeability portion so as to extend through inside of the coil and connecting the first magnetic material portion to the second magnetic material portion.2013-09-05
20130229254MAGNETIC DEVICE - A magnetic device including a first magnetic core is disclosed. The first magnetic core includes a base having a first edge; a first contacting structure disposed on the base; and a second contacting structure disposed on the base, wherein a distance between an inner surface of the first contacting structure and the first edge is larger than a distance between an inner surface of the second contacting structure and the first edge.2013-09-05
20130229255NETWORK TRANSFORMER MODULE AND MAGNETIC ELEMENT THEREOF - A network transformer module includes a first magnetic element, a second magnetic element, and a connection board. The first magnetic element includes a first winding set and a first core, and the first winding set is wound around the first core. The second magnetic element includes a second winding set and a second core, and the second winding set is wound around the second core. The first winding set of the first magnetic element is independent from the second winding set of the second magnetic element, and the first winding set is not wound around the second core. The connection board electrically couples the first winding set with the second winding set. A magnetic element is also disclosed herein.2013-09-05
Website © 2025 Advameg, Inc.