Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


23rd week of 2012 patent applcation highlights part 16
Patent application numberTitlePublished
20120138901Color Selective Photodetector and Methods of Making - A photoelectric device, such as a photodetector, can include a semiconductor nanowire electrostatically associated with a J-aggregate. The J-aggregate can facilitate absorption of a desired wavelength of light, and the semiconductor nanowire can facilitate charge transport. The color of light detected by the device can be chosen by selecting a J-aggregate with a corresponding peak absorption wavelength.2012-06-07
20120138902Edge-Contacted Vertical Carbon Nanotube Transistor - A vertical device geometry for a carbon-nanotube-based field effect transistor has one or multiple carbon nanotubes formed in a trench.2012-06-07
20120138903Graphene Substrates And Methods Of Fabricating The Same - The graphene substrate may include a metal oxide film on a substrate, and a graphene layer on the metal oxide film. The concentration of oxygen in the metal oxide film may be gradually reduced from the substrate towards the graphene layer, and the graphene layer may be formed directly on the metal oxide film.2012-06-07
20120138904ORGANIC ELECTROLUMINESCENCE DISPLAY AND PRODUCTION METHOD THEREOF - An organic electroluminescence display includes a substrate, a first electrode layer formed on the substrate, a first light emitting layer formed on the first electrode layer and emitting light with a first wavelength, a second light emitting layer formed to overlap at least a part thereof with the first light emitting layer and emitting light with a second wavelength longer than the first wavelength, and a second electrode layer formed on the first or second light emitting layer.2012-06-07
20120138905FLEXIBLE ORGANIC MEMORY DEVICE AND METHOD OF FABRICATING THE SAME - Provided are a flexible organic memory device and a method of manufacturing the same. The flexible organic memory device comprises a flexible substrate. A control gate electrode is disposed on the flexible substrate. A blocking organic insulating layer is disposed on the control gate electrode. A charge trapping layer is disposed on the blocking organic insulating layer, and includes a plurality of nanoparticles. A tunneling organic insulating layer is disposed on the charge trapping layer. An organic semiconductor layer is disposed on the tunneling organic insulating layer.2012-06-07
20120138906CAPTURE AGENTS FOR UNSATURATED METAL COMPLEXES - Compounds that act as capture agents to sequester unsaturated metal complexes are provided. In particular, the compounds may be host materials, dopant materials, or co-dopant materials containing functional groups, such as an isocyanide or a phosphine group, which are suitable for trapping an unsaturated coordination complex. These compounds may be used in organic light emitting devices, particularly blue devices, to provide improved device lifetime.2012-06-07
20120138907LIGHT-EMITTING DEVICE MATERIAL AND LIGHT-EMITTING DEVICE - Embodiments provide a light emitting device material characterized by containing an anthracene compound represented by the following general formula.2012-06-07
20120138908METHODS OF PREPARING A LI FILM AND METHODS OF PREPARING AN ORGANIC LIGHT EMITTING DEVICE - The present invention relates to a method of preparing a Li film, wherein said Li film is fabricated by directly decomposing a compound of Li under a vacuum evaporation condition, and said compound is Li2012-06-07
20120138909STACKED STRUCTURE AND ORGANIC THIN FILM TRANSISTOR AND ARRAY HAVING THE SAME - A stacked structure including a soluble organic semiconductor material and a water soluble photosensitive material is provided. The water soluble photosensitive material is directly disposed on the surface of the soluble organic semiconductor material.2012-06-07
20120138910Light-Emitting Element, Light-Emitting Device, and Electronic Device - It is an object of the present invention to provide a light-emitting element with high light emission efficiency and with a long lifetime. A light-emitting device comprises a first electrode, a second electrode, a light-emitting layer, a first layer, and a second layer, wherein the first layer is provided between the light-emitting layer and the first electrode, the second layer is provided between the light-emitting layer and the second electrode, the first layer is a layer for controlling the hole transport, the second layer is a layer for controlling the electron transport, and light emission from the light-emitting layer is obtained when voltage is applied to the first electrode and the second electrode so that potential of the first electrode is higher than potential of the second electrode.2012-06-07
20120138911BISCARBAZOLE DERIVATIVE, MATERIAL FOR ORGANIC ELECTROLUMINESCENCE DEVICE AND ORGANIC ELECTROLUMINESCENCE DEVICE USING THE SAME - A biscarbazole derivative of the invention is represented by a formula (1A) or (1B) below.2012-06-07
20120138912BISCARBAZOLE DERIVATIVE, MATERIAL FOR ORGANIC ELECTROLUMINESCENCE DEVICE AND ORGANIC ELECTROLUMINESCENCE DEVICE USING THE SAME - A biscarbazole derivative of the invention is represented by a formula (1) below.2012-06-07
20120138913Electrically conductive nanostructures, method for making such nanostructures, electrically conductive polumer films containing such nanostructures, and electronic devices containing such films - A polymer film that contains a mixture of (i) an electrically conductive polymer, and (ii) anisotropic electrically conductive nanostructures, is disclosed, as well as a polymer composition that contains (a) a liquid carrier, (b) an electrically conductive polymer dissolved or dispersed in the liquid carrier, and (c) anisotropic electrically conductive nanostructures dispersed in the liquid carrier, and a method for making polymer film, that includes the steps of: (1) forming a layer of a polymer composition that contains (a) a liquid carrier, (b) one or more electrically conductive polymers dissolved or dispersed in the liquid carrier, and (c) anisotropic electrically conductive nanostructures dispersed in the liquid carrier, and (2) removing the liquid carrier from the layer.2012-06-07
20120138914ANTHRACENE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT ELEMENT USING THE SAME - An anthracene derivative represented by the following formula (1):2012-06-07
20120138915ORGANIC ELECTROLUMINESCENCE DEVICE - An organic electroluminescence device includes an anode, a cathode, and an organic thin-film layer interposed between the anode and the cathode, in which the organic thin-film layer includes an emitting layer at least containing a first host, a second host and a luminous dopant, the first host is a compound having one or more carbazolyl groups and one or more nitrogen-containing heterocyclic groups in a molecule, and the second host is a compound represented by the following formula (1) or (2).2012-06-07
20120138916DEVICE COMPRISING POSITIVE HOLE INJECTION TRANSPORT LAYER, METHOD FOR PRODUCING THE SAME AND INK FOR FORMING POSITIVE HOLE INJECTION TRANSPORT LAYER - A device including a substrate, two or more electrodes facing each other disposed on the substrate and a positive hole injection transport layer disposed between two electrodes among the two or more electrodes, wherein the positive hole injection transport layer contains a reaction product of a transition metal complex or complexes, and wherein at least one or more kinds of transition metals selected from the group consisting of vanadium, rhenium and platinum, or a mixture of molybdenum and one or more kinds of transition metals selected from the group consisting of vanadium, rhenium and platinum is contained in a central metal or metals of the transition metal complex or complexes.2012-06-07
20120138917BLUE-LIGHT-EMITTING IRIDIUM COMPLEX, IRIDIUM COMPLEX MONOMER, PHOSPHORUS POLYMER, AND ORGANIC ELECTROLUMINESCENCE DEVICE USING SAME - Provided are a blue-light-emitting iridium complex, an iridium complex monomer, a phosphorescent polymer, and an organic electroluminescent device using same. The blue-light-emitting iridium complex contains a ligand having a low electron density structure, such as triazole or tetrazole. The iridium complex monomer containing a ligand having a polymerizable vinyl group produces a blue phosphorescent polymer through the polymerization with carbazole derivatives. The organic electroluminescent device comprises a first electrode, a second electrode, and a light-emitting layer interposed between the first electrode and the second electrode, wherein the light-emitting layer contains the above-described iridium complex or polymer containing the iridium complex.2012-06-07
20120138918ORGANIC ELECTROLUMINESCENCE ELEMENT - Atop-emission organic electroluminescence device (2012-06-07
20120138919PHOTO SENSING UNIT AND PHOTO SENSOR THEREOF - A photo sensing unit used in a photo sensor includes a photo sensing transistor, a storage capacitor, and a switching transistor. The photo sensing transistor receives a light signal for inducing a photo current correspondingly, and a source and a gate thereof are respectively coupled to the first signal source and the second signal source. The storage capacitor stores electrical charges induced by the light signal, one terminal thereof is coupled to drain of the photo sensing transistor, and another terminal thereof is coupled to a low voltage. The switching transistor is controlled by the second signal source for outputting a readout signal from the storage capacitor to the signal readout line. The threshold voltage of the photo transistor is higher than that of the switching transistor.2012-06-07
20120138920THIN FILM TRANSISTOR ARRAY PANEL AND MANUFACTURING METHOD THEREOF - A thin film transistor array panel is provided that includes: a gate electrode that is disposed on an insulating substrate; a gate insulating layer that is disposed on the gate electrode; an oxide semiconductor that is disposed on the gate insulating layer; a blocking layer that is disposed on the oxide semiconductor; a source electrode and a drain electrode that are disposed on the blocking layer; a passivation layer that is disposed on the source electrode and drain electrode; and a pixel electrode that is disposed on the passivation layer. The blocking layer includes a first portion that is covered by the source electrode and drain electrode and a second portion that is not covered by the source electrode and drain electrode, and the first portion and the second portion include different materials.2012-06-07
20120138921SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A conductive film to be a gate electrode, a first insulating film to be a gate insulating film, a semiconductor film in which a channel region is formed, and a second insulating film to be a channel protective film are successively formed. With the use of a resist mask formed by performing light exposure with the use of a photomask which is a multi-tone mask and development, i) in a region without the resist mask, the second insulating film, the semiconductor film, the first insulating film, and the conductive film are successively etched, ii) the resist mask is made to recede by ashing or the like and only the region of the resist mask with small thickness is removed, so that part of the second insulating film is exposed, and iii) the exposed part of the second insulating film is etched, so that a pair of opening portions is formed.2012-06-07
20120138922OXIDE SEMICONDUCTOR FILM AND SEMICONDUCTOR DEVICE - An oxide semiconductor film which has more stable electric conductivity is provided. Further, a semiconductor device which has stable electric characteristics and high reliability is provided by using the oxide semiconductor film. An oxide semiconductor film includes a crystalline region, and the crystalline region includes a crystal in which an a-b plane is substantially parallel with a surface of the film and a c-axis is substantially perpendicular to the surface of the film; the oxide semiconductor film has stable electric conductivity and is more electrically stable with respect to irradiation with visible light, ultraviolet light, and the like. By using such an oxide semiconductor film for a transistor, a highly reliable semiconductor device having stable electric characteristics can be provided.2012-06-07
20120138923THIN FILM TRANSISTOR, METHOD FOR MANUFACTURING SAME, ACTIVE MATRIX SUBSTRATE, DISPLAY PANEL AND DISPLAY DEVICE - The present invention provides a thin film transistor including an oxide semiconductor layer (2012-06-07
20120138924METHOD FOR MEASURING IMPURITY CONCENTRATION PROFILE, WAFER USED FOR SAME, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING SAME - According to an embodiment, a method for measuring an impurity concentration profile uses a wafer including a semiconductor layer. The method includes measuring an impurity concentration profile in a depth direction from each surface of a plurality of first portions, each of the first portions being included in any one of a plurality of first regions provided in the semiconductor layer. Each of the first regions has a different size and is surrounded by a second region including a second portion having a different structure from the first portion. The method includes determining a change between the impurity concentration profiles measured in the first regions.2012-06-07
20120138925SEMICONDUCTOR CHIP, STACK-TYPE SEMICONDUCTOR PACKAGE, AND METHOD FOR MANUFACTURING THE SAME - A semiconductor chip includes: a first substrate having a first surface and a second surface facing away from the first surface; a first test through silicon via (TSV) passing through the first substrate from the first surface to the second surface; and a conductive protrusion coupled to the first test TSV and protruding from the second surface.2012-06-07
20120138926ARRAY SUBSTRATE, MANUFACTURING METHOD AND DETECTING METHOD THEREOF, AND LIQUID CRYSTAL PANEL - An embodiment of the present disclosure provides a method of manufacturing an array substrate, comprising at least a step of forming a TFT pattern in a pixel region and correspondingly forming a TFT testing pattern in a testing region, wherein before forming a passivation layer to cover the pixel region and the testing region, a step of removing a gate insulation layer thin film above a testing line lead in the TFT testing pattern.2012-06-07
20120138927SEMICONDUCTOR DEVICE HAVING STACKED STRUCTURE INCLUDING THROUGH-SILICON-VIAS AND METHOD OF TESTING THE SAME - A semiconductor device having a stacked structure including through-silicon-vias (TSVs) and a method of testing the semiconductor device. The semiconductor device includes a first semiconductor layer, one or more second semiconductor layers stacked on the first semiconductor layer, and a plurality of input through-silicon-vias (TSVs) to transmit signals from a plurality of input pads, respectively. In a test mode, a test signal from the plurality of input pads is transmitted through at least two test paths, and the test signal transmitted through each of the test paths is output as a test result with respect to each of the plurality of input TSVs through an output pad.2012-06-07
20120138928Method of Manufacturing Low Resistivity Contacts on n-Type Germanium - Disclosed are methods for manufacturing semiconductor devices and the devices thus obtained. In one embodiment, the method comprises obtaining a semiconductor substrate comprising a germanium region doped with n-type dopants at a first doping level and forming an interfacial silicon layer overlying the germanium region, where the interfacial silicon layer is doped with n-type dopants at a second doping level and has a thickness higher than a critical thickness of silicon on germanium, such that the interfacial layer is at least partially relaxed. The method further includes forming over the interfacial silicon layer a layer of material having an electrical resistivity smaller than 1×102012-06-07
20120138929IR SENSING TRANSISTOR AND MANUFACTURING METHOD OF DISPLAY DEVICE INCLUDING THE SAME - An IR sensing transistor according to an exemplary embodiment of the present invention includes: a light blocking layer formed on a substrate; a gate insulating layer formed on the light blocking layer; a semiconductor formed on the gate insulating layer; a pair of ohmic contact members formed on the semiconductor; a source electrode and a drain electrode formed on respective ones of the ohmic contact members; a passivation layer formed on the source electrode and the drain electrode; and a gate electrode formed on the passivation layer, wherein substantially all of the gate insulating layer lies on the light blocking layer.2012-06-07
20120138930ORGANIC THIN FILM TRANSISTOR AND PROCESSING METHOD THEREOF - An organic thin field transistor is disclosed. The organic thin field transistor includes a first and a second insulting layers, a metal structure and an organic layer serving as an active layer. Materials of the first and the second insulting layers are different, and by performing an etching process, a surface of the metal structure and a surface of the second insulting layer are effectively aligned. Because of the high flatness of the surface of the metal structure and the second insulting layer, a continuous film-forming property and crystallinity of the active layer of the organic thin field transistor are improved, so as to achieve a better the electrical characteristic.2012-06-07
20120138931THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME - The present invention aims at reducing an OFF current in a thin film transistor while maintaining an ON-state current.2012-06-07
20120138932PIXEL STRUCTURE AND MANUFACTURING METHOD THEREOF - A pixel structure and a manufacturing method thereof are provided. In the pixel structure, an electrode of a storage capacitor is formed when an active layer is formed, and the electrode and the active layer are made of the same material. The material of the electrode and the active layer can be an oxide semiconductor with high transmittance. Therefore, a stable display frame of the pixel structure can be provided by the storage capacitor, an aperture ratio of the pixel structure can be improved, and power consumption can be further reduced.2012-06-07
20120138933THIN-FILM TRANSISTOR AND ORGANIC LIGHT-EMITTING DISPLAY DEVICE INCLUDING THE SAME - A thin-film transistor includes a structure for protecting an active layer, and an organic light-emitting display device including the thin-film transistor. The thin-film transistor includes: a gate electrode disposed on a substrate; a first insulating layer disposed on the gate electrode; an active layer disposed on the first insulating layer, and corresponding to the gate electrode; a second insulating layer disposed on the first insulating layer and covering the active layer, the second insulating layer including first and second openings exposing first and second portions of the active layer, respectively; a source electrode disposed on the second insulating layer and connected to the first portion of the active layer via the first opening of the second insulating layer; a drain electrode disposed on the second insulating layer and connected to the second portion of the active layer via the second opening of the second insulating layer; and a dummy member disposed on the second insulating layer and corresponding to at least a third portion of the active layer between the first and second portions of the active layer.2012-06-07
20120138934DISPLAY DEVICE AND METHOD FOR MANUFACTURING THE SAME - The present invention relates to a display device and a method of manufacturing the display device. The display device includes an insulation substrate, a gate conductor including a gate line and a gate electrode, an organic layer on the insulation substrate and the gate line, and a data conductor including a data line, a drain electrode, and a source electrode. The data line crosses the gate line. The gate electrode, the drain electrode, and the source electrode form a transistor, and a thickness of the gate electrode may be larger than a thickness of the gate line.2012-06-07
20120138935ORGANIC LIGHT-EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - Provided is an organic light-emitting display device. The organic light-emitting display device includes: a substrate; a buffer layer formed on the substrate; a gate insulating layer formed on the buffer layer; a conductive layer formed on the gate insulating layer; and a pixel defined layer exposing a portion of the conductive layer to form a pad portion connected to bumps of a drive integrated circuit (IC) chip, wherein protrusions and recesses are formed on a surface of the conductive layer.2012-06-07
20120138936ORGANIC LIGHT-EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - In an organic light-emitting display device and a method of manufacturing the same, the organic light-emitting display device comprises: a substrate in which a light-emitting region and a thin-film transistor (TFT) region are defined; and a plurality of insulating films formed on the substrate. A refractive index changes at only one of the interfaces between insulating films, which correspond to the light-emitting region and are formed between the substrate and a first electrode of an organic electroluminescence display element, and a refractive index changes at two or more of the interfaces between insulating films which correspond to the TFT region.2012-06-07
20120138937Light-Scattering Substrate, Method of Manufacturing the Same, Organic Light-Emitting Display Device Including the Same, and Method of Manufacturing the Organic Light-Emitting Display Device - A light-scattering substrate which can be thinned and has improved thermal resistance, a method of manufacturing the same, an organic light-emitting display device including the same, and a method of manufacturing the organic light-emitting display device are disclosed. The light-scattering substrate includes a light-scattering layer composed of a plurality of metal nanoparticles which are attached to at least a surface of a substrate. The metal nanoparticles are formed by agglomeration of a metal on the substrate, and show a surface plasmon phenomenon.2012-06-07
20120138938DISPLAY APPARATUS AND METHOD OF MANUFACTURING THE SAME - A display apparatus includes a first insulating substrate on which pixels are arranged and a second insulating substrate facing the first insulating substrate. Each pixel includes a gate electrode disposed on the first insulating substrate, a gate insulating layer disposed on the first insulating substrate to cover the gate electrode, a semiconductor pattern disposed on the gate insulating layer to overlap with the gate electrode, a source electrode and a drain electrode disposed on the semiconductor pattern, a transparent pixel electrode disposed on the gate insulating layer and partially making contact with the drain electrode, a protective layer disposed on the pixel electrode, and a common electrode disposed on the first insulating substrate or the second insulating substrate to form an electric field together with the pixel electrode.2012-06-07
20120138939DISPLAY PANEL, METHOD OF MANUFACTURING DISPLAY PANEL, DISPLAY DEVICE, AND ELECTRONIC APPARATUS - A display panel includes: gate lines disposed on a first substrate; signal lines extending across the gate lines and including portions, other than portions thereof that extend across the gate lines, disposed on the same surface as the gate lines, the portions that extend across the gate lines being disposed in positions facing the gate lines with an insulating film interposed therebetween; transistors having gate electrodes connected to the gate lines, source electrodes connected to the signal lines and disposed on the insulating film, and drain electrodes disposed on the insulating film; pixel electrodes connected to the drain electrode and disposed on the insulating film; a protective film covering the transistors and the pixel electrodes; and a common electrode disposed on the protective film.2012-06-07
20120138940THIN-FILM TRANSISTOR FORMING SUBSTRATE, SEMICONDUCTOR DEVICE, AND ELECTRIC APPARATUS - There is provided a thin-film transistor forming substrate in which at least one of a source electrode, a drain electrode, and a gate electrode, which are constituent elements of a thin film transistor, or a first electrode is included on a face of a substrate main body that is located on any one side in a thickness direction. An embedded wiring that is connected to one of the source electrode, the drain electrode, the gate electrode, and the first electrode is buried inside the substrate main body.2012-06-07
20120138941LIQUID CRYSTAL PANEL AND METHODS FOR FABRICATING LIQUID CRYSTAL PANEL, ARRAY SUBSTRATE, AND COLOR FILTER SUBSTRATE - A liquid crystal display panel according to an embodiment of the disclosure comprises an array substrate and a color filter substrate, and primary spacers and protrusions are formed on the array substrate and the color filter substrate and contact each other, the protrusions corresponding to at least one of gate lines and data lines on the array substrate. Also, a method for manufacturing a liquid crystal display panel is provided.2012-06-07
20120138942LIGHT-EMITTING DISPLAY DEVICE AND MANUFACTURING METHOD FOR LIGHT-EMITTING DISPLAY DEVICE - In the light-emitting display device according to the present invention, a side-contact structure is adopted in order to secure a TFT characteristic in a linear region (on-current). In a TFT configuring a switching transistor, a thickness of a semiconductor layer (channel layer) in a region corresponding to the source/drain electrodes is increased. In contrast, in a TFT configuring a driving transistor, in order to maintain an on current, a thickness of a semiconductor layer (channel layer) in a region corresponding to the source/drain electrodes is reduced. This configuration is manufactured using a half-tone mask. With this, it is possible to suppress the off-current in the switching transistor, while securing the on-current in the driving transistor.2012-06-07
20120138943LIQUID CRYSTAL DISPLAY DEVICE AND METHOD OF MANUFACTURING LIQUID CRYSTAL DISPLAY DEVICE - At least one of a drain electrode, a source electrode and a gate electrode includes an aluminum alloy material film. The aluminum alloy material film includes aluminum as a base material, an alloy component containing at least one type of element selected from the group consisting of cobalt, rhodium, nickel, palladium, carbon, silicon, germanium, and tin, and another component containing an element different from aluminum and each element listed above, in which the total number of types of the elements of the alloy component and another component is three or more.2012-06-07
20120138944COMPOUND SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A compound semiconductor device includes: a compound semiconductor layer; a first film formed over the compound semiconductor layer, the first film being in a negatively charged state or a non-charged state at an interface with the compound semiconductor layer; a second film formed over the first film, the second film being in a positively charged state at an interface with the first film; and a gate electrode to be embedded in an opening formed in the second film.2012-06-07
20120138945REDUCING WAFER DISTORTION THROUGH A LOW CTE LAYER - Provided is a method of fabricating a semiconductor device. The method includes forming a first layer on a first side of a first silicon wafer. The first silicon wafer has a second side opposite the first side. The first layer has a coefficient-of-thermal-expansion (CTE) that is lower than that of silicon. The method includes bonding the first wafer to a second silicon wafer in a manner so that the first layer is disposed in between the first and second silicon wafers. The method includes removing a portion of the first silicon wafer from the second side. The method includes forming a second layer over the second side of the first silicon wafer. The second layer has a CTE higher than that of silicon.2012-06-07
20120138946SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device includes a cooler having a main surface constructed of a metal base, joined layers fixed on the metal base through joining layers, insulating layers fixed on the joined layers and which contain an organic resin as a base material, metal layers provided on the insulating layers, and semiconductor elements provided on the metal layers. A stacked structure with the joined layers, the insulating layers, and the metal layers is divided into parts containing one or the plurality of semiconductor elements, and is fixed through the joining layers on the metal base.2012-06-07
20120138947Epitaxial Structure With An Epitaxial Defect Barrier Layer And Methods Making The Same - An epitaxial structure for an LED is provided. The epitaxial structure includes a patterned epitaxial defect barrier layer disposed over a first portion of a substantially flat substrate to expose a second portion of the substrate. The epitaxial structure also includes a patterned buffer layer over the second portion of the substrate. The epitaxial structure further includes a first semiconductor layer over the patterned buffer layer and the patterned epitaxial defect barrier layer, an active layer over the first semiconductor layer, and a second semiconductor layer over the active layer.2012-06-07
20120138948COMPOUND SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A compound semiconductor device includes: an electron transport layer formed over a substrate; an electron supply layer formed over the electron transport layer; and a cap layer formed over the electron supply layer; the cap layer includes a first compound semiconductor layer containing GaN; a second compound semiconductor layer containing AlN, which is formed over the first compound semiconductor layer; a third compound semiconductor layer containing GaN, which is formed over the second compound semiconductor layer; and at least one of a first AlGaN-containing layer and a second AlGaN-containing layer, with the first AlGaN-containing layer formed between the first compound semiconductor layer and the second compound semiconductor layer and the Al content increases toward the second compound semiconductor layer, and the second AlGaN-containing layer formed between the second compound semiconductor layer and the third compound semiconductor layer and the Al content increases toward the second compound semiconductor layer.2012-06-07
20120138949LIGHT EMITTING DEVICE - Disclosed is a light emitting device including a substrate, a first buffer layer disposed on the substrate, the first buffer layer comprising aluminum nitride (AlN), an insertion layer disposed on the first buffer layer, the insertion layer comprising aluminum (Al), and a light emitting structure disposed on the insertion layer, the light emitting structure comprising a first semiconductor layer, a second semiconductor layer, and an active layer interposed between the first semiconductor layer and the second semiconductor layer.2012-06-07
20120138950ISLAND MATRIXED GALLIUM NITRIDE MICROWAVE AND POWER SWITCHING TRANSISTORS - A gallium nitride (GaN) device that has greatly superior current handling ability per unit area than previously described GaN devices. The improvement is due to improved layout topology. The layout scheme, which uses island electrodes rather than finger electrodes, is shown to increase the active area density over that of conventional interdigitated structures. Ultra low on resistance transistors can be built using the island topology. Specifically, the present invention, which uses conventional GaN lateral technology and electrode spacing, provides a means to enhance cost/effective performance of all lateral GaN structures.2012-06-07
20120138951SEMICONDUCTOR CHIP AND PROCESS FOR PRODUCTION THEREOF - A semiconductor chip of the present invention is a semiconductor device that includes a hexagonal semiconductor layer having anisotropic mechanical properties. A semiconductor chip (2012-06-07
20120138952HIGH PRESSURE CHEMICAL VAPOR DEPOSITION APPARATUSES, METHODS, AND COMPOSITIONS PRODUCED THEREWITH - A composition, reactor apparatus, method, and control system for growing epitaxial layers of group III-nitride alloys. Super-atmospheric pressure is used as a process parameter to control the epitaxial layer growth where the identity of alloy layers differ within a heterostructure stack of two or more layers.2012-06-07
20120138953STRUCTURE AND METHOD FOR Vt TUNING AND SHORT CHANNEL CONTROL WITH HIGH K/METAL GATE MOSFETs - A semiconductor device is provided that includes a semiconductor substrate having a well region located within an upper region thereof. A semiconductor material stack is located on the well region. The semiconductor material stack includes, from bottom to top, a semiconductor-containing buffer layer and a non-doped semiconductor-containing channel layer; the semiconductor-containing buffer layer of the semiconductor material stack is located directly on an upper surface of the well region. The structure also includes a gate material stack located directly on an upper surface of the non-doped semiconductor-containing channel layer. The gate material stack employed in the present disclosure includes, from bottom to top, a high k gate dielectric layer, a work function metal layer and a polysilicon layer.2012-06-07
20120138954SEMICONDUCTOR DEVICE - According to one embodiment, provided is a semiconductor device includes: a high frequency semiconductor chip; an input matching circuit disposed at the input side of the high frequency semiconductor chip; an output matching circuit disposed at the output side of the high frequency semiconductor chip; a high frequency input terminal connected to the input matching circuit; a high frequency output terminal connected to the output matching circuit, and a smoothing capacitor terminal connected to the high frequency semiconductor chip. The high frequency semiconductor chip, the input matching circuit and the output matching circuit are housed by one package.2012-06-07
20120138955COMPOUND SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A compound semiconductor device includes a substrate; an initial layer formed over the substrate; and a core layer which is formed over the initial layer and contains a Group III-V compound semiconductor. The initial layer is a layer of Group III atoms of the Group III-V compound semiconductor contained in the core layer.2012-06-07
20120138956COMPOUND SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A compound semiconductor device includes: a substrate; an electron transit layer formed over the substrate; an electron supply layer formed over the electron transit layer; and a buffer layer formed between the substrate and the electron transit layer and including Al2012-06-07
20120138957LIGHT EMITTING DEVICE - Embodiments disclose a light emitting device including a substrate, a buffer layer disposed on an R-plane of the substrate, the buffer layer having a rock salt structured nitride, and a light emitting structure arranged on the buffer layer, the light emitting structure being grown in an a-plane.2012-06-07
20120138958SILICON CARBIDE SEMICONDUCTOR DEVICE - A silicon carbide semiconductor device is provided which has a lower on-resistance and a higher breakdown voltage than those of a conventional silicon carbide semiconductor device. A JFET includes an n type substrate, a p type layer, an n type layer, a source region, a drain region, and a gate region. The n type substrate has a main surface having an off angle of not less than 32° relative to the {0001} plane, and is made of silicon carbide (SiC). The p type layer is formed on the main surface of the n type substrate, and has p type conductivity. The n type layer is formed on the p type layer, and has n type conductivity. The source region and the drain region are formed in n type layer with a space interposed therebetween. The gate region is formed in the n type layer at a region between the source region and the drain region.2012-06-07
20120138959LIGHT EMITTING DIODE WITH A STABLE COLOR TEMPERATURE - A light emitting diode (LED) with a stable color temperature includes at least one LED chip and at least one color sensor module. The LED chip has a main light emitting surface and a sub light emitting surface opposite to the main surface. The color sensor module senses the intensities of light emitting from sub light emitting surface of the LED chip for adjustment of a color temperature of the LED.2012-06-07
20120138960LIGHT SENSOR AND DISPLAY APPARATUS HAVING THE SAME - In a display apparatus, a light sensor of a display includes a light sensing layer, a source electrode, a drain electrode, an insulating layer, and a gate electrode to sense light from an external source. The light sensing layer is disposed on the substrate to sense light, and the source and drain electrodes are disposed on the light sensing layer and are covered by the insulating layer. The gate electrode is disposed on the insulating layer. An edge of the gate electrode is disposed on the light sensing layer at least in an area where the light sensing layer is overlapped with the source and drain electrodes.2012-06-07
20120138961SEMICONDUCTOR PACKAGE STRUCTURE AND MANUFACTURING METHOD THEREOF - A semiconductor package structure includes a package substrate, at least a chip, solder balls, a light emitting/receiving device, a optical intermediary device and an optical transmission device. The package substrate has a first surface, a second surface, a circuit and solder ball pads, wherein each solder ball pad is electrically connected to the circuit. The chip is disposed on the first surface and electrically connected to the circuit. The solder balls are respectively disposed on the solder ball pads. The light emitting/receiving device is disposed on the package substrate and electrically connected to the circuit. The optical intermediary device is disposed above the light emitting/receiving device. The optical transmission device is inserted in the optical intermediary device, wherein a light emitting by the light emitting/receiving device is emitted to the optical transmission device via the optical intermediary device so that an optical signal is transmitted through the optical transmission device.2012-06-07
20120138962LIGHT EMITTING DIODE PACKAGE - A light emitting diode package includes a number of light emitting diode chips, a number of color sensor modules, and a reflecting cup around the light emitting diode chips. Each light emitting diode chip has a main light emitting surface and a sub light emitting surface opposite to the main light emitting surface. Intensities of light from the light emitting diode chips are detected by the color sensor modules for adjusting color temperatures of the light from the light emitting diode chips.2012-06-07
20120138963PIXEL STRUCTURE - A pixel structure includes a substrate, a scan line, a first data line, a second data line, a first active device, a second active device, a first pixel electrode, and a second pixel electrode. The substrate has a first unit area and a second unit area. The first pixel electrode is disposed in the first unit area and includes a first main portion and first branch portions extending from the first main portion to an edge of the first unit area. The second pixel electrode is disposed in the second unit area and includes a second main portion and second branch portions extending from the second main portion to an edge of the second unit area, wherein at least a part of the first branch portions and at least a part of the second branch portions are asymmetrically arranged at two sides of the second data line.2012-06-07
20120138964BACKLIGHT FILM, METHOD AND APPARATUS FOR FORMING SAME - A backlight film includes a flexible substrate with a first electrode layer, a polymeric light emitting layer, a second electrode layer and a protection layer formed subsequently on the flexible substrate. The first electrode layer, the polymeric light emitting layer and the second electrode layer each has a predetermined pattern. The backlight film further includes an insulating layer arranged around the polymeric light emitting layer. A method and an apparatus for forming the backlight film are also provided.2012-06-07
20120138965DISPLAY SUBSTRATE AND METHOD OF MANUFACTURING THE SAME - A display substrate includes a base substrate, a data line, a gate line, a switching element, a self assembled monolayer (SAM) and a pixel electrode. The data line is formed on the base substrate. The gate line is formed across the data line. The switching element includes a source electrode electrically connected to the data line, a drain electrode spaced apart from the source electrode, a semiconductor pattern covering the source and drain electrodes, and a gate electrode electrically connected to the gate line and facing the semiconductor pattern. The SAM is disposed around the semiconductor pattern and a conductive pattern including the data line. The pixel electrode is electrically connected to the switching element.2012-06-07
20120138966Organic Light Emitting Diode Display - An organic light emitting diode (OLED) display includes a first electrode including a conductive black layer, a second electrode facing the first electrode, and an organic emission layer provided between the first electrode and the second electrode.2012-06-07
20120138967LED PACKAGE AND METHOD FOR MANUFACTURING THE SAME - An LED package includes: 2n lead frames (n is a natural number); n LED chips provided above the 2n lead frames, one terminal of each of the n LED chips being connected to each of the n lead frames, another terminal of each of the n LED chips being connected to each of other n lead frames; a wire connected between the terminal and one of the lead frames; and a resin body covering the n LED chips, the wire, and a part of each of the 2n lead frames. The each of the 2n lead frames includes; a base having an upper surface and side surfaces, the upper surface and the side surfaces being covered with the resin body; and a plurality of extending portions extending from the base, one of the extending portions having tip surface which is exposed at one side surface of the resin body, another of the extending portions having tip surface which is exposed at another side surface of the resin body, the one side surface and the another side surface being perpendicular to each other, and. An outer shape of the resin body forms an outer shape of the LED package.2012-06-07
20120138968SEMICONDUCTOR PACKAGE AND DISPLAY PANEL ASSEMBLY HAVING THE SAME - Provided are a semiconductor package with a reduced lead pitch, and a display panel assembly having the semiconductor package. The semiconductor package includes a film having a hole formed therein, a plating pattern formed under the film and forming a wire; a semiconductor chip placed in the hole and electrically connected to the plating pattern; and a first passivation layer formed at a side opposite to the semiconductor chip about the plating pattern and protecting the plating pattern.2012-06-07
20120138969LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING DEVICE WITH THE SAME - The present invention relates to a light emitting device, a light emitting device package, and a lighting device with the same. The light emitting device includes a light emitting structure including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer, a second electrode layer formed on an underside of the light emitting structure connected to the second conductive type semiconductor layer electrically, a first electrode layer in contact with the first conductive type semiconductor layer passed through the second conductive type semiconductor layer and the active layer, and an insulating layer formed between the second electrode layer and the first electrode layer, between the second conductive type semiconductor layer and the first electrode layer, and between the active layer and the first electrode layer.2012-06-07
20120138970FOLDABLE ORGANIC LIGHT EMITTING DIODE DISPLAY - A foldable display includes a first plate, a second plate, a first protecting window, a second protecting window, a soft material layer and an intermediate layer which controls brightness. The first plate includes a thin film transistor and an organic light emitting diode (“OLED”), and displays at least one portion of an image to be displayed. The second plate includes a thin film transistor and an OLED, and displays a second portion different from the first portion of the image. The first protecting window is on the first plate. The second protecting window is on the second plate. The soft material layer is between the first and second protecting windows. The intermediate layer is between the soft material layer and a side surface of the first protecting window, and between the soft material layer and the second protecting window.2012-06-07
20120138971Organic Electro-Optical Component - An organic electro-optical component, with an electrode, counter-electrode, and organic region made up of one or more organic materials, which is in electrical contact and in an active region overlapping with the electrode and the counter-electrode, wherein the electrode and/or the counter-electrode have part electrodes which extend from a part electrode connecting section which is arranged outside of the active region, a distal electrode section is electrically connected via a proximal electrode section to the part electrode connecting section, the distal electrode section is formed at least in sections within the active region, and the proximal electrode section is formed outside of the active region and by means of an electrical pathway, the pathway length of which is larger than the shortest distance between an end of the distal electrode section facing the part electrode connecting section and the part electrode connecting section.2012-06-07
20120138972ARRAY SUBSTRATE AND A METHOD FOR FABRICATING THE SAME AND AN ELECTRONIC PAPER DISPLAY - The present disclosure discloses a method for fabricating an array substrate comprising: depositing a source/drain metallic film on a first base substrate, and forming a source electrode, a drain electrode and a data line; sequentially depositing a semiconductor layer film, a gate insulating layer film and a gate metallic film on the first base substrate, and forming a semiconductor layer, a gate insulating layer, a gate electrode and a gate line; depositing a gate protection layer film on the first base substrate, and forming a gate protection layer and a through hole, wherein the through hole is formed on the gate protection layer corresponding to the drain electrode to expose a portion of the drain electrode; and depositing a pixel electrode film on the first base substrate, and forming a pixel electrode, wherein the pixel electrode is connected to the drain electrode via the through hole.2012-06-07
20120138973ORGANIC LIGHT-EMITTING PANEL AND MANUFACTURING METHOD THEREOF, AND ORGANIC DISPLAY DEVICE - A non-light-emitting cell 2012-06-07
20120138974LIGHT EMITTING DEVICE PACKAGE AND MANUFACTURING METHOD THEREOF - There is provided a light emitting device package including: a substrate having a circuit pattern formed on at least one surface thereof and including an opening; a wavelength conversion layer formed by filling at least a portion of the opening with a wavelength conversion material; and at least one light emitting device disposed on a surface of the wavelength conversion layer and electrically connected to the circuit pattern.2012-06-07
20120138975LIGHT- EMITTING ELEMENT AND DISPLAY DEVICE - A light-emitting element and a display device having a resonator structure which has a small luminance fluctuation, even if a film thickness is deviated from a designed value, thereby resulting in a variation in resonator optical path length. There are included: a first reflective member; a second reflective member; and a light-emitting layer provided therebetween, and there is provided a resonator structure that transmits part of light by the first reflective member or the second reflective member, the light being resonated between the first reflective member and the second reflective member. The resonator structure has at least two or more resonance spectral peaks at respective wavelengths in a visible light range with a wavelength of a maximum value relative luminosity being a border line and an emission output spectrum has at least two or more peaks at respective wavelengths based on the resonance spectral peaks.2012-06-07
20120138976ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE, AND ORGANIC ELECTROLUMINESCENT ILLUMINATING DEVICE - An organic electroluminescent element according to the present invention includes: an anode (2012-06-07
20120138977ANNUAL PACKAGING STRUCTURE FOR LED LAMPS - An annual packaging structure includes a heat sink having an installation surface; and a plurality of annular isolation walls being formed on the installation surface. Each of two opposite sides of each annular isolation wall has a light reflecting surface. Each installation hole is installed with an insulator material of which is selected from glass or other heat insulation material. Each section is installed with a plurality of LED dies; each LED die being electrically connected to a pin. A heat conduction base has an embedding groove for installing the heat sink. A lower bottom of the embedding groove is formed with a plurality of through holes positioned with respect to the installation holes. The pins are extended through the through holes and are limited by the insulators so that the pin are at a center portion for preventing short-circuit.2012-06-07
20120138978LIGHT-EMITTING DIODE PACKAGE - A light-emitting diode (LED) package includes a first chip group, a second chip group and an optical wavelength converting substance. The first chip group includes a plurality of red LED chips configured for emitting red light. The second chip group includes a plurality of blue LED chips configured for emitting blue light. The optical wavelength converting substance is arranged on light paths of the blue LED chips. The optical wavelength converting substance is configured for partly absorbing blue light emitted from the blue LED chips and emitting visible lights with different wavelengths. The plurality of blue LED chips has a total light output larger than that of the plurality of red LED chips.2012-06-07
20120138979DISPLAY APPARATUS AND METHOD OF MANUFACTURING THE DISPLAY APPARATUS - Present embodiments provide a display apparatus including a substrate; a sealing substrate facing the substrate; a display unit between the substrate and the sealing substrate; a first sealing member between the substrate and the sealing substrate to be spaced apart from the display unit, so as to bond the substrate and the sealing substrate to each other; a second sealing member between the substrate and the sealing substrate to be spaced apart from the display unit and the first sealing member, so as to bond the substrate and the sealing substrate to each other; and a light pattern layer on a surface of the sealing substrate opposite to a surface facing the display unit, so as to adjust light intensity transmitted through the sealing substrate. The light pattern layer includes a first pattern corresponding to the first sealing member and a second pattern corresponding to the second sealing member.2012-06-07
20120138980OPTOELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME - An optoelectronic device, comprising: a substrate; a plurality of the first semiconductor rods formed on the substrate, contacted with the substrate, and exposed partial of the first surface of the substrate; a first protection layer formed on the sidewall of the plurality of the first semiconductor rods and the exposed partial of the first surface of the substrate; a first buffer layer formed on the plurality of the first semiconductor rods wherein the first buffer layer having a first surface and a second surface opposite to the first surface, and the plurality of the first semiconductor rods directly contacted with the first surface; and at least one first hollow component formed among the first semiconductor rods, the first surface of the substrate, and the first surface of the first buffer layer and the ratio of the height and the width of the first hollow component is 1/5-3.2012-06-07
20120138981Light-Emitting Diode Apparatus and Method for Making the Same - A light-emitting diode apparatus includes a light-emitting diode, a first package layer provided over the light-emitting diode, and a second package layer provided over the first package layer. The first package layer is dosed with phosphor. The second package layer is not dosed with any phosphor. The second package layer is formed with a textured light-emitting surface.2012-06-07
20120138982LIGHT-EMITTING DIODE DEVICE - A light-emitting diode (LED) device. In one embodiment, the LED device includes a heat dissipation bulk, a first electrode pad, a second electrode pad and at least one LED chip. The heat dissipation bulk includes at least two concaves. The first electrode pad and the second electrode pad are respectively disposed in the concaves and are electrically isolated from each other. The LED chip is embedded into the heat dissipation bulk, and the heat dissipation bulk electrically isolates the LED chip, the first electrode pad and the second electrode pad. The LED chip includes a first electrode and a second electrode of different conductivity types, and the first electrode and the second electrode are electrically connected to the first electrode pad and the second electrode pad respectively.2012-06-07
20120138983LIGHT EMITTING DIODE PACKAGE - An LED package includes a substrate, a blue LED chip, an encapsulant and a fluorescent layer. The blue LED chip is arranged on the substrate. The encapsulant covers the blue LED chip. The fluorescent layer is arranged on a top surface of the encapsulant. The fluorescent layer includes a first fluorescent area above the blue LED chip and a second fluorescent area encircling the first fluorescent area. The first fluorescent area includes red fluorescent substance and green fluorescent substance mixed therein. The second fluorescent area includes yellow fluorescent substance mixed therein.2012-06-07
20120138984Semiconductor light emitting element - A semiconductor light emitting element includes a semiconductor multilayer structure including a first conductive type layer, a second conductive type layer, and a light emitting layer sandwiched between the first conductive type layer and the second conductive type layer, and a reflecting layer formed on the second conductive type layer for reflecting the light emitted from the light emitting layer. The light is extracted in a direction from the light emitting layer toward the first conductive type layer. The first conductive type layer includes a concavo-convex region on a surface thereof not opposite to the light emitting layer, for changing a path of light, and at least a part of the reflecting layer is formed extending to right above an edge of the concavo-convex region.2012-06-07
20120138985SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a second semiconductor layer and a light emitting part. The first semiconductor layer includes an n-type semiconductor layer. The second semiconductor layer includes a p-type semiconductor layer. The light emitting part is provided between the first semiconductor layer and the second semiconductor layer, and includes a plurality of barrier layers and a well layer provided between the plurality of barrier layers. The first semiconductor layer has a first irregularity and a second irregularity. The first irregularity is provided on a first major surface of the first semiconductor layer on an opposite side to the light emitting part. The second irregularity is provided on a bottom face and a top face of the first irregularity, and has a level difference smaller than a level difference between the bottom face and the top face.2012-06-07
20120138986METHOD FOR FABRICATION OF (AL,IN,GA) NITRIDE BASED VERTICAL LIGHT EMITTING DIODES WITH ENHANCED CURRENT SPREADING OF N-TYPE ELECTRODE - A method of fabricating an (Al, In, Ga)N based optoelectronic device, comprising forming an n-type ohmic contact on an (Al, In, Ga)N surface of the device, wherein the surface comprises an Nitrogen face (N-face) and a N-rich face of the (Al, In, Ga)N, the n-type contact is on the N-face and the N-rich face, and the current spreading of the n-type ohmic contact is enhanced by a combination of a lower and a higher contact resistance on the surface.2012-06-07
20120138987OPTICAL PLATFORM TO ENABLE EFFICIENT LED EMISSION - An integrated multi-layer apparatus and method of producing the same is disclosed. The apparatus comprises an LED, a beam shaping layer, and a refracting layer between the beam shaping layer from the LED. The refracting layer may have an index of refraction lower than the index of refraction of the LED and the beam shaping layer.2012-06-07
20120138988LIGHT EMITTING DEVICE PACKAGE AND MANUFACTURING METHOD THEREOF - A light emitting device (LED) package and a manufacturing method thereof are provided. The LED package includes an LED including a first electrode pad and a second electrode pad disposed on one surface thereof; a bonding insulating pattern layer configured to expose the first electrode pad and the second electrode pad; a substrate including a via hole bored from a first surface to a second surface and a wiring metal layer formed on an inner surface of the via hole to extend to a part of the second surface; and a bonding metal pattern layer bonded to the wiring metal layer exposed through the via hole at the first surface of the substrate and also bonded to the first electrode pad and the second electrode pad.2012-06-07
20120138989LIGHT EMITTING DEVICE PACKAGE AND METHOD OF MANUFACTURING THE SAME - A light emitting device package includes a plurality of lead frames separated from one another; at least one light emitting device provided with a wire bonding pad attached to a lower surface thereof opposite an upper light emission surface thereof, and mounted on the lead frames such that the wire bonding pad is positioned in a space between the lead frames; a bonding wire electrically connecting the wire bonding pad to the lead frame through the space between the lead frames; and a mold part encapsulating the lead frames, the light emitting device and the bonding wire, and having a reflection groove formed in an upper surface thereof to expose the light emission surface therethrough and a pad groove formed in a bottom surface thereof to expose a portion of the lead frame so as to form a solder pad thereon.2012-06-07
20120138990METAL SUBSTRATE AND LIGHT SOURCE DEVICE - The invention provides a metal substrate and a light source device ensuring that a semiconductor chip working as a light source can be firmly joined by using a metal joining material, such that heat generated in the mounted semiconductor chip can be efficiently dissipated through a metal plate. The metal substrate includes a heat dissipating metal plate made of a metal except for Au, an insulating resin-made white film stacked on a part of the heat dissipating metal plate, and a light source mounting surface-forming layer stacked on another part of the heat dissipating metal plate. The metal substrate is such that the light source mounting surface-forming layer is a metal layer directly contacting the heat dissipating metal plate, and the light source mounting surface is a surface of an Au layer which is the outermost layer of the light source mounting surface-forming layer.2012-06-07
20120138991HIGH-EFFICIENCY LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD THEREOF - This invention provides a high-efficiency light-emitting device and the manufacturing method thereof The high-efficiency light-emitting device includes a substrate; a reflective layer; a bonding layer; a first semiconductor layer; an active layer; and a second semiconductor layer formed on the active layer. The second semiconductor layer includes a first surface having a first lower region and a first higher region.2012-06-07
20120138992METHOD FOR PREPARING PHOSPHOR AND LIGHT EMITTING DEVICE - A method for preparing a phosphor includes: dissolving at least one metal as a raw material of a desired phosphor in liquid ammonia to form a metal-amide type precursor; gathering the metal-amide type precursor; and firing the precursor to form a desired phosphor.2012-06-07
20120138993LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE - A light emitting device is disclosed. The light emitting device includes a first conductive type semiconductor layer, an active layer disposed on the first conductive type semiconductor layer, a tunnel junction layer comprising a second conductive type nitride semiconductor layer and a first conductive type nitride semiconductor layer disposed on the active layer, wherein the first conductive type nitride semiconductor layer and the second conductive type nitride semiconductor layer are PN junctioned, a first electrode disposed on the first conductive type semiconductor layer, and a second electrode disposed on the first conductive type nitride semiconductor layer, wherein a portion of the second electrode is in schottky contact with the second conductive type nitride semiconductor layer through the first conductive type nitride semiconductor layer.2012-06-07
20120138994LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE, AND LIGHT UNIT - A light emitting device according to an embodiment of the present invention includes a first conductive semiconductor layer providing a roughness on a upper surface thereof and including a PEC etching control layer; an active layer under the first conductive semiconductor layer; a second conductive semiconductor layer under the active layer; a reflective electrode electrically connected to the second conductive semiconductor layer; and a first electrode electrically connected to the first conductive semiconductor layer.2012-06-07
20120138995LIGHT EMITTING DEVICE - A light emitting device includes a substrate, a first conductive type semiconductor layer disposed on the substrate, an active layer disposed on one part of the first conductive type semiconductor layer, a second conductive type semiconductor layer disposed on the active layer, a first electrode disposed on the second conductive type semiconductor layer, and a second electrode disposed on the other part of the first conductive type semiconductor layer, wherein a trench is formed at a portion of the second conductive type semiconductor layer, the active layer or the first conductive type semiconductor layer so that the trench is disposed under the first electrode.2012-06-07
20120138996Semiconductor Light Emitting Devices and Submounts - A submount for a semiconductor light emitting device includes a semiconductor substrate having a cavity therein configured to receive the light emitting device. A first bond pad is positioned in the cavity to couple to a first node of a light emitting device received in the cavity. A second bond pad is positioned in the cavity to couple to a second node of a light emitting device positioned therein. Light emitting devices including a solid wavelength conversion member and methods for forming the same are also provided.2012-06-07
20120138997WHITE COLOR REFLECTING MATERIAL AND PROCESS FOR PRODUCTION THEREOF - A general-use white color reflecting material, and a process for production thereof are provided. The white color reflecting material, without troublesome surface treatment such as formation of a reflective layer by plating, is capable of reflecting a near-ultraviolet ray of a wavelength region of 380 nm or longer or a near-infrared ray sufficiently without light leakage; does not become yellow even when exposed to near-ultraviolet rays; has excellent lightfastness, heat resistance, and weatherability; has high mechanical strength and chemical stability; is capable of maintaining a high degree of whiteness; and is easily moldable at a low cost. Further a white color reflecting material used as an ink composition for producing the white color reflecting material in a film shape is also provided. The white color reflecting material comprises; a silicone resin or silicone rubber formed from titanium oxide-containing silicone composition, in which anatase-type or rutile-type titanium oxide particles are dispersed.2012-06-07
20120138998Light-Emitting Device - A light-emitting device (2012-06-07
20120138999SEMICONDUCTOR LIGHT- EMITTING ELEMENT, SEMICONDUCTOR LIGHT- EMITTING DEVICE, METHOD FOR PRODUCING SEMICONDUCTOR LIGHT- EMITTING ELEMENT, METHOD FOR PRODUCING SEMICONDUCTOR LIGHT- EMITTING DEVICE, ILLUMINATION DEVICE USING SEMICONDUCTOR LIGHT-EMITTING DEVICE, AND ELECTRONIC APPARATUS - The disclosed semiconductor light-emitting element is configured from layering an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer (2012-06-07
20120139000ORGANIC LIGHT-EMITTING DISPLAY APPARATUS AND METHOD OF MANUFACTURING THE SAME - In an organic light-emitting display apparatus and a method of manufacturing the same, a pad region of the organic light-emitting display apparatus comprises a protrusion layer including a plurality of protrusion portions formed on a substrate so as to protrude, a pad lower electrode and a pad upper electrode, the pad lower electrode including a protrusion portion formed along a protrusion outline of the protrusion layer and a flat portion formed along the substrate, and the pad upper electrode being formed on the flat portion of the pad lower electrode. A source/drain electrode layer is formed on the pad upper electrode, an organic layer is formed on the source/drain electrode layer, and a counter electrode layer is formed on the protrusion portion of the pad lower electrode and the organic layer. The counter electrode layer follows the protrusion outline of the protrusion layer on the protrusion portion. According to such a structure, cost is reduced due to a reduction in the number of masks, the manufacturing process is simplified, and a lifting phenomenon of the organic layer in the pad region is solved.2012-06-07
Website © 2025 Advameg, Inc.