Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


18th week of 2010 patent applcation highlights part 69
Patent application numberTitlePublished
20100114228SYSTEM AND METHOD FOR ACCURATELY DETECTING CARDIAC EVENTS USING RETROSPECTIVE CORRELATION - A system and method enables precise detection of the time of occurrence of a cardiac event of a heart. The method includes the steps of sensing electrical activity of the heart to generate an electrogram signal including the cardiac event, storing the electrogram signal, correlating the electrogram signal with an electrogram template, and identifying the time of occurrence of the cardiac event based upon the correlation.2010-05-06
20100114229METHOD AND APPARATUS FOR ASSESSING LEFT VENTRICULAR FUNCTION AND OPTIMIZING CARDIAC PACING INTERVALS BASED ON LEFT VENTRICULAR WALL MOTION - A system and method for monitoring left ventricular (LV) lateral wall motion and for optimizing cardiac pacing intervals based on left ventricular lateral wall motion is provided. The system includes an implantable or external cardiac stimulation device in association with a set of leads including a left ventricular epicardial or coronary sinus lead equipped with a motion sensor electromechanically coupled to the lateral wall of the left ventricle. The device receives and processes wall motion sensor signals to determine a signal characteristic indicative of systolic LV lateral wall motion or acceleration. An automatic pacing interval optimization method evaluates the LV lateral wall motion during varying pacing interval settings, including atrial-ventricular intervals and inter-ventricular intervals and selects the pacing interval setting(s) that correspond to LV lateral wall motion associated with improved cardiac synchrony and hemodynamic performance.2010-05-06
20100114230Method and Apparatus to Detect Ischemia With A Pressure Sensor - The present disclosure provides an apparatus and method of detecting ischemia with a pressure sensor. The method can include obtaining a pressure signal and determining a pressure rate of change. The method can also include identifying at least one of impaired relaxation and impaired contractility in order to detect ischemia.2010-05-06
20100114231METHODS AND SYSTEMS TO MONITOR ISCHEMIA - An implantable medical device includes leads, a segment monitoring module, an impedance detection module and an ischemia module. The leads include electrodes that are configured to be positioned within a heart and that are capable of sensing cardiac signals having a segment of interest. The segment monitoring module determines segment variations of the segment of interest in the cardiac signals. The impedance detection module measures impedance vectors between predetermined combinations of the electrodes. The ischemia detection module monitors ischemia based on changes in the segment variations of the segment of interest and based on changes in the impedance vectors.2010-05-06
20100114232INITIATION TESTS AND GUIDELINES FOR IMPLEMENTING CARDIAC THERAPY - An exemplary system includes a programmer configured to instruct an implantable device and a qualification module with instructions to call for tests performed by an implantable device configured for delivery of CRT, to receive results from the tests, to analyze the results and to decide, based on the analysis, if the patient qualifies for automatic, implantable device-based optimization of one or more CRT parameters and, only if the patient qualifies for automatic, implantable device-based optimization of one or more CRT parameters, presenting a graphical user interface that comprises a selectable control to enable an algorithm of an implantable device to automatically optimize at least one of the one or more cardiac resynchronization therapy parameters. Other exemplary methods, devices, systems, etc., are also disclosed.2010-05-06
20100114233METHODS AND APPARATUSES FOR IMPLANTABLE MEDICAL DEVICE TELEMETRY POWER MANAGEMENT - A method comprises connecting at least one portion of a far-field radio-frequency (RF) first telemetry circuit in an implantable medical device to an energy source through a power connection module, detecting information included in a first predetermined wireless signal, changing a conductivity state of the power connection module when the information in the first predetermined wireless signal is detected to couple power to the at least one portion of the first telemetry circuit, detecting a second predetermined wireless signal, and changing a conductivity state of the power connection module to decouple power to the at least one portion of the first telemetry circuit when the second predetermined wireless signal is detected and the first telemetry circuit enters an idle state.2010-05-06
20100114234Implantable Satellite Effectors - Techniques for controlling one or more modular circuits (“satellites”) that are intended for placement in a subject's body. The one or more satellites are controlled by sending signals over a bus that includes first and second conduction paths. Also coupled to the bus in system embodiments is a device such as a pacemaker that provides power and includes control circuitry. Each satellite includes satellite circuitry and one or more effectors that interact with the tissue. The satellite circuitry is coupled to the bus, and thus interfaces the controller to the one or more effectors, which may function as actuators, sensors, or both. The effectors may be electrodes that are used to introduce analog electrical signals (e.g., one or more pacing pulses) into the tissue in the local areas where the electrodes are positioned (e.g., heart muscles) or to sense analog signals (e.g., a propagating depolarization signal) within the tissue.2010-05-06
20100114235HYBRID BATTERY SYSTEM FOR IMPLANTABLE CARDIAC THERAPY DEVICE - A system and method for powering an implantable cardiac therapy device (ICTD) uses a hybrid battery system. In an embodiment, the hybrid battery system includes of a first type of power cell and a second type of power cell. The first power cell is configured to power low voltage, low current background operations of the ICTD. The second power cell is configured to power high voltage, high current cardiac shocking. The second power cell is further configured to be charged by the first power cell via a continuous, non-regulated charging process, thereby reducing the complexity of the charging circuitry. The system is further configured so that when cardiac shocking is in progress, only the secondary power cell powers the shocking capacitor(s) of the ICTD, and the first power cell is electrically isolated from the shocking capacitor(s). This configuration contributes to longer battery life of the hybrid battery system.2010-05-06
20100114236HYBRID BATTERY SYSTEM WITH BIOELECTRIC CELL FOR IMPLANTABLE CARDIAC THERAPY DEVICE - A system and method for powering an implantable cardiac therapy device (ICTD) via a hybrid battery system. The hybrid battery is comprised of a low voltage and low current bioelectric cell, a high voltage and high current rechargeable cell, and a charging means. Via the charging means, the bioelectric cell maintains the rechargeable cell at or near full power. The rechargeable cell is configured to power some or all operations of the ICTD. Some ICTD operations may be powered directly by the bioelectric cell. The rechargeable cell is further configured to be charged via a continuous charging process, reducing the complexity of the charging circuitry. In an embodiment, at least the bioelectric cell is external to the ICTD, enabling easy replacement of this power source. In an embodiment, a consumable anode of the bioelectric cell is external to the ICTD, enabling replacement of the power source by replacing only the anode.2010-05-06
20100114237MOOD CIRCUIT MONITORING TO CONTROL THERAPY DELIVERY - Brain signals may be monitored at different locations of a mood circuit in order to determine a mood state of the patient. A relationship (e.g., a ratio) between frequency band characteristics of the monitored brain signals may be indicative of a particular mood state. In some examples, therapy parameter values that define the therapy delivered to the patient may be selected to maintain a target relationship (e.g., a target ratio) between the frequency band characteristics of the brain signals monitored within the mood circuit. In addition, in some examples, therapy delivery to the patient may be controlled based on the frequency band characteristics of brain signals sensed at different portions of the mood circuit.2010-05-06
20100114238INTEGRATION OF FUNCTIONAL ELECTRICAL STIMULATION IN PROSTHETIC SOCKETS, LINERS, AND GARMENTS FOR IMPROVED AMPUTEE CARE AND PERFORMANCE - The present disclosure provides a functional electrode stimulation (FES) apparatus for use with prosthetic limbs. FES may provide the benefits of pain management, muscle building, prevention of muscle atrophy, and muscle re-education of residual limb and/or peri-residual limb muscles. The FES apparatus comprises a portable electrical stimulator; means to carry a current between the electrical stimulator and a prosthetic limb liner or socket; a plurality of elastic conductors integrated with the prosthetic limb liner or socket and capable of carrying the current from the means; a plurality of thin planar conductive fabric electrodes capable of carrying the current from the elastic conductors; and a plurality of thin electrodes capable of carrying the current between the thin planar conductive fabric electrodes and the skin of a patient.2010-05-06
20100114239METHODS FOR TREATING CENTRAL NERVOUS SYSTEM DAMAGE - Methods for the treatment of CNS damage are described, and include inducing in a subject in need of such treatment, a therapeutically effective amount of functional electronic stimulation (FES) sufficient to evoke patterned movement in the subject's muscles, the control of which has been affected by the CNS damage. The induction of FES-evoked patterned movement at least partially restores lost motor and sensory function, and stimulates regeneration of neural progenitor cells in the subject patient.2010-05-06
20100114240SYSTEM AND METHOD FOR FACIAL NERVE STIMULATION - A method for stimulating facial nerves in a subject with synkinetic reinnervated muscles includes providing an electrode, having a plurality of contacts, in a parotic region of the subject's face, stimulating each of the contacts separately, identifying one or more contacts from the plurality of contacts that cause one or more nerve branches to activate a desired facial muscle, and selecting the identified contacts to stimulate the one or more nerve branches. The system includes an electrode having a plurality of contacts for placement in a parotic region of the subject's face and a processor in communication with the electrode. The processor has program code for stimulating each of the contacts separately, for identifying one or more contacts from the plurality of contacts that cause one or more nerve branches to activate a desired facial muscle, and for selecting the identified contacts to stimulate the one or more nerve branches.2010-05-06
20100114241INTERFERENCE MITIGATION FOR IMPLANTABLE DEVICE RECHARGING - A therapy or monitoring system may implement one or more techniques to mitigate interference between operation of a charging device that charges a first implantable medical device (IMD) implanted in a patient and a second IMD implanted in the patient. In some examples, the techniques may include modifying an operating parameter of the charging device in response to receiving an indication that a second IMD is implanted in the patient. The techniques also may include modifying an operating parameter of the second IMD in response to detecting the presence or operation of the charging device.2010-05-06
20100114242MODULAR UNIVERSAL PROGRAMMING DEVICE - A universal programming device for individualized patient medical devices such as implants has an RF transceiver (transmitter/receiver), a control unit, and a man-machine interface (or a connection for a man-machine interface). The RF transceiver is configured to receive and transmit data in the MICS frequency band. The control unit is connected to the transceiver and has preconfigured software interfaces, such that the programming device can be expanded by addition of control software modules. The preconfigured software interfaces define a uniform interface for triggering the transceiver, which the control software modules can access. The man-machine interface, e.g., a keyboard and/or a display (and/or the connection for such a man-machine interface) is connected to the control unit.2010-05-06
20100114243PRESELECTOR INTERFERENCE REJECTION AND DYNAMIC RANGE EXTENSION - A wireless telemetry module and associated method reject interference in a received signal. The wireless telemetry module includes an antenna receives a communication signal transmitted at a desired channel frequency and having a channel bandwidth. A transceiver is controlled to operate in receiving and transmitting modes by a processor. An interference rejection module receives control signals from the processor corresponding to the desired channel frequency and is coupled between the antenna and the transceiver when the transceiver is operating in the receiving mode.2010-05-06
20100114244ELECTRICAL RENAL AUTONOMIC BLOCKADE - Electrical stimulation may be configured to decrease renal sympathetic activity by creating at least a partial functional conduction block in the efferent and/or afferent sympathetic nerve fibers that innervate the kidneys. An electrical stimulator may deliver a stimulation signal to a renal nerve of a patient. The stimulation signal may be a biphasic signal with a frequency of approximately 100 hertz to 20 kilohertz. In some examples, a sensor may sense a physiological parameter of the patient, and the stimulation generator may activate, deactivate, or adjust the stimulation signal based on the physiological parameter. The physiological parameter may be indicative of sympathetic activity within the patient.2010-05-06
20100114245Antenna for Implantable Medical Devices Formed on Extension of RF Circuit Substrate and Method for Forming the Same - An antenna for an implantable medical device (IMD) is provided that is formed on the same substrate as the telemetry circuitry for the IMD. The telemetry circuitry is formed on a portion of the substrate within the interior of a housing for the IMD, while at least one antenna is formed on an exterior portion of the substrate on the exterior of the housing to allow for far field telemetry. At least one electrical interconnect is formed on the substrate for connecting the antenna to the telemetry circuitry, where the electrical interconnect may comprise a controlled impedance line to minimize loss. A conformally-shaped hermetic cover, such as a ceramic material, may be formed in a desired shape around the exterior portion of the substrate and antenna and cofired together to form a monolithic structure encasing the antenna and exterior portion of the substrate.2010-05-06
20100114246Co-Fired Multi-Layer Antenna for Implantable Medical Devices and Method for Forming the Same - An antenna for an implantable medical device (IMD) is provided including a monolithic structure derived from a plurality of discrete dielectric layers having an antenna embedded within the plurality of dielectric layers. The antenna includes antenna portions formed within different layers of the monolithic structure with at least one conductive via formed to extend through the dielectric layers in order to provide a conductive pathway between the portions of the antenna formed on different layers, such that an antenna is formed that extends between different vertical layers. The dielectric layers may comprise layers of ceramic material that can be co-fired together with the antenna to form a hermetically sealed monolithic antenna structure. The antenna embedded within the monolithic structure can be arranged to have a substantially spiral, helical, fractal, meandering or planer serpentine spiral shape.2010-05-06
20100114247SYSTEM, AN APPARATUS AND A CONTAINER FOR STORING AN IMPLANTABLE MEDICAL DEVICE, AND A METHOD FOR PACKAGING SUCH A DEVICE - An implantable medical device is stored in a container prior to implantation in body tissue. The, IMD includes transmitter/receiver circuitry and at least one antenna. The storage container (packaging) includes an impedance altering substance positioned in proximity to the IMD when stored in the container, the substance having electrical material properties that alter the input impedance of the antenna to improve receive and transmit properties of the antenna when the IMD is stored in the container. A container for storing an IMD having an antenna has a packaging tray for housing the IMD, the packaging tray having a support for supporting the IMD and the container includes a substance positioned in proximity to the support that has electrical material properties that after the input impedance of the antenna of the IMD supported by the support, so as to improve receive and transmit properties of the antenna. A method for packaging an IMD prior to implantation in body tissue includes the step of providing such an impedance altering substance in the pre-implantation IMD packaging, in proximity to the packaged IMD.2010-05-06
20100114248ISOLATION OF SENSING AND STIMULATION CIRCUITRY - The disclosure describes techniques of reducing or eliminating a commonality between two modules within the same implantable medical device. Each module within the implantable medical device provides therapy to a patient. The commonality between the two modules exists due to at least one common component shared by the two modules. The commonality between the two modules may create common-mode interference and a shunt current. In accordance with this disclosure, various isolation circuits located at various locations are disclosed to reduce or eliminate the commonality between the two modules. The reduction or elimination of the commonality between the two modules may reduce or eliminate common-mode interference and the shunt current.2010-05-06
20100114249NON-HERMETIC DIRECT CURRENT INTERCONNECT - A modular implantable medical device (IMD) may include a non-hermetic interconnect. The non-hermetic interconnect may electrically couple a first module and a second module of the modular IMD. A conductor in the non-hermetic interconnect may conduct electrical energy from the first module to the second module under an applied direct current (DC) voltage.2010-05-06
20100114250Methods for Configuring Implantable Satellite Effectors - Techniques for controlling one or more modular circuits (“satellites”) that are intended for placement in a subject's body. The one or more satellites are controlled by sending signals over a bus that includes first and second conduction paths. Also coupled to the bus in system embodiments is a device such as a pacemaker that provides power and includes control circuitry. Each satellite includes satellite circuitry and one or more effectors that interact with the tissue. The satellite circuitry is coupled to the bus, and thus interfaces the controller to the one or more effectors, which may function as actuators, sensors, or both. The effectors may be electrodes that are used to introduce analog electrical signals (e.g., one or more pacing pulses) into the tissue in the local areas where the electrodes are positioned (e.g., heart muscles) or to sense analog signals (e.g., a propagating depolarization signal) within the tissue.2010-05-06
20100114251TACTILE FEEDBACK FOR INDICATING VALIDITY OF COMMUNICATION LINK WITH AN IMPLANTABLE MEDICAL DEVICE - Implantable medical device telemetry is provided between an implantable medical device and an external communication device. The implantable medical device includes a device transmitter and/or a device receiver. The external communication device includes a moveable communication head including an antenna therein connected to at least one of an external transmitter and/or an external receiver for communication with the device transmitter and/or the device receiver of the implantable medical device. A user moves the moveable head apparatus relative to the implantable medical device. Tactile feedback is provided to the user via the moveable head apparatus upon movement of the moveable head apparatus to a position where valid telemetry can be performed.2010-05-06
20100114252DETERMINATION OF STIMULATION OUTPUT CAPABILITIES THROUGHOUT POWER SOURCE VOLTAGE RANGE - Techniques for determining whether a medical device will be able to deliver stimulation according to a particular program throughout a useable voltage range of a power source of the medical device are described. According to some examples, the medical device charges a charge pump to a level sufficient to provide a stimulation output according to a stimulation program, determines a length of time that the charge pump charges at the present power source voltage level, and determines a time between stimulation pulses of the stimulation program. Whether the medical device will be able to deliver stimulation according to the program when the power source is at a power source voltage level lower than the present voltage level is determined based on the length of time the charge pump charges at the present voltage level of the power source and the time between stimulation pulses.2010-05-06
20100114253PASSIVE CHARGE OF IMPLANTABLE MEDICAL DEVICE UTILIZING EXTERNAL POWER SOURCE AND METHOD - External power source for an implantable medical device implanted in a patient, the implantable medical device having a secondary coil operatively coupled to therapeutic componentry and method therefore. A modulation circuit is operatively coupled to a power source. A plurality of primary coils are operatively coupled to the modulation circuitry and physically associated with an article into which the patient may come into proximity. The modulation circuit drives at least one of the plurality of primary coils. A sensor is coupled to modulation circuit and is adapted to sense proximity of a component related to the implantable medical device. The modulation circuit commences operation to drive at least one of the plurality of primary coils when the sensor senses proximity with the component related to the implantable medical device.2010-05-06
20100114254SUBCLAVIAN ANSAE STIMULATION - Techniques for improving cardiac performance by applying stimulation to the subclavian ansae nerve of a patient are disclosed. In one example, a method comprises identifying a human patient as having a cardiac condition, and delivering stimulation therapy to a subclavian ansae nerve of a human patient with a stimulation electrode.2010-05-06
20100114255System for altering motional response to sensory input - A system is generally described for altering a user's motional response to sensory input and includes a current source and a first sensory input device configured to provide a first sensory input to a user. The system also includes a second sensory input device configured to provide a second sensory input to a user and a sensor device configured to detect motions associated with the user. Further, the system includes a control unit configured to receive signals from the sensor and receive sensory signals related to the first and second sensory inputs. The control unit generates control signals based on the signals and the sensory signals. Further still, the system includes electrical contacts configured to contact flesh of the user and deliver current from the current source to the vestibular system of the user in response to the control signals and the current is configured to cause the user to move in a predetermined manner if the user is not in the process of making the predetermined motion.2010-05-06
20100114256Adaptive system and method for altering the motion of a person - A method is generally described which includes producing a sound from a sound device capable of producing sound. The sound device is in communication with a sound data source. The sound data source is associated with at least one set of sounds. The method also includes detecting motions, by a feedback sensor device, the motions associated with the user. The further the method includes providing information from an information source including information associated with at least one characteristic of the at least one set of sounds and providing the information to a control program configured to receive data representative of the detected motions and to receive the information. Further still, the method includes generating, by the control program, control data based on the data representative of the detected motions and the information. The control program is configured to receive data representative of the detected motions and to receive the information. The control program has a control algorithm configured to generate control data based on the data representative of the detected motions and the information. Further still, the method includes running the control program by a controller configured to output control signals based on the control data and adjusting parameters of at least one of the controller, the feedback sensor, the sound source, the information, or the control algorithm, by an adaptive system. Yet further still, the method includes delivering current from the current source to the vestibular system of the user in response to the control signals, by a vestibular stimulation device.2010-05-06
20100114257DETERMINATION OF STIMULATION OUTPUT CAPABILITIES THROUGHOUT POWER SOURCE VOLTAGE RANGE - Techniques for determining whether a medical device will be able to deliver stimulation according to a particular program throughout a useable voltage range of a power source of the medical device are described. According to some examples, the medical device configures a DC to DC converter of the medical device in a specified output configuration and delivers electrical stimulation from the medical device according to a program while at the specified output configuration. Whether the medical device will be able to deliver stimulation according to the program when the power source is at a power source voltage level lower than a present voltage level used during therapy delivery is determined based on a value of a voltage drop across a regulator module determined while delivering the electrical stimulation according to the program. The determination for a program may be performed, as an example, when the program is created or modified.2010-05-06
20100114258ISOLATION OF SENSING AND STIMULATION CIRCUITRY - The disclosure describes techniques of reducing or eliminating a commonality between two modules within the same implantable medical device. Each module within the implantable medical device provides therapy to a patient. The commonality between the two modules exists due to at least one common component shared by the two modules. The commonality between the two modules may create common-mode interference and a shunt current. In accordance with this disclosure, various isolation circuits located at various locations are disclosed to reduce or eliminate the commonality between the two modules. The reduction or elimination of the commonality between the two modules may reduce or eliminate common-mode interference and the shunt current.2010-05-06
20100114259Method and Apparatus for Stimulating a Nerve of a Patient - Single-use electrical leads for a nerve stimulator are disclosed. The leads include a status flag element such as a fuse, which is deliberately blown after use of the leads has begun to indicate that the leads are not to be reused. The nerve stimulator has a “test mode” that determines a current value for treatment, and a “therapy mode” that administers treatment with the chosen current value. If the fuse in the electrical leads is blown (not conducting), then the stimulator assumes that the leads have already been used and does not enter therapy mode, and optionally may not enter test mode. If the fuse in the electrical leads is intact (conducting), or not blown, then the stimulator assumes that the leads are as yet unused, and allows the user to enter either test mode or therapy mode. The fuse is deliberately blown after a particular amount of time spent in therapy mode. After the fuse is blown, the user may still complete the therapy mode, even though the fuse is non-conducting, although the user may not initiate another therapy mode (and optionally may not initiate another test mode) using the blown leads. Preferably the fuse is electrically isolated from the leads that contact the patient.2010-05-06
20100114260IMPLANTABLE THERAPEUTIC NERVE STIMULATOR - A medical device includes an implantable device having a processor, a pulse generator and a first lead having first and second ends. The first end of the lead is operably and conductively coupled to the implantable device. A first electrode is operably and conductively coupled to the second end of the first lead. The first electrode has a sharp tip for transmitting and focusing a stimulation signal from the pulse generator to a tissue site.2010-05-06
20100114261Electrical Stimulation Treatment of Hypotension - The present invention includes methods and devices for treating hypotension, such as in cases of shock, including septic shock, anaphylactic shock and hypovolemia. The method includes the step of applying at least one electrical impulse to at least one selected region of a parasympathetic nervous system of the patient. The electrical impulse is sufficient to modulate one or more nerves of the parasympathetic nervous system to increase the ratio of blood pressure to heart rate and relieve the condition and/or extend the patient's life.2010-05-06
20100114262LIGHT THERAPY DEVICE - A light treatment device including an outer housing, a light emitting assembly in the housing and operable to emit light through an opening in the housing, the light emitting assembly including a plurality of LEDs capable of generating light of less than 2,500 lux at 12 inches.2010-05-06
20100114263Phototherapy garment - A phototherapy garment including a form-fitting bodysuit having a shell made from a stretchable, washable material covering the arms, legs, and torso which provides phototherapeutic light via a layer of cross-woven side-glow optical fibers. The bodysuit has an adjustable fastening system along the arms, legs, and torso to allow for variable sizing and a snug fit. Light is transmitted into the fibers via a waterproof base unit that is detachably attached to a housing dock on the side of the bodysuit. The LEDs emit high-intensity light of a wavelength or wavelengths suitable for treatment of various medical conditions. Each wavelength is transmitted separately into a respective one of a series of cross-woven optical fibers. Optionally, a reflective liner within the bodysuit may redirect irradiation from the fibers back toward the skin so no energy is wasted. Another embodiment includes a transparent liner. The base unit includes a power supply that may includes a rechargeable battery. The suit may also include biofeedback and data logging systems.2010-05-06
20100114264DEVICE FOR IRRADIATING AN OBJECT, IN PARTICULAR HUMAN SKIN, WITH UV LIGHT - The invention relates to a device for irradiating an object, in particular human skin, with UV light. Said device comprises a UV light source and an irradiation head containing imaging optics, UV light being projected from the irradiation head onto the object. A light source that emits visible light is provided in addition to the UV light source, the light from said additional source being projected onto the object by means of the imaging optics of the irradiation head. According to the invention, a preferably electronically controlled unit for the variable adjustment of the light distribution on the object is located in the irradiation head and UV light from the UV light source and/or visible light from the light source emitting visible light can be selectively or simultaneously supplied to said unit.2010-05-06
20100114265DEVICE FOR IRRADIATING AN OBJECT, IN PARTICULAR THE HUMAN SKIN, WITH UV LIGHT - The invention relates to a device for irradiating an object, in particular human skin, with UV light. Said device comprises a UV light source and an irradiation head containing imaging optics, UV light being projected from the irradiation head onto the object. According to the invention, a position detection unit is provided for the contactless detection of the spatial progression of the region on the surface of the object that is to be irradiated.2010-05-06
20100114266DEVICE FOR IRRADIATING AN OBJECT, IN PARTICULAR HUMAN SKIN, WITH UV LIGHT - The invention relates to a device for irradiating an object, in particular human skin, with UV light. Said device comprises a UV light source and an irradiation head containing imaging optics, UV light being projected from the irradiation head onto the object. According to the invention, the irradiation head can be adjusted by means of a motor, the UV light source is situated in a separate light source housing outside the irradiation head and at least one flexible fibre optic is located between the light source housing and the irradiation head, said fibre optic being used to feed UV light from the UV light source to the irradiation head.2010-05-06
20100114267Compositions and methods for surface abrasion with frozen particles - Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.2010-05-06
20100114268Compositions and methods for surface abrasion with frozen particles - Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.2010-05-06
20100114269VARIABLE GEOMETRY BALLOON CATHETER AND METHOD - A medical device is provided that may include a catheter body having proximal and distal portions, a fluid injection lumen disposed within elongate body, and a guidewire lumen disposed within the elongate body. A tip portion defining a cavity in fluid communication with the fluid injection lumen may be coupled to the distal end of the guidewire lumen, and an expandable element may be coupled to the distal portion of the catheter body and to the tip portion, such that the expandable element is in fluid communication with the fluid injection lumen. A shaping element may at least partially surround the expandable element, where the shaping element is configurable in a first geometric configuration and a second geometric configuration.2010-05-06
20100114270VARIABLE STIFFNESS HEATING CATHETER - The variable stiffness heating catheter includes a heating catheter shaft including at least one electrically conductive member, a reinforcing tube with apertures formed around the surface of the reinforcing tube, and at least one coaxial outer layer of a polymer, metal, or both for providing desired variations in stiffness along at least a portion of the length of the shaft. The apertures can be formed as axial or helical slits in the surface of the reinforcing tube, and the reinforcing tube can also be formed to be tapered at the point where the apertures are formed in the reinforcing tube to provide a heating catheter that is torqueable and pushable at the proximal end, yet soft and flexible at the distal end.2010-05-06
20100114271SHIELDED CONDUCTOR FILAR - STIMULATION LEADS - A lead for a medical device includes an elongate filar core member having an axis, which is operable for transmitting a lead signal. Furthermore, the lead includes an insulating layer disposed directly on the elongate filar core member and that extends along the axis. The lead also includes an electrically conductive layer disposed directly on the insulating layer and that extends along the axis.2010-05-06
20100114272MULTIPLE MICRO-WIRE ELECTRODE DEVICE AND METHODS - A device and method for targeting multiple sites of nervous tissue includes an outer elongated element (2010-05-06
20100114273ELECTRODE FOR FUNCTIONAL ELECTRICAL STIMULATION - The present disclosure provides a hydrogel electrode designed to be integrated within a wearable functional electrode stimulation (FES) system. The wearable FES system comprises a portable electrical stimulator; wearable and stretchable clothing; an electrical connection between the electrical stimulator and the wearable and stretchable clothing; means to carry a current within the clothing; and one or more hydrogel electrode(s) which interface between the clothing and an applicable body part.2010-05-06
20100114274SURFACE MODIFICATION OF IMPLANTABLE ARTICLE - An implantable elastomeric article having modified surface characteristics on at least one surface obtained by application of an acid on said at least one surface and after a predetermined treatment time removing the acid by rinsing. The treatment gives the surface an increased roughness that decreases the friction against another object. A method of modifying surface characteristics of at least one surface on an implantable elastomeric article, comprising application of an acid, followed by rinsing. A method of assembly of an implantable electrode lead made of silicone tubing and a spiral conductor, comprising treating the tubing with an acid before inserting the conductor into the tubing.2010-05-06
20100114275IMPLANTABLE MEDICAL LEAD INCLUDING WINDING FOR IMPROVED MRI SAFETY - An implantable medical lead for coupling to an implantable pulse generator may be configured for improved MRI safety. The lead may include: a tubular body including a proximal end and a distal end; a first electrode operably coupled to the tubular body near the distal end; and a first electrical coil conductor extending distally through the body from the proximal end and electrically connected to the first electrode. The coil conductor may include at least one transition in which the coil conductor changes from being helically coiled in a first direction to being helically coiled in a second opposite direction. A method of forming such a lead may include: helically coiling at least a portion of a first electrical coil conductor by winding the coil conductor in a first direction, and winding the coil conductor in a second direction opposite the first direction so as to form a transition.2010-05-06
20100114276MRI COMPATIBLE IMPLANTABLE MEDICAL LEAD AND METHOD OF MAKING SAME - An implantable medical lead is disclosed herein. In one embodiment, the lead includes a body and an electrical pathway. The body may include a distal portion with an electrode and a proximal portion with a lead connector end. The electrical pathway may extend between the electrode and lead connector end and include a coiled inductor including a first portion and a second portion at least partially magnetically decoupled from the first portion. The first portion may include a first configuration having a first SRF. The second portion may include a second configuration different from the first configuration. The second configuration may have a second SRF different from the first SRF. For example, the first SRF may be near 64 MHz and the second SRF may be near 128 MHz.2010-05-06
20100114277MRI COMPATIBLE IMPLANTABLE MEDICAL LEAD AND METHOD OF MAKING SAME - An implantable medical lead is disclosed herein. The lead may include a body and an electrical pathway. The body may include a distal portion with an electrode and a proximal portion with a lead connector end. The electrical pathway may extend between the electrode and lead connector end and may include a coiled inductor including first and second electrically conductive filar cores. The first and second filar cores may be physically joined into a unified single piece proximal terminal on a proximal end of the coiled inductor. The first and second cores may be physically joined into a unified single piece distal terminal on a distal end of the coiled inductor. The first and second filar cores may be helically wound into a coiled portion between the proximal and distal terminals, the filar cores being electrically isolated from each other in the coiled portion. The proximal terminal may be electrically coupled to a portion of the electrical pathway extending to the lead connector end, and the distal terminal may be electrically coupled to a portion of the electrical pathway extending to the electrode.2010-05-06
20100114278DEPOSITED CONDUCTIVE LAYERS FOR LEADS OF IMPLANTABLE ELECTRIC STIMULATION SYSTEMS AND METHODS OF MAKING AND USING - An implantable lead includes an inner core substrate. A plurality of conductors that include at least one layer of at least one conductive material are deposited on the inner core substrate. A patterned insulator layer is disposed over the conductors such that at least two regions of each conductor remain exposed through the insulator. A patterned terminal layer defines a plurality of separated terminals that are deposited at a proximal end of the lead. At least one terminal is electrically coupled to each conductor via at least one of the exposed regions of the at least one conductor. A patterned electrode layer defines a plurality of separated electrodes that are deposited at a distal end of the lead. At least one electrode is electrically coupled to each conductor via at least one of the exposed regions of the at least one conductor.2010-05-06
20100114279MEDICAL IMPLANTABLE LEAD - A medical implantable lead has a proximal end and a distal end, and a flexible flat elongate body. The elongate body includes a layer of strip conductors extending along the length of the flat elongate body, a top insulating layer, and a bottom insulating layer. The layer of strip conductors is sealingly enclosed between the top and bottom insulating layers, and at least a major portion of the flat elongate body is twisted into an elongate helical portion having a central cavity extending longitudinally of the helical portion.2010-05-06
20100114280MEDICAL IMPLANTABLE LEAD AND A METHOD FOR ATTACHING THE SAME - A medical implantable lead of the type being adapted to be implanted into a human or animal body and attached with a distal end to an organ inside the body, has a helix of a helical wire in the distal end which is adapted to be screwed into the organ. In addition to the first helix, the lead also has a second helix of a helical wire, the second helix having the same diameter, the same pitch and being intertwined with the helical wire of the first helix and which, upon rotation of the first helix, will be rotated and screwed into the tissue. The first helix is electrically non-conductive whereas the second helix is electrically conductive. In a method for attaching a medical implantable lead to an organ inside a human or animal body, such a medical lead is employed and fixed to tissue in vivo.2010-05-06
20100114281MRI CONDITIONALLY SAFE LEAD EXTENSION AND METHODS - Lead extensions, systems, and methods providing MRI compatible deep brain stimulation (DBS) and spinal cord stimulation (SCS) systems are described. Lead extensions are provided having band stop filters (BSFs) which resonate at a frequency expected from MRI systems to create a very high impedance which can effectively decouple the implanted lead from the lead extension proximal of the BSF and change the effective length. Changing the effective length can reduce the likelihood of undesirably heating tissue near the DBS/SCS electrodes during MRI. Some lead extensions include BSFs in a distal connector for coupling to the lead contacts. The BSFs can be included within a burr hole cap base which can also include a connector for connecting to the DBS lead. DBS and SCS leads having a sacrificial proximal portion and intermediate electrical contacts are also provided.2010-05-06
20100114282IMPLANTABLE MEDICAL DEVICE CONDUCTOR INSULATION AND PROCESS FOR FORMING - An elongate medical electrical lead conductor includes a layer of hydrolytically stable polyimide formed thereover.2010-05-06
20100114283IMPLANTABLE MEDICAL LEAD - An implantable medical lead includes an elongate central body having an axis and a first extendable member pivotably moveable relative to the central body such that a portion of the extendable member is configured to move from a retracted position relative to the axis of the elongate central body to an extended position where the portion of the extendable member extends laterally beyond the central body. The lead includes a first electrode disposed on the central body and second and third electrodes disposed on the extendable member. The lead is configured such that the centers of the first, second and third electrodes are linearly arranged when the extendable member is in the extended position.2010-05-06
20100114284IMPLANTABLE LINE - An implantable line for implantation in the left ventricle or left atrium of the heart with perforation of the atrial or ventricular septum, having an elongated flexible line body and an electrode and/or a sensor and/or a medication-dispensing device in a distal segment of the line body, i.e., in the left atrium or the left ventricle in the use state of the, such that the part of the line body situated in the blood vessel in or on the heart in the use state is at least partially provided with a surface coating or a surface structure that promotes ingrowth with endogenous tissue.2010-05-06
20100114285LEAD ASSEMBLY WITH POROUS POLYETHYLENE COVER - This document discusses, among other things, a lead assembly including a porous polyethylene cover. In an example, the cover includes sections that have differing pore sizes. In an example, a section of the cover near a distal end portion of a lead assembly includes pores that are large enough to allow tissue ingrowth. In another example, a lead assembly includes two or more polyethylene covers having different porosities.2010-05-06
20100114286CORONARY SINUS LEAD FOR PACING THE LEFT ATRIUM - A pacing lead for implantation in a coronary sinus having an opening and a wall defining an interior and presenting a diameter dimension. The pacing lead includes an elongated lead body, a resilient fixation element, and at least one electrode on either the lead body or the fixation element. The fixation element extends from the pacing portion and defines a loop structure laterally adjacent the pacing portion. The loop structure presents a predetermined width dimension greater than the diameter dimension of the coronary sinus, wherein when the loop structure is inserted into the opening of the coronary sinus, the loop structure is laterally compressed by the wall of the coronary sinus and the electrode is biased against the wall of the coronary sinus.2010-05-06
20100114287IMPLANTABLE TISSUE MARKER ELECTRODE - The present application discloses a tissue marker that may be permanently applied to cardiac (or other) tissue by means such as, but not limited to, a minimally-invasive procedure to allow for pre- and post-op lesion site testing, with the marker also preferably being radiopaque to facilitate post-op imaging. More specifically, the marker may preferably comprise or include an electrode as part of an integrated assembly. The marker may be mounted on the tissue with a suitable tissue retention member for securing the marker in place. The disclosed examples include one or more tissue retention members, and in an exemplary embodiment comprises a pair of clips for securing the assembly to a target tissue. Each retention member or clip has a conductive lead with an electrically conductive surface in the form of a patch associated therewith. Each clip is preferably associated with a discrete electrically conductive area on the surface of the patch so that the assembly may function as a bi-polar electrode, with a voltage applied between the discrete conductive areas.2010-05-06
20100114288COCHLEAR ELECTRODE INSERTION - A system for mechanically assisted insertion of an electrode includes: an insertion tool configured to insert the electrode into biological tissues; and a controller configured to control the insertion tool, in which the controller is further configured to select operating parameters comprising a maximum allowable force profile from a library of operating parameters, in which the maximum allowable force profile is generated from data recorded during a number of previous successful operations. Also, a method for insertion of a cochlear lead, includes: selecting operating parameters comprising a maximum allowable force profile from a library of operating parameters; inserting the cochlear lead while sensing real time force and position; and continuing the insertion while the real time force is below the maximum allowable force profile, in which the maximum allowable force profile is generated from data recorded during a number of previous successful operations.2010-05-06
20100114289Method and associated device for positioning a stent deployed to support a vessel - A method for positioning a stent able to be deployed to support a vessel in a blood vessel, especially in the cardiology, with the stent after its provisional placement in a not yet deployed state in an area intended for the support of the vessel, being at least partly automatically deployed as a function of at least one triggering signal for final positioning in the blood vessel.2010-05-06
20100114290Introducer for Deploying a Stent Graft in a Curved Lumen - An introducer (2010-05-06
20100114291Introducer for Deploying a Stent Graft in a Curved Lumen and Stent Graft Therefor - A stent graft (2010-05-06
20100114292Vessel Extender - An anastomotic device includes a tube and anastomotic coupler rings having vessel openings attached to each end of the tube. In an embodiment, the diameters of the vessel openings are the same.2010-05-06
20100114293Multibranch Vessel Extender - An anastomotic device has a tube with three or more tube portions that are connected together. A first anastomotic coupler ring is attached to a first tube portion. A second anastomotic coupler ring is attached to a second tube portion. In an embodiment, a third anastomotic coupler ring is attached to a third tube portion.2010-05-06
20100114294Stent Member - A rotationally-symmetric stent graft for deploying in a curved vessel has identical spaced stents along its length, with the stents being further apart in the region of the greatest curvature. The ends of the stents are parallel to each other and to the ends of the graft. The inter-stent spacing may vary along the entire length of the graft or only adjacent one end.2010-05-06
20100114295THERMOELASTIC AND SUPERELASTIC NI-TI-W ALLOY - A radiopaque nitinol stent for implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element including tungsten. The added tungsten in specified amounts improve the radiopacity of the nitinol stent comparable to that of a stainless steel stent of the same strut pattern coated with a thin layer of gold. Furthermore, the nitinol stent has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility.2010-05-06
20100114296INTRALUMENALLY-IMPLANTABLE FRAMES - Implantable frames for use in body passages are provided herein. The implantable frames can include a plurality of hoop members joined by a plurality of longitudinal connecting members to form a tubular frame defining a cylindrical lumen. The plurality of longitudinal connecting members may include first and second longitudinal connecting members joining a first hoop member to a second hoop member such that the first and second longitudinal connecting members extend across an entire space separating the first and second hoop members.2010-05-06
20100114297STENT - A stent has a tubular flexible body with a wall formed of a web structure: The web structure has a plurality of neighboring web patterns which include webs arranged side by side. The web patterns are interconnected via at least one connection element. To prevent the connection element from moving out of the plane of the wall during expansion, the connection elements are each provided with connection webs arranged at an angle relative to one another and interconnected via hinges.2010-05-06
20100114298STENT WITH RADIOPAQUE MARKER - The invention concerns a method of providing a stent with a radiopaque marker comprising the steps of: i) providing in the stent a radiopaque marker carrier portion; ii) sleeving the carrier portion with radiopaque material, with an insulating surface between the carrier and the marker material, and iii) plastically deforming material within the sleeve of radiopaque material, to secure the sleeve on the carrier portion. The invention further concerns a stent with a radiopaque marker, the stent exhibiting a generally annular form with luminal and abluminal major surfaces, the marker also exhibiting opposed major luminal and abluminal surfaces characterised in that i) the marker envelops a carrier portion of the stent and is electrically insulated from it; ii) portions of the material of the marker which exhibit evidence of plastic deformation secure the marker on the carrier portion.2010-05-06
20100114299FLOW REDUCING IMPLANT - A flow reducing implant for reducing blood flow in a blood vessel having a cross sectional dimension, the flow reducing implant comprising a hollow element adapted for placement in the blood vessel defining a flow passage therethrough, said flow passage comprising at least two sections, one with a larger diameter and one with a smaller diameter, wherein said smaller diameter is smaller than a cross section of the blood vessel. A plurality of tabs anchor, generally parallel to the blood vessel wall, are provided in some embodiments of the invention.2010-05-06
20100114300MEDICAL DEVICE WITH LEAK PATH - Medical devices that provide valves for regulating fluid flow through a body vessel are provided. The valves include a support frame having one or more adaptations for forming a leak path between the support frame and an interior wall of a body vessel in which the valve is implanted. A controlled amount of retrograde flow is able to flow through the leak path when the valve is implanted in a body vessel.2010-05-06
20100114301Vessel Right Sizer - An anastomotic device includes a tube and anastomotic coupler rings having vessel openings attached to each end of the tube. In an embodiment, the diameters of the vessel openings are different.2010-05-06
20100114302ENDOVASCULAR DEVICES WITH AXIAL PERTURBATIONS - Endovascular devices are provided. The endovascular devices include a conformable scaffold with one or more outpocketings. The outpocketing in the endovascular device creates a corresponding outpocketing of a vessel wall, thereby altering local fluid dynamics.2010-05-06
20100114303Surface Textured Implants - Devices and methods for controlling the flaking of coating fragments from medical implants and improving the delivery of therapeutic agents from such coatings are described.2010-05-06
20100114304Medical Devices - Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.2010-05-06
20100114305Implantable Valvular Prosthesis - An implantable valvular prosthesis is adapted for implantation in a position of an anatomic valve that controls passage of blood flowing from a ventricle to an artery in a patient's heart. The implantable valvular prosthesis includes a tubular stent body and at least one valve flap member.2010-05-06
20100114306CARDIOVASCULAR PROCEDURES - A method for performing cardiovascular and surgical procedures includes providing a conduit in the form of a graft/canula placed using balloon dilatation catheter and providing a fixing mechanism for the graft/canula. At least one opening is formed through a wall of the heart substantially at the apex. The escape of blood is prevented through the use of the fixing mechanism. Each of these steps is performed while the heart is beating.2010-05-06
20100114307FRAMELESS VASCULAR VALVE - Prosthetic valve devices, as well as systems and methods for the delivery thereof, are disclosed. A device includes one or more leaflets disposed within a frameless conduit, wherein the conduit is adapted for attachment to walls of a vascular vessel, and the leaflets are adapted for attachment to walls of the conduit. The leaflets are configured to selectively restrict blood flow through the conduit, and the conduit can include wall-engaging adaptations, for example, barbs or an adhesive. The conduit and the leaflets are formed with a flexible material, which may comprise a remodelable material and/or a synthetic polymer.2010-05-06
20100114308METHOD FOR THERAPY OF HEART VALVES WITH A ROBOT-BASED X-RAY DEVICE - A method or workflow for heart valve replacement, or more precisely emplacement of a prosthetic heart valve, using minimally invasive procedures includes imaging of the patient's heart during the procedure using a multi-access articulated x-ray imaging robot that allows a radiation detector carried by the robot to be moved in arbitrary paths around a patient in order to generate multiple projection exposures of the relevant region of the patient during the procedure. The imaging system is used to generate two dimensional image data during movement of the catheter and prosthetic heart valve into place and to generate three dimensional image data of the prosthetic heart valve within the patient's heart. The two dimensional image data and the three dimensional image data are registered and superimposed for use in positioning of the prosthetic heart valve. Additional imaging may be performed once the prosthetic heart valve is in position.2010-05-06
20100114309DRUG DELIVERY IMPLANTS FOR INHIBITION OF OPTICAL DEFECTS - An implant for use with an eye comprises an implantable structure and a therapeutic agent. The therapeutic agent is deliverable from the structure into the eye so as to therapeutically effect and/or stabilize a refractive property of the eye. In many embodiments, the refractive property of the eye may comprise at least one of myopia, hyperopia or astigmatism. The therapeutic agent can comprise a composition that therapeutically effects or stabilizes the refractive property of the eye. The therapeutic agent may comprise at least one of a mydriatic or a cycloplegic drug. For example, the therapeutic agent may include a cycloplegic that comprises at least one of atropine, cyclopentolate, succinylcholine, homatropine, scopolamine, or tropicamide. In many embodiments, a retention element can be attached to the structure to retain the structure along a natural tissue surface.2010-05-06
20100114310Breast Prosthesis and Breast Augmentation Using the Breast Prosthesis - An outer bag in which a core is contained in a movable state is made of a non-assimilatable material to function as an outer artificial coating. The outer bag includes a sheet-shaped base and a large number of convexes (2010-05-06
20100114311Multi-Lumen Breast Prothesis and Improved Valve Assembly Therefor - A valve assembly for a mammary implant having a chamber defined by a flexible membrane includes a valve and a flexible filling tube which includes a relatively short semi-riged tubular structure that extends into the chamber and defines a passageway. The filling tube comprises a soft and flexible length of tubing and a solid portion that has an outside diameter that is slightly larger than the inner diameter of the semi-riged tube and is stretchable longitudinally to reduce its outer diameter to facilitate passage through the semi-riged tube. The solid portion includes a T-shaped flange at its inner end and is adapted to sealing the engaged semi-riged tube upon relaxation thereof to thereby form a plug seal. The plug seal includes a plurality of reverse barbs to prevent the plug seal from becoming dislodged and forced back into the chamber.2010-05-06
20100114312HUMAN IMPLANTABLE TISSUE EXPANDER - An implantable tissue expander including an internal skeletal element extending between a base surface and an outer surface and including at least one plurality of elongate cells extending along mutually generally parallel axes from the base surface to the outer surface and being defined by elongate cell walls formed of a resilient material and a sealed enclosure, sealing the internal skeletal element and adapted for preventing body fluids from filling the plurality of elongate cells.2010-05-06
20100114313ANTI-ADHESION SURGICAL MEMBRANE - The membrane is made of a polymeric material, characterized in that one (2010-05-06
20100114314EXPANDABLE BONE IMPLANT - An expendable bone implant has a first member with a coronal end portion configured for supporting a prosthesis. A second member is at least partially porous, engages the first member, and is configured to expand outwardly upon a longitudinal force being applied to at least one of the first and second members. This anchors the implant in bone before mastication forces are applied to the implant.2010-05-06
20100114315Intramedullary locked compression screw for stabilization and union of complex ankle and subtalar deformities - An implant for causing fusion of bones in an ankle is disclosed. The implant, in a preferred embodiment, is a cannulated screw with threads at the leading end and threads at the trailing end having a a tibial component that interacts with the tibia, a calcaneus component that interacts with the calcaneus and a midsection extending between the tibial component and the calcaneus component. The implant is placed in a borehole formed in the tibia, talus and calcaneus and causes the tibia and talus to be moved into compressive contact with each other. As a result, the ends of the tibia and talus that have previously had the cartilage removed down to bloody bone are coapted together to allow fusion. In another embodiment of the invention, a middle threaded portion is placed between the tibial component and the calcaneus component. The middle threaded portion interacts with the talus to help add compressive force to the fusion process. The invention also includes a method for using the implant to fuse the bones of the ankle together. The method includes steps of producing an implant and then using the implant to apply compressive forces on the bones of the ankle. The invention in one embodiment also includes a method that uses images such as x-ray images preoperatively to determine the length and width of the disclosed implant or any other implant with each patient's unique anatomy will properly allow coaption of the ends of the prepared tibia and talus at the ankle joint. The implant is inserted from the bottom of the foot through a predetermined hole in the calcaneus which extends through the talus into the diaphysis of the tibia. When properly inserted and seated in the bones, the implant is locked by screws.2010-05-06
20100114316Craniofacial Implant - A composite surgical implant that is made of a planar sheet of a thermoplastic resin that includes a top surface (2010-05-06
20100114317IMPACTION GRAFTING FOR VERTEBRAL FUSION - Methods of providing graft impaction using anchored implants are disclosed. In some embodiments, the graft impaction provided by the anchored implants can facilitate surgical spinal fusion procedures. The anchored implants provide increased strength and increased pull-out resistance. The anchored implants can be used in conjunction with various surgical vertebral fusion approaches or techniques, such as anterior, posterior, transforaminal, and/or extreme lateral interbody fusion.2010-05-06
20100114318Prosthetic Intervertebral Discs - Prosthetic intervertebral discs, systems including such prosthetic intervertebral discs, and methods for using the same are described. The subject prosthetic discs include upper and lower endplates separated by a compressible core member. The subject prosthetic discs exhibit stiffness in the vertical direction, torsional stiffness, bending stiffness in the sagittal plane, and bending stiffness in the front plane, where the degree of these features can be controlled independently by adjusting the components, construction, and other features of the discs.2010-05-06
20100114319Expandable Vertebral Implant and Methods of Use - An implant for insertion between vertebral members may include a first member with a first contact surface to contact the first vertebral member, and a second member with a second contact surface to contact the second vertebral member. A material may be secured to and extend between each of the first and second members. An interior space may be formed between the first and second members and the material. An inflatable member may be positioned within the interior space and may be inflatable upon the introduction of a substance into inflatable member. The inflatable member may be inflatable between a first size to space the first and second members a first distance apart and an enlarged second size to space the first and second members a second greater distance apart.2010-05-06
20100114320SURGICAL SPACER WITH SHAPE CONTROL - A surgical spacer comprising first and second hollow support members, a flexible container, and a compressible material disposed in the container is disclosed. The first and second support members each have an exterior and an interior cavity. The exteriors of the first and second support members are affixed together and the interior cavities of the first and second support members are connected via a connecting opening. The container is disposed in the interior cavities and extends through the connecting opening. In addition, the container is substantially impermeable to the compressible material. The first and second support members are more rigid than the flexible container. A combination of the first and second support members controls the shape of the flexible container, with the compressible material disposed therein, in response to a compressive load applied to an exterior of the spacer.2010-05-06
20100114321HOMUNCULUS - The object of the present invention is to provide a homunculus of a glenohumeral joint in which the supraspinatus and the infraspinatus are correctly connected to the superior humerus. A homunculus 2010-05-06
20100114322Extra-Articular Implantable Mechanical Energy Absorbing Systems and Implantation Method - A system and method for sharing and absorbing energy between body parts. In one aspect, the method involves identifying link pivot locations, fixing base components and minimally invasive insertion techniques. In one particular aspect, the system facilitates absorbing energy between members forming a joint such as between articulating bones.2010-05-06
20100114323KNEE PROSTHESIS KIT WITH WINGED SLEEVES AND MILLING GUIDE - A knee prosthesis kit includes single-winged and double-winged metaphyseal sleeve components. A milling guide and reamers in the kit allow for a cavity to be prepared to receive the metaphyseal sleeve components by pivoting one of the reamers on a portion of the milling guide. The instruments allow the cavity to be aligned with the intramedullary canal regardless of the relative hardness of the bone in the vicinity of the cavity.2010-05-06
20100114324Modular Hip Joint Implant - A modular hip joint implant and associated method. The modular hip implant includes a femoral stem having a proximal surface defining a dovetail groove having first and second female wings, and a neck component having a distal surface defining a semi-dovetail projection engaging the dovetail groove. The projection includes a single male wing mating with the first femoral wing.2010-05-06
20100114325Prophylactic Pancreatic Stent - A stent and a method for implanting a stent for prophylactically protecting a duct are provided. The stent includes a non-expandable, generally tubular body having a proximal portion and a distal portion, a lumen extending through at least a portion of the body, a distal opening in the distal portion in fluid communication with the lumen and a proximal opening in the proximal portion in fluid communication with the lumen. The stent further includes a cap portion operably connected to the proximal portion of the body, the cap portion is movable between a non-expanded configuration and an expanded configuration. The non-expanded configuration has a reduced diameter to facilitate advancement into the patient and the expanded configuration has an expanded diameter configured to protect an opening of the internal bodily duct so as to prevent an unintentional entry of an elongate medical device through the opening and into the passageway of the internal bodily duct.2010-05-06
20100114326MODULAR IMPLANT FOR JOINT PROSTHESIS - A modular prosthetic implant is provided, including a support cleat unit having a circular seat portion and a shape delimited by an imaginary dome. The support cleat unit includes a cylindrical body portion having a central axis and a hole concentric with the central axis, the hole having a least a first section whose diameter defines a female Morse taper adapted to receive a male member having a corresponding Morse taper. The support cleat unit also includes a plurality of arched appendages integral with the cylindrical body portion. The arched appendages are radially spaced apart from one another and extend outwardly from a base portion thereof at an outer circumferential surface of the cylindrical body portion so that lower/outer surfaces of the arched appendages define the overall domed shape of the support cleat unit.2010-05-06
20100114327VALVE - An esophageal valve has a central restriction to restrict flow through the valve. The valve has a proximal guide to guide antegrade flow to the restriction and a distal guide to guide retrograde flow to the restriction.2010-05-06
Website © 2025 Advameg, Inc.