Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


18th week of 2016 patent applcation highlights part 38
Patent application numberTitlePublished
20160123800CELL PEELING IDENTIFICATION DEVICE AND CELL PEELING IDENTIFICATION METHOD - The present invention relates to a cell peeling recognizing device and a cell peeling recognizing method.2016-05-05
20160123801VECTOR LIGHT SENSOR AND ARRAY THEREOF - A vector light sensor (VLS) includes a substrate and a sensor structure. The substrate includes a major surface. The sensor structure includes a pyramid structure, light-sensitive areas, and electrical contacts. The pyramid structure forms at least a portion of a body of the sensor structure and has predefined angles between the major surface of the substrate and a plurality of sidewalls of the pyramid. The light-sensitive areas are formed on two or more of the plurality of sidewalls of the pyramid structure. The electrical contacts are electrically coupled to the light-sensitive areas. Information about the information about intensity and direction of an incident light beam can be extracted by comparing signals from two or more of the light-sensitive areas.2016-05-05
20160123802Light-Monitoring Method and System - Light exposure from at least one light source is received with a light detector of a light monitor that includes at least one of (a) an output device and (b) a communication device transported by a user. The light detector converts the light exposure into an electrical signal, and the current time of day at which the light exposure is received is recorded. An instantaneous light exposure value is generated from the electrical signal, and a weighting function is applied to the instantaneous light exposure value as a function of the recorded time of day associated with the light exposure to produce a weighted instantaneous light exposure value. The weighted instantaneous light exposure value is integrated to produce a weighted cumulative luminous exposure value; and the weighted cumulative luminous exposure value is compared with an established luminous-exposure target.2016-05-05
20160123803VECTOR LIGHT SENSOR AND ARRAY THEREOF - A vector light sensor (VLS) includes a substrate and a sensor structure. The substrate includes a major surface. The sensor structure includes a pyramid structure, light-sensitive areas, and electrical contacts. The pyramid structure forms at least a portion of a body of the sensor structure and has predefined angles between the major surface of the substrate and a plurality of sidewalls of the pyramid. The light-sensitive areas are formed on two or more of the plurality of sidewalls of the pyramid structure. The electrical contacts are electrically coupled to the light-sensitive areas. Information about the intensity and direction of an incident light beam can be extracted by comparing signals from two or more of the light-sensitive areas. One or two dimensional arrays of VLS may be fabricated and used, for example, as an image sensor.2016-05-05
20160123804Systems and Methods for Determining Ambient Illumination - Systems and methods are provided for measuring an ambient light level in a volume that is lighted by a pulsating light source. A first light sensor is configured to generate a first signal based on an amount of light detected in the volume. A bypass switch is configured to bypass the first light sensor at a first point in time when the light source is on and to not bypass the first light sensor at a second point in time when the light source is off. A second sensor is configured to generate a second signal based on an environment in the volume, and a difference circuit is configured to determine a difference magnitude between the second signal and the first signal to generate an ambient light signal.2016-05-05
20160123805Method And System For Managing Harvested Energy In An Access Control System - A method for managing light energy received from at least one light source by at least one light sensor in an access control system. The method comprises receiving light energy by the at least one light sensor, measuring the amount of light energy received by an energy harvesting manager interconnected with an access control device, and determining whether the measured amount of light energy is above a predetermined threshold. If the measured amount of light energy is above the predetermined threshold, the method comprises converting the light energy into harvested energy by at least one energy harvester. If the measured amount of light energy is not above the predetermined threshold, the method comprises adjusting the amount of light energy available to the at least one light sensor from the at least one light source until the predetermined threshold is reached.2016-05-05
20160123806TECHNIQUE TO DISCRIMINATE AGAINST AMBIENT AND SCATTERED LASER LIGHT IN RAMAN SPECTROMETRY - Raman scattering, while a powerful and versatile technique, relies of the detection of weak signals. Detecting the signal can be difficult if there is interference, especially if the interference comes from scattered stray light of the laser used to generate the Raman signal. Described here is a frequency modulation technique in combination with heterodyne detection that simultaneously rejects interference from ambient light as well as from scattered stray laser light. This provides a means to detect Raman signal and discriminate against scattered light without using an expensive and bulky spectrometer.2016-05-05
20160123807Absorption Line Optical Filters and Spectrometers - An apparatus is disclosed for filtering of probe light and measurement of probe light frequency. The apparatus includes an optical filter comprised of a medium of rapidly changing circular birefringence. The circular birefringent medium changes the polarization of probe light such that light within a certain frequency bandwidth is rotated between crossed polarizers so it will be transmitted through the second polarizer. The spectrometer rotates the polarization of probe light an amount that is dependent upon probe light frequency. Probe light frequency is deduced by analyzing probe light polarization after it propagates through the birefringent medium. The birefringent medium is constructed from a gaseous substance and a magnetic field, where the gaseous substance has one or more absorption lines near the probe light frequency. The magnetic field permeates the gaseous substance and shifts the frequency of the absorption line(s) by the Zeeman effect.2016-05-05
20160123808SPECTROMETER, METHOD FOR MANUFACTURING A SPECTROMETER, AND METHOD FOR OPERATING A SPECTROMETER - In various embodiments a spectrometer is provided. The spectrometer may include a first mirror unit which is semitransparent for electromagnetic radiation of at least one wavelength or wavelength range; and a second minor unit having a first area and a second area facing the first minor unit, wherein at least a part of the first area and the second area are spaced apart from the first minor unit, wherein the first area is at least partially reflective for the electromagnetic radiation of at least one wavelength or wavelength range, wherein the second area includes at least a part of a photodetector, and wherein the photodetector is configured to detect the electromagnetic radiation of at least one wavelength or wavelength range.2016-05-05
20160123809FABRY-PEROT SPECTRAL IMAGE MEASUREMENT - A system for wide-range spectral measurement includes one or more broadband sources, an adjustable Fabry-Perot etalon, and a detector. The one or more broadband sources is to illuminate a sample, wherein the one or more broadband sources have a short broadband source coherence length. The adjustable Fabry-Perot etalon is to optically process the reflected light to extract spectral information with fine spectral resolution. The detector is to detect reflected light from the sample, wherein the reflected light is comprised of multiple narrow-band subsets of the illumination light having long coherence lengths and is optically processed using a plurality of settings for the adjustable Fabry-Perot etalon, and wherein the plurality of settings includes a separation of the Fabry-Perot etalon plates that is greater than the broadband source coherence length but that is less than the long coherence lengths.2016-05-05
20160123810IMAGE PICKUP APPARATUS, SPECTROSCOPIC SYSTEM, AND SPECTROSCOPIC METHOD - An image pickup apparatus includes an encoder which is arranged on an optical path of light incident from an object and which has a plurality of regions with first light transmittance and a plurality of regions with second light transmittance lower than the first light transmittance, a dispersive element which is arranged on an optical path of at least one part of light after passage through the encoder and which spatially shifts the at least one part of the light in accordance with wavelength, and at least one image pickup device which is arranged to receive light after passage through the dispersive element and light without passage through the dispersive element and which acquires a first image, in which light components for respective wavelengths spatially shifted by the dispersive element are superimposed, and a second image based on the light without passage through the dispersive element.2016-05-05
20160123811LIQUID CRYSTAL FOURIER TRANSFORM IMAGING SPECTROMETER - A hyperspectral imaging system has a processor to receive hyperspectral imaging parameters and produce a series of images to be acquired at a series of retardances at a series of retardance times, a hyperspectral imaging component having an input polarizer to polarize an incoming beam of light, a liquid crystal variable retarder to receive the polarized beam of light and to produce wavelength-dependent polarized light, an output polarizer to receive the wavelength-dependent polarized light and to convert polarization state information into a form detectable as light intensity, a voltage source connected to the liquid crystal variable retarder, and a retardance controller. The retardance controller receives the series of retardances at a series of retardance times and produces a series of voltages at a series of voltage times to apply to the liquid crystal variable retarder. A focal plane array, synchronized with the retardance controller, receives the light in a form detectable as light intensity and converts the light to a series of images.2016-05-05
20160123812SPECTRAL MICROSCOPY DEVICE - A spectral microscopy device includes a spectral detecting unit including a light source capable of controlling an output wavelength, a microscope section having an observation area illuminated with light output from the light source, and a signal detector that detects light from the observation area as spectral data; a moving unit configured to move the observation area; and a controller that performs a control operation to allow the spectral detecting unit and the moving unit to move in response to each other. The spectral microscopy device is controlled so that switching between different measurement conditions based on the number of measurement points is performed at an observation area movement time in which the observation area is moved by the moving unit and measurement is performed and at a an observation area movement stoppage time in which the observation area is fixed and measurement is performed, and spectral data is detected.2016-05-05
20160123813SPECTRAL MICROSCOPY DEVICE - A spectral microscopy device includes a spectral detecting unit including a light source that is capable of controlling an output wavelength, a microscope section that is provided with an observation area that is illuminated with light output from the light source, and a signal detector that detects light from the observation area as spectral data; a moving unit configured to move the observation area; and a controller that performs a control operation to allow the spectral detecting unit and the moving unit to move in response to each other. The spectral microscopy device is controlled so that switching between different measurement conditions is performed at an observation area movement time in which the observation area is moved by the moving unit and measurement is performed and at an observation area movement stoppage time in which the observation area is fixed and measurement is performed.2016-05-05
20160123814Interferometric Device and Corresponding Spectrometer - An interferometric device: includes a separator, for separating a collimated beam (F2016-05-05
20160123815SYSTEM AND METHOD FOR MEASURING COLOR USING LOCATION AND ORIENTATION SENSORS - A system and method is provided for measuring and storing the paint color formula of a sample. Paint is sprayed on directional samples. The horizontal standard is measured and stored in a database. A vertical standard is measured at a plurality of locations and orientations and stored in the database.2016-05-05
20160123816THERMOPILE TEMPERATURE SENSOR WITH A REFERENCE SENSOR THEREIN - A sensor package having a thermopile sensor and a reference thermopile sensor disposed therein. In one or more implementations, the sensor package includes a substrate, a thermopile sensor disposed over the substrate, a reference thermopile sensor disposed over the substrate, and a lid assembly disposed over the thermopile sensor and the reference thermopile sensor. The lid assembly includes a transparent structure that passes electromagnetic radiation occurring in a limited spectrum of wavelengths and an electromagnetic blocker disposed over the lid assembly. The electromagnetic blocker defines an aperture over the thermopile sensor such that at least a portion of the electromagnetic blocker is positioned over the reference thermopile sensor. The electromagnetic blocker is configured to at least substantially block the electromagnetic radiation occurring in a limited spectrum of wavelengths from reaching the reference thermopile sensor.2016-05-05
20160123817TEMPERATURE SENSOR USING ON-GLASS DIODES - This disclosure provides systems, methods and apparatus for measuring a temperature of a display. In one aspect, a circuit may use one or more stages of diodes or diode-connected transistors providing the functionality of diodes. Each stage may include the functionality of diodes in opposite directions. A direct current (DC) current source or an alternating current (AC) voltage source may be applied to the diodes or diode-connected transistors to measure the temperature of the display.2016-05-05
20160123818TEMPERATURE DETECTION DEVICE AND HEAT TREATMENT DEVICE - The present invention relates to a temperature detection device for measuring the core temperature of a food product, wherein the device comprises a microwave detecting array antenna, in particular a phased array antenna, as well as to a heat-treatment device, in particular oven, for a food product, wherein the heat-treatment device comprises a heating means for applying heat to the food product and a temperature detection device.2016-05-05
20160123819TEMPERATURE MEASURING DEVICE AND TRANSPORT VEHICLE SKIP - A temperature measuring device includes a temperature sensor, arranged within a holder, for determining the temperature of a building material located within a skip of a transport vehicle, the skip including an inner wall and an outer wall, and the holder being arranged on that side of the inner skip wall that faces the outer skip wall. The holder is arranged within a recess within the inner skip wall such that it is thermally insulated from the inner skip wall. The holder is arranged within the recess such that a region, which faces the interior of the skip, of the holder is exposed.2016-05-05
20160123820HIGH-SENSITIVITY SENSOR COMPRISING CONDUCTIVE THIN FILM CONTAINING CRACKS AND METHOD FOR MANUFACTURING SAME - A high-sensitivity sensor containing cracks is provided. The high-sensitivity sensor is obtained by forming microcracks on a conductive thin film, which is formed on top of a support, wherein the microcracks form a micro joining structure in which the microcracks are electrically changed, short-circuited or open, thereby converting external stimuli into electric signals by generating a change in a resistance value. The high-sensitivity sensor can be useful in a displacement sensor, a pressure sensor, a vibration sensor, artificial skin, a voice recognition system, and the like.2016-05-05
20160123821TORQUEMETER WITH IMPROVED ACCURACY AND METHOD OF USE - A non-contacting torquemeter capable of measuring torque in a rotating shaft with improved accuracy in the presence of relative motion between a rotating shaft and a transducer assembly is provided. The non-contacting torquemeter has improved robustness and reliability, and is able to self-calibrate. The non-contacting torquemeter is able to provide accurate torque measurements using a single transducer assembly positioned at a single azimuthal position on a rotating shaft.2016-05-05
20160123822Sensor Assembly And Method For Measuring Forces And Torques - A sensor assembly comprises a base plate and a sensor member displaceable relative to the base plate. A spring arrangement operates in first and second stages in response to displacement of the sensor member relative to the base plate. Different resolutions of force and torque measurements are associated with the first and second stages. A light sensitive transducer senses displacement of the sensor member relative to the base plate and generates corresponding output signals. A collimator directs a plurality of light beams onto the light sensitive transducer so that the light beams strike different pixels of the light sensitive transducer to sense displacement of the sensor member relative to the base plate.2016-05-05
20160123823SENSOR SYSTEM - Provided is a sensor system capable of more accurately detecting abnormality. A sensor IC includes a first detector, a second detector, and a communication circuit. The first detector and the second detector output a first digital value and a second digital value according to the strength of a magnetic flux applied thereto, respectively. The communication circuit transmits the first and second digital values received from the first and second detectors to a control device. At this time, the communication circuit places the first and second digital values in a plurality of frames to transmit the plurality of frames. The communication circuit forms the plurality of frames such that bit information data of the first and second digital values placed in the frames is arranged in different orders between the first and second digital values.2016-05-05
20160123824Full Load Brake Torque Inspection Method - A brake torque inspection method to a device having a drive machine and a driven component operatively connected to the drive machine is disclosed. The method comprises applying a brake to the driven component, and using a torque wrench at a shaft of the drive machine to determine the brake torque.2016-05-05
20160123825Structure of pressure gauge - An improved structure of pressure gauge includes a bottom case, a pressure measurement assembly, a rotating assembly, a fulcrum piece, a coil spring, a scale meter, and an outer case. The pressure measurement assembly is installed above the bottom case and the surface thereof is shaped with concentric circular waves. The rotating assembly includes a sleeve body and a central rod. A fulcrum piece is installed across between the sleeve body and the central rod. A plurality of through holes and a coil retaining base are provided on the fulcrum piece. One end of the coil spring is screwed onto the coil slot and the other end thereof is installed on the coil retaining base. The outer case is located in the outer area of the bottom case and the fulcrum piece. A transparent cover body is installed on top of the outer case.2016-05-05
20160123826FLUID-FILLED PRESSURE SENSOR ASSEMBLY CAPABLE OF HIGHER PRESSURE ENVIRONMENTS - This disclosure provides systems and methods for a fluid-filled pressure sensor assembly for higher pressure environments. A fluid-filled pressure sensor assembly may be adapted for coupling to a structure at a mating surface and may include a header; a pressure sensor coupled to the header; a diaphragm coupled to the header and configured for positioning forward of the mating surface so that a fluid region is disposed between the diaphragm and the pressure sensor; a fill hole coupled to the fluid region; a sealing element coupled to the fill hole and configured for positioning forward of the mating surface; and wherein during operation the first pressure applied at the diaphragm is substantially transferred by the fluid in the fluid region and the fill hole to an inner-side of the sealing element and the first pressure is about equivalent to a second pressure applied at an outer-side of the sealing element.2016-05-05
20160123827PRESSURE SENSOR - Disclosed is to a pressure sensor including: a metal diaphragm configured to have a pressure sensing part disposed thereover; a first support configured to be coupled with the metal diaphragm; a first printed circuit board configured to be disposed over the pressure sensing part while being supported to the first support and electrically connected to the pressure sensing part; a connector configured to have a lower portion press-fitted with the first printed circuit board; a second printed circuit board configured to be electrically connected to the first printed circuit board through the connector while being press-fitted with an upper portion of the connector and supported by the connector; a second support configured to be disposed over the second printed circuit board; and a spring electrode configured to have an upper end protruding upward of the second support and have a lower end connected to the second printed circuit board.2016-05-05
20160123828A THIN FILM SENSOR2016-05-05
20160123829All-Optical Pressure Sensor - The present invention relates to an all-optical pressure sensor comprising a waveguide accommodating a distributed Bragg reflector. Pressure sensing can then be provided by utilizing effective index modulation of the waveguide and detection of a wavelength shift of light reflected from the Bragg reflector. Sound sensing may also be provided thereby having an all-optical microphone. One embodiment of the invention relates to an optical pressure sensor comprising at least one outer membrane and a waveguide, the waveguide comprising at least one core for confining and guiding light, at least one distributed Bragg reflector located in said at least one core, and at least one inner deflecting element forming at least a part of the core, wherein the pressure sensor is configured such that the geometry and/or dimension of the at least one core is changed when the at least one outer membrane is submitted to pressure.2016-05-05
20160123830PASS-THROUGHS FOR USE WITH SENSOR ASSEMBLIES, SENSOR ASSEMBLIES INCLUDING AT LEAST ONE PASS-THROUGH AND RELATED METHODS - Transducer assemblies may include a sensor and a housing including a pass-through portion comprising at least one aperture in a portion of the housing extending along a longitudinal axis of the housing and the sensor. Methods of forming transducer assemblies may include welding a first housing section of the transducer assembly to a second housing portion of the transducer assembly and forming at least one aperture in the first housing section extending along a longitudinal axis of the transducer assembly, along a chamber for holding a sensor, and through the weld.2016-05-05
20160123831Differential Pressure Transmitter With Intrinsic Verification - A differential pressure transmitter is disclosed, which comprises a body for housing a high-pressure sensor and a low-pressure sensor, a plurality of high-pressure process connectors formed in said body and fluidly coupled to said high-pressure sensor for transmitting a first pressure of a process fluid to said high-pressure sensor, each of said high-pressure process connectors comprising a conduit having an opening for receiving the process fluid, a plurality of low-pressure process connectors formed in said body and fluidly coupled to said low-pressure sensor for transmitting a second pressure of a process fluid to said low-pressure sensor, each of said low-pressure process connectors comprising a conduit having an opening for receiving the process fluid, wherein said second pressure is equal to or less than said first pressure, wherein said openings of the high-pressure connectors are spaced relative to said openings of the low-pressure connectors to allow a plurality of pair-wise connections to the process fluid.2016-05-05
20160123832Device for Calibrating a Torque Wrench - A device for calibrating a torque wrench includes a base plate, a strain gauge, a display, a cup, a rod and a ring. The strain gauge is non-rotationally connected to the base plate. The display is electrically connected to the strain gauge. The cup is non-rotationally connected to the base plate. The rod is non-rotationally connected to the cup. The ring is inserted in the cup so that the ring and the cup together define an annular gap for tightly receiving a socket.2016-05-05
20160123833ELECTRICAL DETECTOR FOR LIQUID METAL LEAKS - A liquid metal leak detector system including a direct current (DC) power supply and a plurality of analog to digital converters connected to the DC power supply. Each converter includes a liquid metal switch, where the liquid metal switch is closed in event of a liquid metal leak since the liquid metal leak causes electrical continuity between a conductive sheeting and a housing for liquid metal. The converter also includes a comparator connected to both the liquid metal switch for converting an analog signal into a digital signal, wherein the digital signal is configured such that a high signal constitutes no leak and a low signal constitutes a leak. An AND gate is also connected to each of the plurality of converters for combining all of the digital signals output from the converters, the AND gate configured such that the AND gate outputs a high signal if all of its inputs are high and a low signal if any input is low.2016-05-05
20160123834WATER SENSORS WITH MULTI-VALUE OUTPUTS AND ASSOCIATED SYSTEMS AND METHODS - Embodiments of water sensors having multi-value outputs are disclosed. A water sensing circuit measures the impedance between two contacts of a water sensor and compares it with a reference signal. The impedance between two contacts varies depending on the wetness of the contacts, and so the sensing circuit may provide a measured wetness level. The water sensor may transmit measurements or other information wired or wirelessly. The water sensor may display indicia of measurements or other information via a display on a housing.2016-05-05
20160123835METHOD AND DEVICE FOR DETECTING A SLOW LEAK IN AN IMPLANTABLE HYDRAULIC OCCLUSION SYSTEM - The invention relates to a detection method of a slow leak in a hydraulic occlusive system implantable in an animal or human body to occlude a natural conduit (2016-05-05
20160123836MEASURING SYSTEM WITH A PRESSURE DEVICE AS WELL AS METHOD FOR MONITORING AND/OR CHECKING SUCH A PRESSURE DEVICE - Method for monitoring and/or checking a pressure device having a lumen surrounded by a wall for conveying and/or storing a fluid. For such purpose, the method comprises a step of registering a strain, of the wall, by means of a strain gage, respectively a strain sensor formed therewith, affixed outwardly on the wall, for ascertaining a strain value representing the strain of the wall, as well as a step of using the strain value for ascertaining damage to the wall, as a result of plastic deformation of the wall and/or as a result of wear of the wall. A measuring system of the invention comprises supplementally to the pressure device at least one strain sensor affixed on a wall segment of the wall for producing a strain signal dependent on a time variable strain, of the wall segment as well as a transmitter electronics electrically coupled with the strain sensor. The transmitter electronics is adapted to receive the strain signal as well as with the application of the strain signal to ascertain damage to the wall.2016-05-05
20160123837DEVICES AND METHODS FOR CHARACTERIZATION OF DISTRIBUTED FIBER BEND AND STRESS - The disclosed technology includes, among others, methods and devices for measuring distributed fiber bend or stress related characteristics along an optical path of fiber under test (FUT) uses both a light input unit and a light output unit connected to the FUT at one single end.2016-05-05
20160123838System for Measuring Velocity and Acceleration Peak Amplitude (PeakVue) on a Single Measurement Channel - The system implements an algorithm that allows an integrator providing a vibration velocity measurement to be disabled automatically in order to do a PeakVue measurement. When the PeakVue measurement is required, the integrator is disabled and the last Overall velocity measurement is maintained. Once the PeakVue measurement is complete, the integrator is re-enabled and the Overall measurements resume.2016-05-05
20160123839BEARING APPARATUS - Bearing apparatus comprising: an inner race; an outer race; a roller element positioned between the inner race and the outer race; a first sensor to sense displacement of one of: the inner race, the outer race, and the roller element, and to provide a first signal for the sensed displacement to enable a load on the bearing apparatus to be determined.2016-05-05
20160123840MONITORING SYSTEM AND DIAGNOSTIC DEVICE AND MONITORING TERMINAL THEREOF - Provided is a monitoring system including a diagnostic device (2016-05-05
20160123841METHOD FOR PROCESSING A VOLTAGE SIGNAL RELATING TO THE PRESSURE PREVAILING IN A COMBUSTION CHAMBER OF A CYLINDER OF AN INTERNAL COMBUSTION ENGINE - A method for processing a voltage signal relating to the pressure prevailing in a combustion chamber of a cylinder of an internal combustion engine, the signal, referred to as an “input signal”, having, in alternation, “plateau” phases and main peak phases. The method includes a step (E2016-05-05
20160123842APPARATUS AND METHOD FOR CONTROLLING OXYGEN SENSOR - An apparatus for controlling an oxygen sensor may include an oxygen sensor configured to measure the exhaust gas which is generated by the combustion of the engine to generate an oxygen signal, and a controller configured to detect, through the oxygen sensor, a lag of the oxygen signal having responsiveness which is reduced depending on an oxygen amount of the exhaust gas, store information on occurrence factors which cause the lag of the oxygen signal, and increase a current heating quantity of a corresponding specific region about the occurrence factors to reconfirm whether the oxygen signal lags and determine the oxygen sensor as a failure or release a failure detection for the oxygen sensor.2016-05-05
20160123843SENSOR ASSEMBLY AND METHOD OF DETECTING POSITION OF A TARGET THROUGH MULTIPLE STRUCTURES - A sensor assembly includes a first structure and a second structure disposed radially outwardly of the first structure. Also included is a sensor body extending through the first and second structures, the sensor body having first and second ends, the second end disposed in an ambient environment. Further included is a sensor mounted to the sensor body proximate the second end, the sensor configured to detect a characteristic of a target disposed within the first structure. Yet further included is a first sealing assembly configured to operatively couple the sensor body to the second structure and to accommodate movement of the sensor body. The first sealing assembly includes a mounting body, a radial seal, a slider plate and a slider plate retainer disposed in a recess of the mounting body and in abutment with the slider plate.2016-05-05
20160123844VANE POSITION SENSOR INSTALLATION WITHIN A TURBINE CASE - A measuring system for sensing vane positions that comprises a turbine, a target, and a sensor. The turbine includes a plurality of articulating vanes, with each vane being coupled to a sync ring that is configured to position the plurality of articulating vanes in accordance with a degree of rotation by the sync ring. The target is coupled to a first position of the turbine within a first region that is associated with a first vane of the plurality of articulating vanes. The sensor is coupled via a bracket to a second position of the turbine within the first region. The sensor is configured to detect an orientation of the target that corresponds to a vane position of the first vane.2016-05-05
20160123845VANE POSITION SENSOR INSTALLATION WITHIN A TURBINE CASE - A measuring system for sensing vane positions that comprises a turbine, a target, and a bellows. The turbine includes a plurality of articulating vanes, with each vane being coupled to a sync ring that is configured to position the plurality of articulating vanes in accordance with a degree of rotation by the sync ring. The target is coupled to a first position of the turbine within a first region that is associated with a first vane of the plurality of articulating vanes. The bellows coupled to the turbine and configured to maintain a sensor reference point at a second position. The sensor reference point at the second position is maintained by the bellows in relation to the target at the first position across a gap.2016-05-05
20160123846VENTILATOR-ENDOTRACHEAL TUBE-LUNG BENCHTOP MODEL - Disclosed herein is a ventilator text fixture comprising a ventilator port that connects to a ventilator through a breathing circuit; where the ventilator delivers air through the ventilator port to a ventilator test fixture at a rate and pressure that can be controlled by a user to simulate inhalation; an input port; where the input port is in fluid communication with the ventilator port; where the input port permits additional simulated secretions or test liquids to be pumped into the ventilator text fixture; one or more bent supports; a liquid reservoir; where the liquid reservoir is operative to hold test fluids; and one or more tubes; where the one or more tubes are in fluid communication with the ventilator port and the input port via the liquid reservoir; and where the one or more bent supports are operative to mimic an anatomy of the trachea.2016-05-05
20160123847MICROMANIPULATOR FOR A CRYOMICROTOME - A microtome system has a cryomicrotome with a sectioning device in which is provided a preparation holder and a knife edge that are guided past one another inside a working space during a sectioning operation, in order to produce thin sections of a preparation retained in the preparation holder. A micromanipulator is operable outside the working space. With the micromanipulator, a tool for retention of a specimen support is positioned proximate the knife edge during a sectioning operation in order to receive the sections that are produced, preferably for substantially stationary retention of the specimen support.2016-05-05
20160123848SEMI-AUTOMATED SAMPLING SYSTEM FOR ASEPTIC SAMPLING - A semi-automated sampling assembly configured for aseptic sampling at one or more instances from a sample source having a biological inoculum is provided. The semi-automated sampling assembly includes a sampling conduit, a recovery conduit, one or more sampling kits, and a pumping device. The sampling conduit includes a first port and a second port, where the first port of the sampling conduit is configured to be operatively coupled to the sample source. Further, the recovery conduit includes a first port and a second port, where the first port of the recovery conduit is configured to be operatively coupled to the sample source. Also, the second port of the recovery conduit is operatively coupled to at least a portion of the sampling conduit. Moreover, the one or more sampling kits are operatively coupled to the sampling conduit, and the pumping device is operatively coupled to the sampling conduit.2016-05-05
20160123849METHOD AND APPARATUS FOR THE PREPARATION OF KNOWN QUANTITIES OF GASES AND VAPORS - The invention provides an apparatus, system and method for providing precise concentrations of vapor for sensor calibration. The apparatus, and associated method, comprises (a) a constant volume reservoir containing a vapor source comprising a liquid containing the vapor to be generated, such that said liquid in the reservoir is in equilibrium with a headspace volume in the reservoir at a given reservoir temperature; (b) a temperature controller for precisely controlling the temperature of the constant volume reservoir; (c) a source of positive pressure for imparting a precisely controlled pressure to the interior of the constant volume reservoir; and (d) a seal through which or in which at least one tube is insertable into or sealingly retained in the constant volume reservoir, while maintaining a seal to ambient air surrounding the reservoir, such that precisely metered quantities of vapor are dispensed from the reservoir via the tube to a chemical sensor requiring calibration, upon pressurization of the constant volume reservoir to a pressure above atmospheric pressure, by the source of positive pressure.2016-05-05
20160123850METHOD OF FORMING A STAIN ASSESSMENT TARGET - A method is provided of forming a stain assessment target for a biological material staining system. At least one region of a substrate is provided upon a support such as a microscope slide. The substrate is formed from an optically transmissive material which is an analogue of biological tissue. A biological tissue sample for inspection is also provided upon the support. The support, including the at least one region, together with the biological tissue sample and then stained by applying at least one biological tissue stain under similar staining conditions.2016-05-05
20160123851CELL STAINING METHOD AND SAMPLE COLLECTION TUBE USED FOR THE SAME - An object of the present invention is, in the case when a specific substance that has expressed on cells to be detected in a liquid sample is to be specifically stained, to provide a convenient cell staining method by which the damage and loss (flow out) of the cells in the collected sample are prevented, and the time has been shortened in a procedure for staining the cells in the liquid sample. Furthermore, another object of the present invention is to provide a sample collection tube that is suitable for use in the above-mentioned cell staining method. A method for specifically staining a specific substance possessed by cells in a sample, including performing the following steps in one step: (A) a step of performing an immobilization treatment of the cells; and (B) a step of performing a permeabilization treatment of the cells.2016-05-05
20160123852PARTICLE RELEASE AND COLLECTION - Particles are released from a particle-containing area of a first surface of a porous matrix. The particle-containing area is contacted with a liquid medium and sonic energy is applied to an opposing area on a second surface of the porous matrix, wherein the opposing area is opposite to the particle-containing area. The particles may be biological particles or non-biological particles.2016-05-05
20160123853METHOD, SYSTEMS AND KIT FOR FORENSIC IDENTIFICATION, POST MORTEM INTERVAL ESTIMATION AND CAUSE OF DEATH DETERMINATION BY RECOVERY OF DENTAL TISSUE IN PHYSIOLOGICAL CONDITIONS - The present invention is related to a method for obtaining dental pulp and root cement in the forensic dentistry field, wherein the method comprises the steps of: (a) obtaining a tooth; (b) taking a digital radiography to the tooth; (c) external rehydrating of the tooth; (d) perforating the rehydrated tooth; (e) internal rehydrating of dentin pulp complex (f) obtaining rehydrated root cement; (g) obtaining rehydrated dental pulp content with a low speed rotation tool; and (h) storing, preservation, processing and/or analyses of the rehydrated dental pulp content and rehydrated root cement, and the use of this method and kits thereof for forensic identification, estimation of post mortem interval (early and late) and determination of possible causes of death.2016-05-05
20160123854METHODS FOR PHENOTYPING OF INTACT WHOLE TISSUES - In various embodiments, the present application teaches methods and compositions for tissue clearing in which whole organs and bodies are rendered macromolecule-permeable and optically-transparent, thereby exposing their cellular structure with intact connectivity. In some embodiments, the present application teaches PACT, a protocol for passive tissue clearing and immunostaining of intact organs. In other embodiments, the present application teaches RIMS, a refractive index matching media for imaging thick tissue. In yet other embodiments, the application teaches PARS, a method for whole-body clearing and immunolabeling.2016-05-05
20160123855ELECTRICALLY CONDUCTIVE SAMPLE BLOCKS FOR SCANNING ELECTRON MICROSCOPY - The present invention provides a method for preparing a sample for microscopy, said method comprising the steps of contacting said sample with a first polymerizable resin under conditions and for a time sufficient for penetration of said first polymerizable resin into the sample, removing excessive first polymerizable resin from the surface of the sample, contacting the so-prepared sample containing said first polymerizable resin with a second polymerizable resin preparation, said second polymerizable resin preparation comprising a high concentration of electrically conductive particles, and subjecting the so-prepared sample to the curing temperature of the polymerizable resins, wherein the curing temperature of said second polymerizable resin preparation is substantially the same as the curing temperature of the first polymerizable resin.2016-05-05
20160123856RNA/PRTEIN/DNA PREFERENTIAL FLUID SAMPLE COLLECTION SYSTEM AND METHODS - Apparatus and methods are provided to obtain RNA-enhanced and protein-enhanced fluid samples which are stable at ambient temperatures. An apparatus includes a filter element made from a fibrous hydrophilic material which preferentially binds and filters cells, DNA-containing macrostructures, mucins and particulates, but does not preferentially bind RNA, RNA-containing macrostructures or proteins. An apparatus may include a sample collector having an absorbent collection pad which also does not preferentially bind RNA, RNA-containing macrostructures or proteins. A method includes obtaining a sample and passing the sample through an RNA-and-protein-preferential filter element to obtain RNA-enhanced and protein-enhanced samples. The method may include use of a RNA-and-protein-preferential absorbent pad material to collect the sample. DNA-rich samples may be obtained by using DNA elution buffer to release the DNA-containing cells and macrostructures after obtaining the RNA-enhanced and protein-enhanced samples.2016-05-05
20160123857COMBINED SORTING AND CONCENTRATING PARTICLES IN A MICROFLUIDIC DEVICE - Extracting and concentrating particles from a first fluid sample includes: providing the first fluid sample to a fluid exchange module of a microfluidic device, providing a second fluid sample to the fluid exchange module, in which the first fluid sample and the second fluid sample are provided under conditions such that particle-free portions of the first fluid sample are shifted, and an inertial lift force causes the particles in the first fluid sample to cross streamlines and transfer into the second fluid sample; passing the second fluid sample containing the transferred particles to a particle concentration module under conditions such that particle-free portions of the second fluid sample are shifted, and such that the particles within the second fluid sample are focused to a streamline within the particle concentration module.2016-05-05
20160123858CONCENTRATING PARTICLES IN A MICROFLUIDIC DEVICE - A microfluidic device includes: a first microfluidic channel; a second microfluidic channel extending along the first microfluidic channel; and a first array of islands separating the first microfluidic channel from the second microfluidic channel, in which each island is separated from an adjacent island in the array by an opening that fluidly couples the first microfluidic channel to the second microfluidic channel, in which the first microfluidic channel, the second microfluidic channel, and the islands are arranged so that a fluidic resistance of the first microfluidic channel increases relative to a fluidic resistance of the second microfluidic channel along a longitudinal direction of the first microfluidic channel such that, during use of the microfluidic device, a portion of a fluid sample flowing through the first microfluidic channel passes through one or more of the openings between adjacent islands into the second microfluidic channel.2016-05-05
20160123859MICRO ELECTRO-MECHANICAL HEATER - A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.2016-05-05
20160123860FUEL DENSITY DETERMINATION - A method for accurately determining a density of a fuel includes obtaining dielectric constant versus density characteristics of the fuel at a first location and measuring a dielectric constant of the fuel at a second location. The environmental conditions at the second location differ from environmental conditions at the first location. Density of the fuel at the second location is inferred using the dielectric constant of the fuel at the second location and the dielectric constant versus density characteristics of the fuel at the first location.2016-05-05
20160123861METHOD AND INSTRUMENT FOR MEASURING THE DENSITY OF FLUID MEDIA - A method and a measuring device measure the density of fluid media with a sensor having a density measuring device. A frequency oscillator with mass balance is used as the density sensor and all components related to the frequency oscillator with mass balance for the oscillation behavior, oscillation excitation and oscillation evaluation, as well as the frequency oscillator with mass balance directly associated with the measuring and sensor electronics, are enclosed in a housing or cartridge. These components are used with the frequency oscillator with mass balance in the cartridge, and/or the frequency oscillator with mass balance together with the cartridge is adjusted or calibrated using measurement standards and adapted as necessary to the specific application. The cartridge with the frequency oscillator with mass balance is releasably or replaceably connected with the measuring device or its base body before the beginning of the measuring operation to investigate the media.2016-05-05
20160123862ELECTRICAL SYSTEMS,AND SEPARATION SAMPLING MODULES FOR USE WITHIN A BUCKET OF A CENTRIFUGE - A separation sampling module for use within a bucket of a centrifuge for monitoring separation of a sample in a container includes a housing operable for supporting the container for containing the sample and removably positionable within the bucket of the centrifuge, at least one light source for illuminating the sample, at least one light detector for detecting light from the sample, and at least one of a power source and a connector operably connectable to a power source for use in powering the at least one light source. Light from the at least one light source passing through the sample defines a light path disposed in a direction across the direction of a centrifugal force when the separation sampling module is disposed in the bucket and rotated in the centrifuge.2016-05-05
20160123863METHOD FOR DETECTING PARTICLES - The present invention concerns a method of detecting particles which move along a trajectory and which produce or at least influence electromagnetic radiation, an electrical field or a magnetic field, wherein the electromagnetic radiation S, the electrical field or the magnetic field is detected, in which a structuring device is used, which either ensures that the particles along the trajectory produce or at least influence electromagnetic radiation, an electrical field or a magnetic field substantially only at non-periodic spatial spacings, or ensures that the electromagnetic radiation S, the electrical or the magnetic field is detected substantially only at non-periodic spatial spacings along the trajectory. To provide a method of detecting particles which move along a trajectory and which produce or at least influence electromagnetic radiation, an electrical field or a magnetic field, it is proposed according to the invention that the detected signal S is processed by means of a mismatched filter F2016-05-05
20160123864Method for Extending the Time Between Out-of-Service, In-Tank Inspections Using Ultrasonic Sensor - A method and apparatuses to extend the time interval between out-of-service, in-tank inspections while insuring structural integrity using a risk-based, Bayesian statistical approach comprised of a passing leak detection test and the using the results from (1) tank floor thickness measurements, (2) prior out-of-service tank floor inspection results, and/or (3) acoustic emission corrosion maps of the tank floor to estimate the minimum thickness and maximum corrosion rate of the tank during the extension period. The present invention uses an in-tank, mass-based leak detection system to establish tank integrity, three or more ultrasonic (UT) thickness measurement sensors for measurements of the tank floor at one location, and to establish the spatial distribution of corrosion of the tank floor, one or more prior API 653/12R1 or STI SP001 tank floor thickness inspections and/or three or more in-tank AE sensors mounted inside the tank with vertical and horizontal locations in an oblique plane relative to the tank floor.2016-05-05
20160123865HYDROGEL COMPOSITIONS AND METHODS FOR ELECTROCHEMICAL SENSING - Embodiments of hydrogels for electrochemical sensing, electrodes comprising the hydrogels, and methods of making and using the hydrogels are disclosed. The disclosed hydrogel electrodes comprise a cross-linked poly(acrylic acid-co-2-acrylamido-2-methyl-1-propanesulfonic acid (poly(AA-AMPS)) hydrogel and an electrical contact.2016-05-05
20160123866METHOD AND SYSTEM FOR ESTIMATING THE POTENTIAL FRICTION BETWEEN A VEHICLE TYRE AND A ROLLING SURFACE - A method and system for estimating the potential friction between a tyre and a rolling surface in which: a first and second engaged-friction/kinematic-quantity reference curve respectively corresponding to a first and to a second reference value μρ2016-05-05
20160123867SOIL MOISTURE INDICATOR - A soil moisture indicator including a main body that is formed in a hollow shape from a material through which water does not pass and has a water absorption opening disposed near one end in a longitudinal direction, an evaporation opening disposed near the other end, and a display section provided near the other end and formed to visualize the hollow inside; a water absorption material that is filled on the inside of the main body at least from the water absorption opening to the display section; and a water detection sheet that is disposed to cover the water absorption material at a position of the display section inside the main body and has varying color tones between a water absorption state and a dry state. The main body may have a guide line that indicates a target depth to which the main body can be inserted into the soil.2016-05-05
20160123868OBSERVATION APPARATUS - With the object of preventing deterioration of or damage to a photodetector caused by excessive light by more reliably preventing the excessive light from entering the photodetector, a microscope of the present invention is provided with a high-sensitivity detector, such as an HPD, a GaAsP, an EM-CCD or the like, that detects observation light coming from a specimen, a box-shaped casing that has an opening that allows contained items to be placed therein and removed therefrom and that covers the high-sensitivity detector, a door that can close off the opening of the casing, a switch that restricts light detection by the high-sensitivity detector by turning on and off a drive voltage to be applied to the high-sensitivity detector, and an opening restricting mechanism that allows the opening of the casing in the closed state imposed by the door to be opened only when the light detection by the high-sensitivity detector is restricted by the switch.2016-05-05
20160123869SPECTROSCOPIC MEASUREMENTS WITH PARALLEL ARRAY DETECTOR - A measurement apparatus comprises optical components arranged to provide parallel measurements of a biological sample. The parallel sample measurements provide improved accuracy with lower detection limit thresholds. The parallel measurements may comprise one or more of Raman spectroscopy measurements or infrared spectroscopy measurements. The parallel measurements can be combined with a light source. In many embodiments, the light source comprises one or more wavelengths corresponding to resonance frequencies of one or more molecules of the sample, such as wavelengths of ultraviolet light. The wavelengths of light corresponding to resonance frequencies can provide an increased signal to noise ratio. The parallel array optical configuration can be combined with wavelengths of light corresponding to resonance frequencies in order to provide increased measurement accuracy and detection of metabolites.2016-05-05
20160123870METHOD OF AND APPARATUS FOR CORRECTING FOR INTENSITY DEVIATIONS IN A SPECTROMETER - A method of determining a pathlength deviation of a sample (2016-05-05
20160123871Method for Determining the Moisture Content of a Resin Layer on a Carrier Board - A method for determining the moisture content of at least one resin layer provided on at least one wooden board as carrier board, wherein between the at least one resin layer and the carrier board an NIR reflecting layer is provided, including recording of at least one NIR spectrum of the at least one resin layer provided on the at least one carrier board using a NIR detector in a wavelength range between 500 nm an 2500 nm; determining the moisture content of the resin layer by comparing the NIR spectrum recorded for the resin layer to be measured with at least one NIR spectrum recorded for at least one reference sample with known moisture content by means of a multivariate data analysis, wherein the at least one NIR spectrum recorded was determined previously using the same NIR detector in a wavelength range between 500 nm and 2500 nm.2016-05-05
20160123872METHOD AND SYSTEM FOR NIR SPECTROSCOPY OF MIXTURES TO EVALUATE COMPOSITION OF COMPONENTS OF THE MIXTURES - A method of estimating the relative concentration of at least two components contained in a mixture of the components is disclosed. At least two mixtures are produced by combining the at least two components, each of the at least two mixtures having different concentrations of the at least two components. NIR mixture spectra are acquired from each of the at least two mixtures. The NIR component spectra and the NIR mixture spectra are input into a computer utilizing chemometrics software and the spectra are analyzed to produce a calibration model for each component and each of the mixture NIR spectra. NIR monitored spectra for a monitored mixture of the components having an unknown concentration of the components is acquired. The calibration models are applied to the NIR monitored spectra to thereby estimate the concentration of at least one of the components in the monitored mixture. The method can be applied to monitor fluid mixtures produced from one or multiple hydrocarbon reservoirs and surface facilities including pipelines and tanks.2016-05-05
20160123873HIGH PRECISION MEASUREMENT OF REFRACTIVE INDEX PROFILE OF CYLINDRICAL GLASS BODIES - According to some embodiments a method of measuring the refractive index profile of a consolidated glass body having a cylindrical surface comprises the steps of: (a) forming an image of a slit behind the glass body, (b) optionally pre-scanning the cylindrical surface of the test glass body or a reference glass body and analyzing the data within a fixed window to determine the likely location of the zero-order, un-diffracted beam while ignoring other diffracted beams; (c) optionally adjusting the optical power to improve the intensity of the data within the fixed window in order to improve the analysis; (d) predicting the trajectory of the zero-order beam through the preform based on the sampling location x2016-05-05
20160123874SPECKLE-BASED AUTHENTICATION APPARATUS, AUTHENTICATION SYSTEM COMPRISING THE SAME, AND SPECKLE-BASED AUTHENTICATION METHOD - Provided are a speckle-based authentication apparatus, an authentication system that includes the speckle-based authentication apparatus, and an authentication method using the speckle-based authentication apparatus. The speckle-based authentication apparatus includes an optical source configured to radiate light onto an object that is placed apart from the optical source; and a detector configured to detect a speckle pattern generated from the object in response to the light being radiated onto the object and detect location information of the object. Thus, the object is authenticated by comparing the speckle pattern detected by the detector with a speckle pattern stored in advance.2016-05-05
20160123875Device for Measuring Scattered Light from a Measurement Volume with Compensation for Background Signals - A device for measuring scattered light from a measurement volume with compensation for background signals, includes a light sensor having separately evaluable light-sensitive elements, a single imaging optical system, wherein the light-sensitive elements are arranged in the image plane and the measurement volume is arranged in the corresponding object plane of the optical system, a light transmitter with a collimated light beam, this light-sensitive element detects scattered light from the measurement volume and background light from the overlapping visual ranges behind the subject plane, and the other light-sensitive element detects no or significantly less scattered light from the measurement volume and background light from the overlapping visual areas behind the object plane, and a diaphragm that restricts the visual ranges of the light-sensitive elements behind the object plane.2016-05-05
20160123876Non-Invasive Wine Taint Detector - A system includes a computing device including a memory configured to store instructions. The computing device also includes a processor to execute the instructions to perform operations including initiating transmission of incident light from one or more light sources to a sealed bottle containing liquid. The operations also include receiving scattered light from the liquid contained in the sealed bottle. The operations also include processing one or more signals representative of the scattered light to detect interactions of the incident light with a particular molecule.2016-05-05
20160123877METHOD AND APPARATUS FOR REMOTE SENSING USING OPTICAL ORBITAL ANGULAR MOMENTUM (OAM)-BASED SPECTROSCOPY FOR OBJECT RECOGNITION - A method and system for remote sensing using optical orbital angular momentum (OAM)-based spectroscopy for object recognition. The method includes applying an OAM state on a light beam to generate an optical OAM spectrum, transmitting the light beam on a remote object, receiving a reflected optical OAM spectrum associated with the remote object, and providing a high resolution image of the remote object based on the reflected optical OAM spectrum.2016-05-05
20160123878PLASMONIC HYDROGEN DETECTION - A plasmonic hydrogen detector and method of constructing a plasmonic hydrogen detector. The plasmonic hydrogen detector comprises: a structure comprising a support and a plurality of nanostructure elements. The plurality of nanostructure elements comprise a plasmonic material and a hydrogen sensitive material. The plurality of nanostructure elements are configured on the support to allow the structure to act as a plasmonic metamaterial. The hydrogen sensitive material is configured to cause a change in permittivity of the plasmonic metamaterial in the presence of hydrogen. Aspects and embodiments described recognise that use of a plasmonic metamaterial as a hydrogen detector can result in a highly sensitive detector. That sensitivity stems from the sensitivity of strong plasmonic coupling between individual nanostructure elements in the metamaterial to external perturbations, for example, as a result of a physical or chemical environmental change.2016-05-05
20160123879INSPECTION DEVICE FOR LIGHT-REGULATING FILM, AND PRODUCTION DEVICE FOR LIGHT-REGULATING FILM - An inspection device of the present invention is provided with a light source unit which is disposed either one of a base material side and a light diffusing portion side and irradiates light toward a light-regulating film with respect to the light-regulating film which includes a base material, a light diffusing portion, and a light shielding layer, and a light receiver which is disposed on either the other of the base material side and the light diffusing portion side and measures an intensity of transmitted light which is emitted from the light source unit and is transmitted through the light-regulating film, and inspects a state of an inclined surface of the light diffusing portion based on a measurement result of the intensity of the transmitted light.2016-05-05
20160123880METHOD FOR FLUORESCENT DETECTION OF CURING - Pyrene can be used as a fluorescent probe for various industrial purposes. For example, it can be included in photocurable or thermally curable compositions and monitoring the fluorescence emission spectra before and after some curing will provide an indication of how much curing has occurred. Such monitoring can be carried out multiple times during a manufacturing process. Monitoring can also be done at different locations of a composition such as at inner and outer surfaces of a photocured or thermally cured layer.2016-05-05
20160123881FLUORESCENT DETECTION OF CURING DIFFERENCE BETWEEN SURFACES - Pyrene can be used as a fluorescent probe for various industrial purposes. For example, it can be included in photocurable or thermally curable compositions and monitoring the fluorescence emission spectra before and after some curing will provide an indication of how much curing has occurred. Such monitoring can be carried out multiple times during a manufacturing process. Monitoring can also be done at different locations of a composition such as at inner and outer surfaces of a photocured or thermally cured layer.2016-05-05
20160123882DETERMINATION OF WATER TREATMENT PARAMETERS BASED ON ABSORBANCE AND FLUORESCENCE - A monitoring system configured to receive an on-line sample associated with a process includes a sample chamber positioned to receive the on-line sample and a detector positioned to selectively receive and detect multiple wavelengths of light transmitted through the sample during an absorbance measurement, and emitted by the sample during a fluorescence measurement in response to illumination by each of the at least one excitation wavelength. An optical fiber couples light transmitted through the sample and directs the transmitted light to the multi-channel detector during the absorbance measurement. Optics direct light emitted by the sample during the fluorescence measurement to the detector without passing through any optical fiber. A computer in communication with the detector is configured to correct the fluorescence measurement using the absorbance measurement and determine a sample parameter based on the fluorescence and absorbance measurements of the on-line sample.2016-05-05
20160123883METHODS FOR ASSESSING FRAGMENT LENGTHS OF MOLECULAR CHAINS USING MULTIPLE DYES - A method for visualizing and discriminating between DNA/RNA fragment(s) of unknown length(s) and an internal marker(s) of known length in a sample that is disposed in a common electrophoresis gel laneway. The method comprises labeling the DNA/RNA fragment(s) with a first dye and labeling the internal marker(s) with a second dye. The first and second dyes have discrete fluorescent emission spectra, which may be used to visually discriminate the DNA/RNA fragment(s) and the internal marker(s).2016-05-05
20160123884FLUORESCENCE DETECTION DEVICE, SYSTEM AND PROCESS - An optical fluorescence analysis system (2016-05-05
20160123885Inspection Lamp Having Reduction of Speckle of Laser Light - An inspection lamp for detection of fluorescent materials, such as dyes often added to refrigerant fluids for the purpose of detecting leaks. Multiple aspects of reducing a distracting speckle effect are described. For example, at least two aspects are combined. One speckle reduction aspect uses a diffuser. A second speckle reduction aspect is achieved by a laser device such as a laser diode that simultaneously outputs a large number of individual wavelengths across a significant bandwidth. A third aspect of despeckling the laser light includes vibrating or rotating optical components. A fourth aspect of despeckling includes fluorescence and broadband radiation from the laser being more visible through suitable eyewear than the laser radiation.2016-05-05
20160123886INTEGRATED FLUORESCENCE SCANNING SYSTEM - An integrated fluorescence scanning system is provided. The integrated fluorescence scanner combines an embedded computer, light engine, microscope, and motion stage into a compact rack-mountable network appliance that allows for automation of fluorescence microscopy. In an embodiment, the integrated fluorescence scanner includes a solid-state light engine which can provide intense, pure, and stable light across the spectrum required for imaging of all fluorophores of interest. The embedded computer allows for autonomous operation, and network appliance features including synchronous multi-scanner operation and monitoring, multisite operation via a single control terminal, and calibration for inter and intra instrument consistency.2016-05-05
20160123887SYSTEMS AND METHODS FOR DISTINGUISHING STIMULATED EMISSIONS AS A MEANS OF INCREASING THE SIGNAL OF FLUORESCENCE MICROSCOPY - Embodiments of a fluorescence microscopy system that employs a technique for distinguishing stimulated emission as a means for enhancing signal strength of fluorescent markers are disclosed.2016-05-05
20160123888SURFACE ENHANCED RAMAN SCATTERING (SERS) SENSOR AND A METHOD FOR PRODUCTION THEREOF - A plasmonic sensor, having at least a substrate, a laser processed active surface area on the said substrate, and a metal coating on the activate surface, where the laser processed surface is fabricated by means of short laser pulses in such a way that in a shallow layer of the surface material, the viscosity is reduced and under the influence of the same pulse, which was used to reduce the viscosity, or a successive incident one or more pulses a self-organized, stochastic nanostructure is formed, which has features smaller than 1 μm. In some implementations, the substrate material is amorphous, such as soda-lime glass or similar. Also disclosed is a slide and/or a slip cover, which are used in microscopy, for forming the active sensor area on top surface of it.2016-05-05
20160123889Methods and Apparatus for Determination of Halohydrocarbons - A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.2016-05-05
20160123890Determining Treatment Fluid Composition Using a Mini-Reservoir Device - A mini-reservoir device may be used to screen or otherwise determine a composition of one or more treatment fluids, additives, and other fluids. Such fluids may be for use in a subterranean formation. Methods of determining a composition may include visual analysis of each of two or more fluids, each from a plurality of candidate fluids, flowed through a mini-reservoir device, and selection of one of the plurality of candidate fluids based at least in part upon that visual analysis. Certain methods may include determining an oil recovery factor for each of one or more fluids flowed through a mini-reservoir device. In particular methods, multiple treatment fluids and/or additives, such as surfactants, may be selected based at least in part upon visual analysis of the fluids' flow through a mini-reservoir device.2016-05-05
20160123891APPARATUS FOR INSPECTING - The present invention relates to an inspection apparatus, the inspection apparatus including a projection unit configured to project a plurality of lights, each having a different focal length relative to a surface of an inspection object, and an inspection unit configured to inspect a surface of an inspection object using the light reflected from the inspection object, wherein the projection unit is provided with a plurality of lenses configured to project the lights, and curvature of each lens is different, and the focal length is different due to the difference of the curvature, whereby the curve on a surface of the inspection object can be reliably measured.2016-05-05
20160123892ILLUMINATION SYSTEM, INSPECTION TOOL WITH ILLUMINATION SYSTEM, AND METHOD OF OPERATING AN ILLUMINATION SYSTEM - An illumination system, an inspection tool and a method for inspecting an object are disclosed. A configurable area light source is arranged in an illumination optical axis of an illumination beam path, wherein the configurable area light source is configured such that different beam diameters are settable. At least one illumination lens is positioned in the illumination beam path for directing a collimated beam at least onto a field of view on a surface of the object, wherein a value of an angle of incidence of the illumination optical axis of the illumination beam path equals a value of an angle of reflectance of the imaging optical axis of the imaging beam path. The invention allows the combination of the functionality of a wide angle coaxial illumination and a collimated coaxial illumination in one illumination system.2016-05-05
20160123893Portable three-dimensional metrology with data displayed on the measured surface - A portable instrument for 3D surface metrology projects augmented-reality feedback directly on the measured target surface. The instrument generates structured-light measuring-patterns and projects them successively on a target surface. Features, contours, and textures of the target surface distort each projected measuring-pattern image (MPI) from the original measuring-pattern. The instrument photographs each MPI, extracts measurement data from the detected distortions, and derives a result-image from selected aspects of the measurement data. The instrument warps the result-image to compensate for distortions from the projector or surface and projects the result-image on the measured surface, optionally with other information such as summaries, instrument status, menus, and instructions. The instrument is lightweight and rugged. Accurate measurements with hand-held embodiments are made possible by high measurement speed and an optional built-in inertial measurement unit to correct for pose and motion effects.2016-05-05
20160123894Measurement Systems Having Linked Field And Pupil Signal Detection - Methods and systems for simultaneous detection and linked processing of field signals and pupil signals are presented herein. In one aspect, estimates of one or more structural or process parameter values are based on field measurement signals, pupil measurement signals, or both. In addition, the quality of the measurements of the one or more structural or process parameter values is characterized based on the field measurement signals, pupil measurement signals, or both. In some embodiments, field measurement signals are processed to estimate one or more structural or process parameter values, and pupil measurement signals are processed to characterize the field measurement conditions. In some other embodiments, pupil measurement signals are processed to estimate one or more structural or process parameter values, and field measurement signals are processed to characterize the pupil measurement conditions.2016-05-05
20160123895SIZING DEFECT DETECTION SYSTEM AND SIZING DEFECT DETECTION METHOD - A light emission part projects a laser light toward an edge portion of a formation. The laser light extends in a direction intersecting a conveyance direction of a forming belt. A light receiving part is opposed to the light emission part and located on the opposite side of the formation. The laser light passes through an area above an upper surface of the formation at least partially and is partially blocked by rising of the edge portion of the formation. A control device determines occurrence of the glue-joint failure on the basis of whether the quantity of light received by the light receiving part is reduced by at least a predetermined value or a predetermined rate, and provides or gives a visual display or a warning of the occurrence of glue-joint failure.2016-05-05
20160123896APPARATUS FOR INSPECTING CURVATURE - An apparatus for inspecting curvature, including: a radiation unit radiating a plurality of rays of light having different focal lengths onto a surface of an target material; and an inspection unit inspecting the surface of the target material using the rays of light reflected from the target material. The apparatus can inspect the curvature or the bending of the surface of a target material at a high speed and with high accuracy.2016-05-05
20160123897COMPUTATIONAL WAFER IMAGE PROCESSING - A method for designing a filter to image a feature on a surface, comprising: acquiring an image of said feature, with said image of feature comprising information from multiple points of said feature; generating a structural model of said feature by extracting predetermined properties of said feature from said image of feature; computing a scattering model for said feature from said structural model of said feature, with said scattering model for feature having information on scattered electromagnetic field from feature propagating in a plurality of scattering angles, wherein said scattered electromagnetic field from feature is generated by scattering of an electromagnetic radiation by said feature; acquiring an image of said surface, with said image of surface comprising information from multiple points of said surface; generating a structural model of said surface by extracting predetermined properties of said surface from said image of surface; computing a scattering model for said surface from said structural model of said surface, with said scattering model for surface having information on scattered electromagnetic field from surface propagating in a plurality of scattering angles, wherein said scattered electromagnetic field from surface is generated by scattering of an electromagnetic radiation by said surface; and computing said filter by combining said scattering model for feature and said scattering model for surface to achieve a predetermined filter performance metric, whereby said filter is designed to modulate scattered electromagnetic field from said feature and scattered electromagnetic field from said surface to image a feature on said surface. A system and method for recognizing a feature, comprising: acquiring an image of said feature using an imaging module, with said image of feature comprising information from multiple points of said feature; computing a feature spread function from scattering model of a previously known feature and transfer function of said imaging module, wherein said feature spread function represents a model of an image of said previously known feature; and comparing said image of feature with said feature spread function by computing a match metric between said image of feature and said feature spread function, whereby said match metric determines if said feature is similar to said previously known feature.2016-05-05
20160123898Wafer Defect Discovery - Systems and methods for discovering defects on a wafer are provided. One method includes detecting defects on a wafer by applying a threshold to output generated by a detector in a first scan of the wafer and determining values for features of the detected defects. The method also includes automatically ranking the features, identifying feature cut-lines to group the defect into bins, and, for each of the bins, determining one or more parameters that if applied to the values for the features of the defects in each of the bins will result in a predetermined number of the defects in each of the bins. The method also includes applying the one or more determined parameters to the output generated by the detector in a second scan of the wafer to generate a defect population that has a predetermined defect count and is diversified in the values for the features.2016-05-05
20160123899Cavity Resonator System - A cavity resonator system for measuring EM properties of the contents of a pipe portion comprises a primary resonator and a secondary resonator each with the same configuration comprising a conductive casing that defines a cavity and has openings for receiving a pipe portion, insulator material disposed inside the cavity, and antennae for generating and detecting a resonant EM field inside the cavity. In addition, the secondary resonator comprises at least one conductive screening ring that extends around the location occupied by a pipe portion for screening the interior of the ring from the field generated inside the cavity of the secondary resonator. By combining measures of parameters of the field from both resonators, the system may be used to generate a measure representative of EM properties of the contents of the pipe portion that is compensated for variation in the EM properties of the insulator material.2016-05-05
Website © 2025 Advameg, Inc.