Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


18th week of 2012 patent applcation highlights part 18
Patent application numberTitlePublished
20120104314BLEACH COPARTICLE - Layered particles that contain a source of hydrogen peroxide, a binder material, and a bleach activator are disclosed. The disclosed layered particles have improved properties and are useful, for example, for incorporation into granular detergents. A method of improving the stability of a source of hydrogen peroxide is also disclosed.2012-05-03
20120104315Liquid Crystal Polyester Composition - To provide a liquid crystal polyester composition that yields compacts that are resistant to cracking. A plate-like filler with a volume-average particle size of 14 μm or greater and a fibrous filler are combined with a liquid crystal polyester to form a liquid crystal polyester composition. The total content of the plate-like filler and the fibrous filler is 45-55 wt % with respect to the total of the liquid crystal polyester composition. The weight ratio of the fibrous filler content to the plate-like filler content is greater than 0.5 and not greater than 0.65.2012-05-03
20120104316LIQUID CRYSTAL COMPOSITIONS - This invention relates to a liquid crystal composition and articles comprising the composition. The composition comprises at least one compound of each of the Formulas (I), (II) and (III),2012-05-03
20120104317PHOSPHOR AND MANUFACTURING METHOD THEREFORE, AND LIGHT EMISSION DEVICE USING THE PHOSPHOR - To provide a phosphor for manufacturing an one chip type LED illumination, etc, by combining a near ultraviolet/ultraviolet LED and a blue LED, and having an excellent emission efficiency including luminance. The phosphor is given as a general composition formula expressed by MmAaBbOoNn:Z, (where element M is one or more kinds of elements having bivalent valency, element A is one or more kinds of elements having tervalent valency, element B is one or more kinds of elements having tetravalent valency, O is oxygen, N is nitrogen, and element Z is one or more kinds of elements acting as an activator.), satisfying a=(1+x)×m, b=(4−x)×m, o=x×m, n=(7−x)×m, 0≦x≦1, wherein when excited by light in a wavelength range from 300 nm to 500 nm, the phosphor has an emission spectrum with a peak wavelength in a range from 500 nm to 620 nm.2012-05-03
20120104318METHOD FOR PRODUCING MAGNESIUM-CONTAINING ZINC OXIDE, MAGNESIUM-CONTAINING ZINC OXIDE, AND APPARATUS FOR PRODUCING SAME - Provided is an apparatus for producing magnesium-containing zinc oxide, including: zinc vapor producing means 2012-05-03
20120104319LUMINESCENT PAINTS AND METHODS OF MAKING THE SAME - Luminescent paints and methods of making luminescent paints are provided. In some examples, the luminescent paints may include epoxy resin and luminescent substance. The luminescent paints may also include a variety of day time, UV stable colors.2012-05-03
20120104320LUMINESCENT PAINTS AND METHODS OF MAKING THE SAME - Luminescent paints and methods of making luminescent paints are provided. In some examples, the luminescent paints may include urethane resin and luminescent substance. The luminescent paints may also include a variety of day time, UV stable colors, thereby providing the luminescent paints with long lasting and vibrant day time colors. Also, the luminescent paints may be bio-friendly in nature and may include low levels of hazardous air pollutants (HAPs) or no HAPs at all.2012-05-03
20120104321Steam-Hydrocarbon Reforming with Limited Steam Export - A steam-hydrocarbon reforming process and apparatus wherein reformate from a prereformer is reacted in a gas heated reformer which is heated by reformed gas from a primary reformer. Reformate from the gas heated reformer is passed to the primary reformer as feed gas.2012-05-03
20120104322PROCESSES AND SYSTEMS FOR PRODUCING SYNGAS FROM METHANE - Embodiments of a process for producing syngas comprising hydrogen and carbon monoxide from a gas stream comprising methane are provided. The process comprises the step of contacting the gas stream with a two-component catalyst system comprising an apatite component and a perovskite component at reaction conditions effective to convert the methane to the syngas.2012-05-03
20120104323HEMOGLOBIN BASED BILIRUBIN REFERENCE MATERIAL - What is described is a single reference material and method of making useful for calibrating or qualifying instruments that are diagnostic spectroscopically for bilirubin, hemoglobin, and hemoglobin fractions, and, optionally, diagnostic for other blood analytes by sensor means.2012-05-03
20120104324CHALCOGENIDE SOLAR CELLS - A precursor material for forming a film of a group IB-IIIA-chalcogenide compound and a method of making this film are disclosed. The film contains group IB-chalcogenide nanoparticles and/or group IIIA-chalcogenide nanoparticles and/or nanoglobules and/or nanodroplets and a source of extra chalcogen. Alternatively, the film may contain core-shell nanoparticles having core nanoparticles include group IB and/or IIIA elements, which are coated with a shell of elemental chalcogen material. The method of making a film of group IB-IIIA- chalcogenide compound includes mixing the nanoparticles and/or nanoglobules and/or nanodroplets to form an ink, depositing the ink on a substrate, heating to melt the extra chalcogen and to react the chalcogen with the group IB and group IIIA elements and/or chalcogenides to form a dense film.2012-05-03
20120104325Materials and Methodss for the Preparation of Nanocomposites - Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a solution of the same, a method for making the same from a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, imaging devices, phase change layers, and sensor devices.2012-05-03
20120104326Anode and lithium battery including anode - An anode includes an anode active material including a lithium titanium oxide, a binder, and 0 to about 2 parts by weight of a carbon-based conductive agent based on 100 parts by weight of the lithium titanium oxide.2012-05-03
20120104327Spinel-Type Lithium Titanium Oxide/Graphene Composite and Method of Preparing the Same - A spinel-type lithium titanium oxide/graphene composite and a method of preparing the same are provided. The method can be useful in simplifying a manufacturing process and shortening a manufacturing time using microwave associated solvothermal reaction and post heat treatment, and the spinel-type lithium titanium oxide/graphene composite may have high electrochemical performances due to its excellent capacity and rate capability and long lifespan, and thus be used as an electrode material of the lithium secondary battery.2012-05-03
20120104328Method of Selective Separation Of Semiconducting Carbon Nanotubes, Dispersion Of Semiconducting Carbon Nanotubes, And Electronic Device Including Carbon Nanotubes Separated By Using The Method - According to example embodiments, a method includes dispersing carbon nanotubes in a mixed solution containing a solvent, the carbon nanotubes, and a dispersant, the carbon nanotubes including semiconducting carbon nanotubes, the dispersant comprising a polythiophene derivative including a thiophene ring and a hydrocarbon sidechain linked to the thiophene ring. The hydrocarbon sidechain includes an alkyl group containing a carbon number of 7 or greater. The hydrocarbon sidechain may be regioregularly arranged, and the semiconducting carbon nanotubes are selectively separated from the mixed solution. An electronic device includes semiconducting carbon nanotubes and the foregoing described polythiophene derivative.2012-05-03
20120104329METHOD FOR DISPERSING GRAPHITE-LIKE NANOPARTICLES - A method for dispersing graphite-like nanoparticles is described, wherein the graphite-like nanoparticles are dispersed in a continuous liquid phase while applying energy in the presence of the dispersing agent, using dispersing agents consisting of block copolymers, at least one block of which bears aromatic side chains that are bound via aliphatic chain links to the main chain of the block copolymer.2012-05-03
20120104330METAL INK COMPOSITION, METHOD OF FORMING A CONDUCTIVE METAL FILM USING THE SAME, AND CONDUCTIVE METAL FILM USING THE SAME - Provided herein is a metal ink composition, including an organism-derived adhesive material. Such a metal ink composition is eco-friendly and is adhered to an adherent with excellent adhesion even when added in a small content. Further, the metal ink composition is not condensed by thermal sintering, and thus exhibits excellent patternability.2012-05-03
20120104331SOLUTIONS AND METHODS FOR METAL DEPOSITION - One aspect of the present invention is a deposition solution to deposit metals and metal alloys such as for fabrication of electronic devices. According to one embodiment, the deposition solution comprises metal ions and a pH adjustor. The pH adjustor comprises a functional group having a general formula (R2012-05-03
20120104332PASTE COMPOSITION FOR FRONT ELECTRODE OF SOLAR CELL, AND SOLAR CELL INCLUDING THE SAME - Provided is a paste composition for front electrode of a solar cell. The paste composition includes conductive power, an organic vehicle, a glass frit, and an additive. The additive includes at least one material selected from the group consisting of Zn, Sb, V, W, Cr, Cd, Re, Sn, Mo, Mn, Ni, Co, Cu, and metal oxide including one of the foregoing materials.2012-05-03
20120104333COATED CONDUCTIVE PARTICLES AND METHOD FOR PRODUCING SAME - [Problem to be Solved] To provide conductive particles which are capable of providing an anisotropically conductive adhesive that can maintain sufficient insulation characteristics and conduction characteristics even when used for the connection of a very small circuit, while having excellent moisture absorption resistance at a lower cost. [Solution] A coated conductive particle (2012-05-03
20120104334POSITIVE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND METHOD OF MANUFACTURING SAME - A positive active material for a lithium secondary battery comprises a core comprising a compound that can reversibly intercalate and deintercalate lithium; and a compound attached to the surface of the core and represented by Chemical Formula 1:2012-05-03
20120104335PHTHALOCYANINE NANOWIRES, INK COMPOSITION AND ELECTRONIC ELEMENT EACH CONTAINING SAME, AND METHOD FOR PRODUCING PHTHALOCYANINE NANOWIRES - The present invention provides phthalocyanine nanowires having a minor diameter of 100 nm or less and a ratio (length/minor diameter) of length to minor diameter of 10 or more, an ink composition characterized by containing, as essential components, the phthalocyanine nanowires and an organic solvent, a film including the phthalocyanine nanowires, and an electronic element including a film. Since by using an ink composition containing the phthalocyanine nanowires of the present invention a phthalocyanine film can be formed by a wet process such as coating or printing, a break-proof, lightweight, low-cost electronic element can be provided on a flexible plastic substrate.2012-05-03
20120104336TITANIA-DOPED QUARTZ GLASS MEMBER AND MAKING METHOD - In a titania-doped quartz glass member having a surface where EUV light of up to 70 nm wavelength is reflected, a refractive index distribution in the surface has only one extreme point within a central 80% region of the member. The titania-doped quartz glass member has a surface with a high level of precision and thus can be formed into an EUV lithography photomask substrate which is improved in flatness and thermal expansion properties.2012-05-03
20120104337METHOD FOR ABSORBING A VEHICLE IMPACT USING KINETIC FRICTION FORCE AND ROLLING FORCE PRODUCED BY THE DRAGGING OF A SURFACE OF ROLLED TUBE, AND VEHICLE IMPACT ABSORBING APPARATUS USING SAME - An object of the present invention is to continuously secure a displacement while dynamic kinetic energy of a vehicle is absorbed by a kinetic frictional force and rolling force produced by dragging a surface of a soft rolled tube, and to let an evaluation index of PHD belong to a passenger safety index by slowly maintaining the maximum deceleration applied to the vehicle and passenger, thereby preventing a human in safe against fatal impact. The present invention is configured to reduce the maximum deceleration by 20 g or less by a kinetic frictional force of a first dragging kinetic frictional force inducing member at a front end portion of a rolled tube 2012-05-03
20120104338VEHICLE RESTRAINT SYSTEM WITH WEIGHTING BODY - The present invention relates to a vehicle restraint system (2012-05-03
20120104339PHASE CHANGE MEMORY CELL - On a first structure having a first dielectric layer, a second dielectric layer, and a third dielectric layer a crown is formed through the third dielectric layer and the second dielectric layer. A fourth dielectric layer is deposited over the first structure and thereby is over the crown. A portion of the fourth dielectric layer is removed to form a first spacer having a remaining portion of the fourth dielectric layer. A portion of the third electric layer is also removed during the removal of the portion the fourth dielectric layer, resulting in a second spacer having a remaining portion of the third dielectric layer. A second structure is thereby formed. A phase change material layer is deposited over the second structure. An electrode layer is deposited over the phase change layer. Portions of the electrode layer and the phase change layer are removed by a chemical-mechanical-polishing process to form a phase change region having a remaining portion of the phase change layer and to form an electrode region having a remaining portion of the electrode layer.2012-05-03
20120104340NONVOLATILE MEMORY DEVICE AND METHOD FOR MANUFACTURING SAME - A nonvolatile memory device includes: a substrate; a stacked structure member including a plurality of dielectric films and a plurality of electrode films alternately stacked on the substrate and including a through-hole penetrating through the plurality of the dielectric films and the plurality of the electrode films in a stacking direction of the plurality of the dielectric films and the plurality of the electrode films; a semiconductor pillar provided in the through-hole; and a charge storage layer provided between the semiconductor pillar and each of the plurality of the electrode films. At least one of the dielectric films includes a film generating one of a compressive stress and a tensile stress, and at least one of the electrode films includes a film generating the other of the compressive stress and the tensile stress.2012-05-03
20120104341MEMORY CELL DEVICE AND METHOD OF MANUFACTURE - According to one embodiment of the present invention, a solid state electrolyte memory cell includes a cathode, an anode and a solid state electrolyte. The anode includes an intercalating material and first metal species dispersed in the intercalating material.2012-05-03
20120104342Memristive Device - A memristive device includes a first electrode, a second electrode crossing the first electrode at a non-zero angle, and an active region disposed between the first and second electrodes. The active region has a controlled defect profile throughout its thickness.2012-05-03
20120104343Nonvolatile Memory Cells and Methods Of Forming Nonvolatile Memory Cell - A method of forming a nonvolatile memory cell includes forming a first electrode having a first current conductive material and a circumferentially self-aligned second current conductive material projecting elevationally outward from the first current conductive material. The second current conductive material is different in composition from the first current conductive material. A programmable region is formed over the first current conductive material and over the projecting second current conductive material of the first electrode. A second electrode is formed over the programmable region. In one embodiment, the programmable region is ion conductive material, and at least one of the first and second electrodes has an electrochemically active surface directly against the ion conductive material. Other method and structural aspects are disclosed.2012-05-03
20120104344SEMICONDUCTOR DEVICE - A semiconductor device includes a semiconductor element. The semiconductor element comprises a first insulating film, a resistance changing layer, a first electrode, a buried layer, and a second electrode. The first electrode is formed within the opening so as to cover side and bottom surfaces of an inner wall of the opening and so as to include a recessed portion and is in contact with the resistance changing layer via the upper end thereof. The second electrode is formed on the resistance changing layer so as to interpose the resistance changing layer between the second electrode, and the upper end of the first electrode and the buried layer. The semiconductor element changes an electronic resistance between the first and second electrodes by reversibly forming a conductive bridge in the resistance changing layer between the upper end of the first electrode and the second electrode.2012-05-03
20120104345MEMRISTIVE DEVICES WITH LAYERED JUNCTIONS AND METHODS FOR FABRICATING THE SAME - Memristor systems and method for fabricating memristor system are disclosed. In one aspect, a memristor includes a first electrode, a second electrode, and a junction disposed between the first electrode and the second electrode. The junction includes at least one layer such that each layer has a plurality of dopant sub-layers disposed between insulating sub-layers. The sub-layers are oriented substantially parallel to the first and second electrodes.2012-05-03
20120104346SEMICONDUCTOR DEVICE FOR PROVIDING HEAT MANAGEMENT - A semiconductor device for providing heat management may include a first electrode with low metal thermal conductivity and a second electrode with low metal thermal conductivity. A metal oxide structure which includes a transition metal oxide (TMO) may be electrically coupled to the first electrode and second electrode and the metal oxide structure may be disposed between the first electrode and second electrode. An electrically insulating sheath with low thermal conductivity may surround the metal oxide structure.2012-05-03
20120104347METHOD OF FORMING A CHALCOGENIDE MATERIAL, METHODS OF FORMING A RESISTIVE RANDOM ACCESS MEMORY DEVICE INCLUDING A CHALCOGENIDE MATERIAL, AND RANDOM ACCESS MEMORY DEVICES INCLUDING A CHALCOGENIDE MATERIAL - A method of forming a chalcogenide material on a surface of a substrate comprising exposing a surface of a substrate to ionized gas clusters from a source gas, the ionized gas clusters comprising at least one chalcogen and at least one electropositive element. A method of forming a resistive random access memory device is also disclosed. The method comprises forming a plurality of memory cells wherein each cell of the plurality of memory cells is formed by forming a metal on a first electrode, forming a chalcogenide material on the metal by a gas cluster ion beam process, and forming a second electrode on the chalcogenide material. A method of forming another resistive random access memory device and a random access memory device including the chalcogenide material are also disclosed.2012-05-03
20120104348PROGRAMMABLE METALLIZATION MEMORY CELLS VIA SELECTIVE CHANNEL FORMING - Methods for making a programmable metallization memory cell are disclosed.2012-05-03
20120104349PROGRAMMABLE RESISTIVE MEMORY CELL WITH SACRIFICIAL METAL - Programmable metallization memory cells include an electrochemically active electrode and an inert electrode and an ion conductor solid electrolyte material between the electrochemically active electrode and the inert electrode. A sacrificial metal is disposed between the electrochemically active electrode and the inert electrode. The sacrificial metal has a more negative standard electrode potential than the filament forming metal.2012-05-03
20120104350VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE AND METHOD OF MANUFACTURING THE SAME - A step of forming, on a substrate (2012-05-03
20120104351NON-VOLATILE MEMORY CELL, NON-VOLATILE MEMORY CELL ARRAY, AND METHOD OF MANUFACTURING THE SAME - A stacking structure in which a stacked body (2012-05-03
20120104352MEMORY DEVICE AND METHOD FOR MANUFACTURING THE SAME - According to one embodiment, a memory device includes a nanomaterial assembly layer, a first electrode layer and a second electrode layer. The nanomaterial assembly layer is formed of an assembly of a plurality of micro conductors via gaps between the micro conductors. The first electrode layer is provided on the nanomaterial assembly layer. The second electrode layer is provided on the first electrode layer.2012-05-03
20120104353CROSS POINT MEMORY ARRAYS, METHODS OF MANUFACTURING THE SAME, MASTERS FOR IMPRINT PROCESSES, AND METHODS OF MANUFACTURING MASTERS - A cross point memory array includes a structure in which holes are formed in an insulating layer and a storage node is formed in each of the holes. The storage node may include a memory resistor and a switching structure. The master for an imprint process used to form the cross-point memory array includes various pattern shapes, and the method of manufacturing the master uses various etching methods.2012-05-03
20120104354LIGHT-EMITTING DIODE - A light-emitting diode includes an n-type nitride semiconductor layer, a multiple quantum well, a p-type nitride semiconductor layer, a window electrode layer, a p-side electrode, and an n-side electrode, which are stacked in this order. The window electrode layer comprises an n-type single-crystalline ITO transparent film and an n-type single-crystalline ZnO transparent film. The p-type nitride semiconductor layer is in contact with the n-type single-crystalline ITO transparent film, the n-type single-crystalline ITO transparent film is in contact with the n-type single-crystalline ZnO transparent film, and the p-side electrode is in connected with the n-type single-crystalline ZnO transparent film. The n-type single-crystalline ITO transparent film contains Ga, a molar ratio of Ga/(In+Ga) being not less than 0.08 and not more than 0.5. Thickness of the n-type single-crystalline ITO transparent film is not less than 1.1 nm and not more than 55 nm.2012-05-03
20120104355THICK PSEUDOMORPHIC NITRIDE EPITAXIAL LAYERS - In various embodiments, a semiconductor device includes an aluminum nitride single-crystal substrate, a pseudomorphic strained layer disposed thereover that comprises at least one of AlN, GaN, InN, or an alloy thereof, and, disposed over the strained layer, a semiconductor layer that is lattice-mismatched to the substrate and substantially relaxed.2012-05-03
20120104356LIGHT EMITTING DEVICE - Disclosed is a semiconductor light emitting device. The semiconductor light emitting device includes a light emitting structure having a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second conductive semiconductor layers. The active layer includes a plurality of well layers and barrier layers. An outermost barrier layer of the barrier layers includes a plurality of first layers; and a plurality of second layers.2012-05-03
20120104357LIGHT EMITTING DEVICE - A light emitting device includes a stacked body including at least a light emitting layer made of In2012-05-03
20120104358SEMICONDUCTOR CHIP CARRIERS WITH MONOLITHICALLY INTEGRATED QUANTUM DOT DEVICES AND METHOD OF MANUFACTURE THEREOF - A three-dimensional polycrystalline semiconductor material provides a major ingredient forming individual crystalline grains having a nominal maximum grain diameter less than or equal to 50 nm, and a minor ingredient forming boundaries between the individual crystalline grains.2012-05-03
20120104359Method of Fabricating Optical Devices Using Laser Treatment of Contact Regions of Gallium and Nitrogen Containing Material - A method for forming optical devices includes providing a gallium nitride substrate having a crystalline surface region and a backside region. The backside is subjected to a laser scribing process to form scribe regions. Metal contacts overly the scribe regions.2012-05-03
20120104360STRAIN COMPENSATED SHORT-PERIOD SUPERLATTICES ON SEMIPOLAR OR NONPOLAR GAN FOR DEFECT REDUCTION AND STRESS ENGINEERING - An (AlInGaN) based semiconductor device, comprising a first layer that is a semipolar or nonpolar nitride (AlInGaN) layer having a lattice constant that is partially or fully relaxed, deposited on a substrate or a template, wherein there are one or more dislocations at a heterointerface between the first layer and the substrate or the template; one or more strain compensated layers on the first layer, for defect reduction and stress engineering in the device, that is lattice matched to a larger lattice constant of the first layer; and one or more nonpolar or semipolar (AlInGaN) device layers on the strain compensated layers.2012-05-03
20120104361TRANSISTOR USING SOURCE ELECTRODE AND DRAIN ELECTRODE HAVING POINTED PORTIONS - A transistor includes a substrate, a source electrode, a drain electrode and a nanowire-layer. The source electrode, the drain electrode and the nanowires-layer are formed on the substrate. The source electrode includes a plurality of first pointed portions, and the drain electrode includes a plurality of second pointed portions each aligned with a corresponding first pointed portions. The nanowire-layer is interconnected between the first pointed portions and the second pointed portions.2012-05-03
20120104362Formation of ordered thin films of organics on metal oxide surfaces - Provided herein is a method for altering an electronic property of a structure comprising an oxide surface or an oxide surface in electronic communication with the structure, the method comprising providing a covalently-bound film comprising at least one organic acid residue on a portion of the oxide surface so that at least one of the following properties of the structure is modified: (a) the charge carrier injection barrier properties; (b) the charge conductivity properties; (c) the charge transport properties; (d) the work function properties; (e) the sub-threshold slope; and (f) the threshold voltage.2012-05-03
20120104363ORGANIC LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF - An organic light emitting device having a light emitting unit that includes an anode layer, a second wire, an insulating layer, first and second organic light emitting layers and a cathode layer is provided. The anode layer includes first and second sub-electrodes and a first wire connecting the first and second sub-electrodes that are arranged in a first direction. The second wire is disposed between the first and second sub-electrodes. The insulating layer is disposed on the first and second sub-electrodes and the second wire, and has a plurality of openings to expose the first sub-electrode, the second sub-electrode and the second wire. The first and second organic light emitting layers are disposed in two openings. The cathode layer is disposed on the first and second organic light emitting layers, and the cathode layer fills another opening to electrically connect to the second wire through the another opening.2012-05-03
201201043649,10-BISPHENYLPHENANTHRENE DERIVATIVE AND ORGANIC LIGHT EMITTING DIODE USING THE SAME - A 9,10-bisphenylphenanthrene derivative has a structure of formula (1):2012-05-03
20120104365ELECTRONIC COMPONENTS WITH INTEGRATED ENCAPSULATION - An embodiment relates to an electronic component that may consist of an organic LED or organic solar cell, that comprises at least one substrate, one active layer provided between a first and a second electrode and having an active layer protected from dioxygen and the water vapor of the air by the second electrode that encapsulates the active layer.2012-05-03
20120104366SURFACE-TREATED SUBSTRATE FOR AN INKJET PRINTER - The present invention relates to a substrate for inkjet printing of an organic semiconductor and, more particularly, to a substrate for inkjet printing of an organic semiconductor in which the surface energy is controlled in order to form a uniform and crystalline organic semiconductor thin film. The substrate for inkjet printing according to the present invention has the surface of a dielectric layer treated to be hydrophilic, causing the organic semiconductor molecules printed on the substrate to self-assemble with high crystallinity.2012-05-03
20120104367DISPLAY APPARATUS - A display apparatus includes pixel units, each including a plurality of pixels having different emission colors. The pixel unit is provided with lenses so that the difference in deterioration property among the emission colors of the pixels.2012-05-03
20120104368DISPLAY APPARATUS - In a display apparatus in which a plurality of pixel units including a plurality of pixels whose emission colors are different are arranged and white is displayable by the pixel unit, the pixel includes an organic EL device, and lenses are provided in the pixel unit to minimize a difference of currents supplied to the organic EL devices for respective emission colors when white of desired luminance is displayed.2012-05-03
20120104369Phenanthrene Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - A novel compound having high triplet excitation energy and a bipolar property is provided. Specifically, a phenanthrene compound represented by General Formula (G1) is provided where R2012-05-03
20120104370Carbazole Compound, Light-Emitting Element Material, Organic Semiconductor Material, Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Device - A carbazole compound in which the 2-position of a dibenzofuran skeleton or a dibenzothiophene skeleton is bonded to the 3-position of a carbazole skeleton and nitrogen of the carbazolyl group is bonded to the 9- or 10-position of an anthracene skeleton directly or via a phenylene group was able to be synthesized. It was found out that the carbazole compound has an excellent carrier-transport property, favorable film quality, and a wide band gap, and can be suitably used as a light-emitting element material and an organic semiconductor material.2012-05-03
20120104371Phosphorescent Compound and Organic Electroluminescent Device Using the Same - A phosphorescent compound is represented by following Formula:2012-05-03
20120104372Organic Light-emitting Display Device - An organic light-emitting display device for suppressing external light reflection and reducing pixel blurring by disposing a scattering structure in a direction a light is extracted at a distance equal to or below an adjacent pixel pitch.2012-05-03
20120104373Organometallic Complex, and Light-Emitting Element and Display Device Using the Organometallic Complex - An object is to provide a novel organometallic complex capable of phosphorescence and having high heat resistance. Alternatively, an object is to provide a light-emitting device with high added value. The objects are achieved by providing an organometallic complex which has a structure represented by a general formula (G1) or (G2) below and is formed in such a way that a corresponding one of pyrazine derivatives represented by general formulae (G0) and (G0′) below is ortho-metalated by a Group 9 or Group 10 metal ion, or by providing a light-emitting element and a light-emitting device including the organometallic complex.2012-05-03
20120104374COATING COMPOSITIONS FOR FORMING NANOCOMPOSITE FILMS - Described herein are coating compositions comprising metal nanostructures and one or more conductive polymers, and nanocomposite films formed thereof.2012-05-03
20120104375METHOD OF MANUFACTURING ELECTRICAL CONTACTS ON ORGANIC SEMICONDUCTORS - A method for producing electrical contacts on organic semiconductors is described. The method, which involves low energy impact and can be carried out under ambient conditions, comprises covering the relevant surface of the semiconductor with a layer of an appropriate solvent: a metal leaf having an appropriate thickness and work function containing metal oxide impurities is deposited onto the area treated in this manner. Electrical contacts with elevated conductivity are obtained by evaporating the solvent. One embodiment of the invention describes a family of crystalline semiconductors, preferably based on perylene or α-quaterthiophene, provided with the electrical contacts according to the method described herein and provided with particular structural characteristics. The use of metal leaf satisfying the above-stated requirements (for example imitation gold leaf, gold leaf etc.). in the above-described method is furthermore described.2012-05-03
20120104376Benzoxazole Derivative, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using Benzoxazole Derivative - Disclosed is a novel benzoxazole derivative which has high excitation energy, particularly high triplet excitation energy, and is a bipolar substance. A benzoxazole derivative represented by the following General Formula (G1) is provided.2012-05-03
20120104377ORGANIC THIN FILM TRANSISTOR AND METHOD FOR FABRICATING THE SAME - Disclosed herein are a method for fabricating an organic thin film transistor, including treating the surfaces of a gate insulating layer and source/drain electrodes with a self-assembled monolayer (SAM)-forming compound through a one-pot reaction, and an organic thin film transistor fabricated by the method. According to example embodiments, the surface-treatment of the gate insulating layer and the source/drain electrodes may be performed in a single vessel through a single process.2012-05-03
20120104378CARBENE METAL COMPLEXES AS OLED MATERIALS - An organic light emitting device having an anode, a cathode and an organic layer disposed between the anode and the cathode is provided. In one aspect, the organic layer comprises a compound having at least one zwitterionic carbon donor ligand. In another aspect, the organic layer comprises a carbene compound, including the following:2012-05-03
20120104379ORGANIC COMPOUND, ANTHRACENE DERIVATIVE, AND LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE USING ANTHRACENE DERIVATIVE - Objects of the present invention are to provide novel anthracene derivatives and novel organic compounds; a light-emitting element that has high emission efficiency; a light-emitting element that is capable of emitting blue light with high luminous efficiency; a light-emitting element that is capable of operation for a long time; and a light-emitting device and an electronic device that have lower power consumption. An anthracene derivative represented by a general formula (1) and an organic compound represented by a general formula (17) are provided. A light-emitting element that has high emission efficiency can be obtained by use of the anthracene derivative represented by the general formula (1). Further, a light-emitting element that has a long life can be obtained by use of the anthracene derivative represented by the general formula (1).2012-05-03
20120104380CONDUCTING FORMULATION - The present invention relates to novel formulations comprising light emitting materials and/or charge transporting materials and a conductive additive, to their use as conducting inks for the preparation of organic light emitting diode (OLED) devices, to methods for preparing OLED devices using the novel formulations, and to OLED devices prepared from such methods and formulations.2012-05-03
20120104381METAL OXIDE TFT WITH IMPROVED STABILITY - A metal oxide semiconductor device including an active layer of metal oxide, a layer of gate dielectric, and a layer of low trap density material. The layer of low trap density material is sandwiched between the active layer of metal oxide and the layer of gate dielectric. The layer of low trap density material has a major surface parallel and in contact with a major surface of the active layer of metal oxide to form a low trap density interface with the active layer of metal oxide. A second layer of low trap density material can optionally be placed in contact with the opposed major surface of the active layer of metal oxide so that a low trap density interface is formed with both surfaces of the active layer of metal oxide.2012-05-03
20120104382Photo diode, method of manufacturing the photo-diode, and photo sensor including the photo diode - A photo diode includes an intrinsic region on a substrate, a P+ doping region in a first portion of the intrinsic region, and an oxide semiconductor region. The oxide semiconductor region is spaced apart from the P+ doping region on a second portion of the intrinsic region and the second portion of the intrinsic region is different from the first portion of the intrinsic region.2012-05-03
20120104383SEMICONDUCTOR DEVICE HAVING ZINC OXIDE THIN FILM AND MANUFACTURING METHOD THEREOF - A semiconductor device includes a ZnO thin film. The semiconductor device comprises a substrate and a ZnO thin film. The ZnO thin film includes at least two zones with different carrier types. The current invention also discloses a manufacturing method of a semiconductor device having ZnO thin film. A ZnO thin film doped with dopant is deposited on a substrate. Thereafter, a laser irradiates on the ZnO thin film to activate the dopant in the irradiated zone of the ZnO thin film to change the carrier type.2012-05-03
20120104384THIN-FILM TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME - A thin-film transistor (TFT) includes a gate electrode, an oxide semiconductor pattern, a source electrode, a drain electrode and an etch stopper. The gate electrode is formed on a substrate. The oxide semiconductor pattern is disposed in an area overlapping with the gate electrode. The source electrode is partially disposed on the oxide semiconductor pattern. The drain electrode is spaced apart from the source electrode, faces the source electrode, and is partially disposed on the oxide semiconductor pattern. The etch stopper has first and second end portions. The first end portion is disposed between the oxide semiconductor pattern and the source electrode, and the second end portion is disposed between the oxide semiconductor pattern and the drain electrode. A sum of first and second overlapping length is between about 30% and about 99% of a total length of the etch stopper.2012-05-03
20120104385SEMICONDUCTOR DEVICE - A semiconductor device includes a first gate electrode; a gate insulating layer covering the first gate electrode; an oxide semiconductor layer that overlaps with the first gate electrode; oxide semiconductor layers having high carrier density covering end portions of the oxide semiconductor layer; a source electrode and a drain electrode in contact with the oxide semiconductor layers having high carrier density; an insulating layer covering the source electrode, the drain electrode, and the oxide semiconductor layer; and a second gate electrode that is in contact with the insulating layer. Each of the oxide semiconductor layers is in contact with part of each of an upper surface, a lower surface, and a side surface of one of the end portions of the oxide semiconductor layer and part of an upper surface of the gate insulating layer.2012-05-03
20120104386SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - As a display device has a higher definition, the number of pixels, gate lines, and signal lines are increased. When the number of the gate lines and the signal lines are increased, there occurs a problem that it is difficult to mount an IC chip including a driver circuit for driving the gate and signal lines by bonding or the like, whereby manufacturing cost is increased. A pixel portion and a driver circuit for driving the pixel portion are provided over the same substrate, and at least part of the driver circuit includes a thin film transistor using an oxide semiconductor interposed between gate electrodes provided above and below the oxide semiconductor. The pixel portion and the driver portion are provided over the same substrate, whereby manufacturing cost can be reduced.2012-05-03
20120104387Four-Terminal Metal-Over-Metal Capacitor Design Kit - A device includes a first MOM capacitor; a second MOM capacitor directly over and vertically overlapping the first MOM capacitor, wherein each of the first and the second MOM capacitors includes a plurality of parallel capacitor fingers; a first and a second port electrically coupled to the first MOM capacitor; and a third and a fourth port electrically coupled to the second MOM capacitor. The first, the second, the third, and the fourth ports are disposed at a surface of a respective wafer.2012-05-03
20120104388THREE-DIMENSIONAL STACKED SEMICONDUCTOR INTEGRATED CIRCUIT AND TSV REPAIR METHOD THEREOF - Provided is a 2012-05-03
20120104389SACRIFICIAL WAVEGUIDE TEST STRUCTURES - Sacrificial optical test structures are constructed upon a wafer (2012-05-03
20120104390Germanium-Containing Release Layer For Transfer of a Silicon Layer to a Substrate - A germanium-containing layer is deposited on a single crystalline bulk silicon substrate in an ambient including a level of oxygen partial pressure sufficient to incorporate 1%-50% of oxygen in atomic concentration. The thickness of the germanium-containing layer is preferably limited to maintain some degree of epitaxial alignment with the underlying silicon substrate. Optionally, a graded germanium-containing layer can be grown on, or replace, the germanium-containing layer. An at least partially crystalline silicon layer is subsequently deposited on the germanium-containing layer. A handle substrate is bonded to the at least partially crystalline silicon layer. The assembly of the bulk silicon substrate, the germanium-containing layer, the at least partially crystalline silicon layer, and the handle substrate is cleaved within the germanium-containing layer to provide a composite substrate including the handle substrate and the at least partially crystalline silicon layer. Any remaining germanium-containing layer on the composite substrate is removed.2012-05-03
20120104391TRANSISTOR ARRAY SUBSTRATE - A transistor array substrate includes a substrate, a pixel array, a plurality of resistors, and a plurality of semiconductor transistors. The pixel array, the resistors, and the semiconductor transistors are all disposed on the substrate. The pixel array includes a plurality of scan lines. Each resistor is electrically connected to one of the scan lines, and each semiconductor transistor is electrically connected to one of the scan lines and one of the resistors. The scan lines can receive a first voltage and a second voltage. The second voltage is higher than the first voltage.2012-05-03
20120104392THIN FILM TRANSISTOR ARRAY PANEL AND THE METHOD FOR MANUFACTURING THEREOF - Provided is a thin film transistor array panel that includes: a substrate; a gate line and a data line formed on the substrate and at least partially defining a pixel area; a thin film transistor connected to the gate line and the data line; a pixel electrode connected to the thin film transistor and formed in the pixel area; a first common electrode formed under the pixel electrode; a second common electrode formed on the pixel electrode. The pixel area includes an upper pixel area and a lower pixel area, the first common electrode is formed in the upper pixel area, and the second common electrode is formed in the lower pixel area. The pixel electrode includes an upper pixel electrode formed in the upper pixel area and a lower pixel electrode formed in the lower pixel area.2012-05-03
20120104393Organic light emitting diode display device and manufacturing method thereof - An OLED display includes a first polysilicon layer pattern on a substrate having a first gate electrode, a second gate electrode, and a first capacitor electrode, a gate insulating layer pattern, a second polysilicon layer pattern including a first active layer, a second active layer, and a capacitor polycrystalline dummy layer, a third amorphous silicon layer pattern including first source and drain resistant contact layers on a predetermined region of the first active layer, second source and drain resistant contact layers on a predetermined region of the second active layer, and a capacitor amorphous dummy layer on the capacitor polycrystalline dummy layer, and a data metal layer pattern including first source/drain electrodes, second source/drain electrodes, and a second capacitor electrode.2012-05-03
20120104394DISPLAY DEVICE - A display device in which various embodiments can prevent a vertically-striped blur is disclosed. In one aspect, the display device includes first gate lines, second gate lines, data lines, dummy data lines, and a plurality of pixels. The first and second gate lines are extended in a first direction. The data lines and the dummy data lines are extended in a second direction intersecting the first direction. The pixels are defined by the intersection of a first gate line of the first gate lines and a first data line of the data lines.2012-05-03
20120104395ORGANINC LIGHT EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - An organic light emitting display device and method of manufacturing the same are provided. The organic light emitting display device includes: a thin film transistor (TFT) comprising an active layer, a gate electrode, a source electrode, and a drain electrode; an organic light emitting device including a pixel electrode electrically connected to the TFT and formed of the same material and on a same layer as the gate electrode, an emission layer, and an opposing electrode; and a pad electrode formed of the same material and on same layer as the gate electrode. The pad electrode has openings formed therein.2012-05-03
20120104396Organic Light Emitting Display Apparatus and Method of Manufacturing the Same - An organic light emitting display apparatus comprises an active layer, a gate electrode, a pixel electrode, source and drain electrodes, an intermediate layer, and an opposite electrode. The gate electrode includes: a first insulating layer; first, second and third conductive layers; a fourth conductive layer protecting the third conductive layer; and a fifth conductive layer. The pixel electrode includes a first electrode layer formed on the first insulating layer, a second and a third electrode layer, a fourth electrode layer protecting the third electrode layer, and a fifth electrode layer. A second insulating layer is disposed between the source and drain electrodes. The intermediate layer is disposed between the opposite electrode and the pixel electrode, and prevents damage to the pixel electrode during the manufacturing process.2012-05-03
20120104397ORGANIC LIGHT EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - Provided are an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes a thin-film transistor (TFT), which includes an active layer, a gate electrode, and source/drain electrodes; an organic electroluminescent device electrically connected to the TFT and includes a pixel electrode formed on the same layer as the gate electrode, an intermediate layer including an organic light emitting layer, and a counter electrode that are stacked in the order stated; and a capacitor, which includes a bottom electrode, which is formed on the same layer and of the same material as the active layer and is doped with an impurity; a top electrode formed on the same layer as the gate electrode; and a metal diffusion medium layer formed on the same layer as the source/drain electrodes and is connected to the bottom electrode.2012-05-03
20120104398TFT-LCD, DRIVING DEVICE AND MANUFACTURING METHOD THEREOF - An embodiment of the disclosed technology provides a driving device for a thin film transistor liquid crystal display (TFT-LCD) and a method for manufacturing the same. The driving device comprises at least one first TFT and at least one second TFT formed a base substrate, wherein load of the first TFT is larger than load of the second TFT, the first TFT is of a top-gate configuration, and the second TFT is of a bottom-gate configuration.2012-05-03
20120104399ARRAY SUBSTRATE FOR ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE AND METHOD OF FABRICATING THE SAME - A method of fabricating an array substrate for an organic electroluminescent display device includes forming a semiconductor layer, a semiconductor dummy pattern, a first storage electrode and a first gate insulating layer on a substrate; forming a second gate insulating layer on the semiconductor layer and the first storage electrode; forming a gate electrode and a second storage electrode on the second gate insulating layer; forming ohmic contact layers by doping impurities into both sides of the semiconductor layer; forming an inter insulating layer on the gate electrode and the second storage electrode; forming source and drain electrodes and a third storage electrode on the inter insulating layer; forming a passivation layer on the source and drain electrodes and the third storage electrode; forming a first electrode and a fourth storage electrode on the passivation layer; and forming a spacer and a bank on the first electrode.2012-05-03
20120104400LIQUID CRYSTAL DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - A lower substrate for a liquid crystal display device and the method of making the same are disclosed. The method includes steps of: (a) providing a substrate; (b) forming a patterned transparent layer having plural recess on the substrate; (c) forming a first barrier layer on the surface of the recess; (d) coating a first metal layer on the first barrier layer and making the surfaces of the first metal layer and the transparent layer in substantially the same plane; and (e) forming a first insulated layer and a semi-conductive layer in sequence. The method further can optionally comprise the steps of: (f) forming a patterned second metal layer, wherein part of the semi-conductive layer is exposed, thus forming the source electrode and the drain electrode; and (g) forming a transparent electrode layer on part of the transparent layer and part of the second metal layer.2012-05-03
20120104401LIGHT-EMITTING DEVICE AND ELECTRONIC APPARATUS - A light-emitting device includes a drive transistor for controlling the quantity of current supplied to a light-emitting element, a capacitor element electrically connected to a gate electrode of the drive transistor, and an electrical continuity portion for electrically connecting the drive transistor and the light-emitting element, these elements being disposed on a substrate. The electrical continuity portion is disposed on the side opposite to the capacitor element with the drive transistor disposed therebetween.2012-05-03
20120104402ARCHITECTURE OF ANALOG BUFFER CIRCUIT - In one aspect of the invention, an analog buffer circuit includes a p-channel field effect transistor (PTFT) and an n-channel field effect transistor (NTFT). Each of the PTFT and NTFT has a source region and a drain region defining a channel region therebetween, formed on a substrate such that the drain regions of the PTFT and the NTFT are in substantial contact with each other, a gate layer formed over and insulated from the corresponding channel region, a source electrode insulated from the gate layer and electrically connected to the corresponding source region, and a common drain electrode insulated from the gate layer and the source electrode, and is electrically connected to the drain regions of both the PTFT and the NTFT through a via defined over the depletion region.2012-05-03
20120104403THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THE SAME - An object of the present invention is to provide a thin film transistor having a gate insulating film for suppressing a shift amount of a threshold voltage generated by use under a high temperature environment. In a thin film transistor having a channel layer made of microcrystalline silicon, a gate insulating film 2012-05-03
20120104404HIGH LIGHT TRANSMITTANCE IN-PLANE SWITCHING LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR MANUFACTURING THE SAME - The present disclosure relates to a high light transmittance in-plan switching liquid crystal display device and a method for manufacturing the same. The liquid crystal display device includes: a substrate; a gate line disposed in horizontal direction on the substrate; a gate insulating layer covering the gate line; a data line disposed in vertical direction on the gate insulating layer; an additional insulating layer on the data line having same size and shape with the data line; a passivation layer covering the additional insulating layer; and a common electrode overlapping with the data line on the passivation layer. According to the present disclosure, the failure due to the parasitic capacitance and the load for driving the display panel are reduced and it is possible to make large and high definition display panel.2012-05-03
20120104405ARRAY SUBSTRATE FOR ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD OF FABRICATING THE SAME - A method of fabricating an array substrate for an organic electroluminescent device includes forming a semiconductor layer of polysilicon in an element region, and a semiconductor pattern of polysilicon in a storage region on a substrate; forming a multiple-layered gate electrode corresponding to a center portion of the semiconductor layer and a first storage electrode corresponding to the semiconductor pattern; performing an impurity-doping to make a portion of the semiconductor layer not covered by the gate electrode into an ohmic contact layer and make the semiconductor pattern into a second storage electrode; forming source and drain electrodes and a third storage electrode corresponding to the first storage electrode; forming a first electrode contacting the drain electrode and a fourth storage electrode corresponding to the third storage electrode.2012-05-03
20120104406THIN-FILM TRANSISTOR, DISPLAY DEVICE, AND MANUFACTURING METHOD FOR THIN-FILM TRANSISTORS - Disclosed is a high-quality, efficiently manufacturable thin film transistor in which leakage current is minimized. The thin film transistor is provided with a semiconductor layer (2012-05-03
20120104407LIGHT EMITTING DIODE AND METHOD FOR MANUFACTURING THE SAME - An LED includes a substrate, a first n-type GaN layer, a connecting layer, a second n-type GaN layer, a light emitting layer, and a p-type GaN layer. The first n-type GaN layer is formed on the substrate, the first n-type GaN layer has a first surface facing away from the substrate, and the first surface includes a first area and a second area. The connecting layer, the second n-type GaN layer, the light emitting layer, and the p-type GaN layer are formed on the first area in sequence. The connecting layer is etchable by alkaline solution; a bottom surface of the second n-type GaN layer facing towards the connecting layer has a roughened exposed portion; the GaN on the bottom surface of the second n-type GaN layer is N-face GaN.2012-05-03
20120104408SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - In an aspect of a semiconductor device, there are provided a substrate, a transistor including an electron transit layer and an electron supply layer formed over the substrate, a nitride semiconductor layer formed over the substrate and connected to a gate of the transistor, and a controller controlling electric charges moving in the nitride semiconductor layer.2012-05-03
20120104409FORMING LIGHT-EMITTING DIODES USING SEED PARTICLES - A seed layer for growing a group III-V semiconductor structure is embedded in a dielectric material on a carrier substrate. After the group III-V semiconductor structure is grown, the dielectric material is removed by wet etch to detach the carrier substrate. The group III-V semiconductor structure includes a thick gallium nitride layer of at least 100 microns or a light-emitting structure.2012-05-03
20120104410Reflector, Manufacture Method Thereof And Light-Emitting Device Including The Reflector - A reflector for a GaN-based light-emitting device, method for manufacturing the reflector and GaN-haled light-emitting device including the reflector are provided. The reflector is formed on a p-type GaN-based epitaxial layer and includes: a whisker crystal of un-doped GaN, formed on a surface of the p-type GaN-based epitaxial layer with a predefined density distribution and at a position that corresponds to a dislocation defect of an epitaxial layer; and a metal reflective layer, formed on both the p-type GaN-based epitaxial layer and the whisker crystal. The whisker of un-doped GaN is positioned on the dislocation defect of the p-type GaN-based epitaxial layer, so that the Ag reflective layer can be separated from the dislocation defect of the p-type GaN-based epitaxial layer, thereby effectively preventing Ag from moving inside the dislocation defect via electromigration, and largely decreasing the possibility of current leakage of the light-emitting device including the Ag reflector.2012-05-03
20120104411TEXTURED III-V SEMICONDUCTOR - A method for fabricating a III-nitride semiconductor film, comprising depositing or growing a III-nitride semiconductor film in a semiconductor light absorbing or light emitting device structure; and growing a textured or structured surface of the III-nitride nitride semiconductor film in situ with the growing or the deposition of the III-nitride semiconductor film, by controlling the growing of the III-nitride semiconductor film to obtain a texture of the textured surface, or one or more structures of the structured surface, that increase output power of light from the light emitting device, or increase absorption of light in the light absorbing device.2012-05-03
20120104412HIGH LIGHT EXTRACTION EFFICIENCY NITRIDE BASED LIGHT EMITTING DIODE BY SURFACE ROUGHENING - A III-nitride light emitting diode (LED) and method of fabricating the same, wherein at least one surface of a semipolar or nonpolar plane of a III-nitride layer of the LED is textured, thereby forming a textured surface in order to increase light extraction. The texturing may be performed by plasma assisted chemical etching, photolithography followed by etching, or nano-imprinting followed by etching.2012-05-03
20120104413LIGHT EMITTING SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING - The light emitting semiconductor device (2012-05-03
Website © 2025 Advameg, Inc.