05th week of 2012 patent applcation highlights part 16 |
Patent application number | Title | Published |
20120025136 | PHOTO-SWITCHABLE MEMBRANE AND METHOD - Switchable gas permeation membranes in which a photo-switchable low-molecular-weight liquid crystalline (LC) material acts as the active element, and a method of making such membranes. Different LC eutectic mixtures were doped with mesogenic azo dyes and infused into track-etched porous membranes with regular cylindrical pores. Photo-induced isothermal phase changes in the imbibed mesogenic material afforded large, reversible changes in the permeability of the photo-switchable membrane to nitrogen. For example, membranes imbibed with a photo-switchable cyanobiphenyl LC material demonstrated low permeability in the nematic state, while the photo-generated isotropic state demonstrated a 16×-greater sorption coefficient. Both states obey a high linear sorption behavior in accordance with Henry's Law. In contrast, membranes imbibed with a photo-switchable phenyl benzoate LC material showed the opposite permeability behavior to the biphenyl-imbibed membrane, along with nonlinear sorption behavior. | 2012-02-02 |
20120025137 | CORE/SHELL LANTHANUM CERIUM TERBIUM PHOSPHATE, PHOSPHOR CONTAINING SAID PHOSPHATE, AND PREPARATION METHODS - A phosphate containing particles including a mineral core and a lanthanum cerium terbium phosphate shell uniformly coating the mineral core with a thickness greater than or equal to 300 nm is described. The particles can have a mean diameter between 3 μm and 6 μm and the lanthanum cerium terbium phosphate can have the following general formula (1): La | 2012-02-02 |
20120025138 | FLUORESCENT SUBSTANCE AND PROCESS FOR PRODUCING THE SAME - A fluorescent substance which excels in light-emitting characteristics and versatility, and which can emit light stably, and a lamp using the same are provided at a low cost. Such a fluorescent substance consists of a fluorescent substance which mainly consists of a garnet structure and an element of group V added thereto. Preferably, the fluorescent substance includes a fluorescent substance having a garnet structure in which yttrium.aluminum.garnet (Y | 2012-02-02 |
20120025139 | II-III-V COMPOUND SEMICONDUCTOR - The present application provides a new composition of matter in the form of a new compound semiconductor family of the type group Zn-(II)-III-N, where III denotes one or more elements in Group III of the periodic table and (II) denotes one or more optional further elements in Group II of the periodic table. Members of this family include for example, ZnGaN, ZnInN, ZnInGaN, ZnAlN, ZnAlGaN, ZnAlInN or ZnAlGaInN. This type of compound semiconductor material is not previously known in the prior art. | 2012-02-02 |
20120025140 | Method and Device for Producing Synthesis Gas from Gaseous Hydrocarbons - A method for the production of synthesis gas from gaseous hydrocarbons includes the use of allothermal steam reforming with catalysts. In order to produce the synthesis gas efficiently without exhaust gas in a compact apparatus, energy is at least partly supplied by electrical energy, that the energy is supplied by electrically heated contact surfaces and that the energy is supplied by contact surfaces within a fixed bed of catalyst pellets and/or within a fluidised bed at least partly consisting of catalyst particles. | 2012-02-02 |
20120025141 | METHOD AND SYSTEM FOR PRODUCING SYNTHETIC GAS FROM BIOMASS BY HIGH TEMPERATURE GASIFICATION - The invention is relates to a method and a system for producing synthetic gas from biomass by high temperature gasification, including: feeding raw material, carbonizing, pulverizing the charcoal, and transporting charcoal powder to the gasification furnace for gasification. A heat source for the carbonizing is achieved by a direct combustion reaction between external combustible gas and external oxygen in a carbonization furnace. The heat emitted from the reaction being directly provided to the necessary heat of biomass pyrolysis, and yielding pyrolysis gas and charcoal from carbonization furnace. The temperature of carbonization furnace is controlled at between 400° C. and 600° C. by adjusting the amount of oxygen. The temperature of a burner nozzle of the carbonization furnace is controlled at between 1200° C. and 1800° C. by adjusting the input amount of the external combustible gas at between more than 1 and less than 5 times that required for a complete combustion with the external oxygen. Pulverizing the charcoal includes charcoal cooling, decompression, pulverizing, supercharging, fluidizing, and transported to the gasifier by controlling the amount of pyrolysis gas. | 2012-02-02 |
20120025142 | ANTI-CORROSIVE COATING COMPOSITION - The invention relates to a low temperature-curable coating composition comprising a film-forming resin, a curing agent for the film-forming resin, and a lithium salt. | 2012-02-02 |
20120025143 | ELECTROCONDUCTIVE RUBBER COMPOSITION FOR ELECTROPHOTOGRAPHIC APPARATUSES AND CHARGING ROLLER FOR USE IN ELECTROPHOTOGRAPHIC APPARATUSES MANUFACTURED USING THE SAME - The charging roller has a base layer formed of an electroconductive rubber composition containing (a) a polar rubber having an unsaturated bond or an ether bond, (b) an ion carrier containing one or more phosphonium salts selected from the group consisting of phosphonium salts having the formulae (1) and (2), and (c) a cross-linker, wherein the amount of (b) component ranges from 0.1 to 10 parts by mass per 100 parts by mass of the (a) component. The formula (1) represents [(H | 2012-02-02 |
20120025144 | OUTER CASING MEMBER FOR PREVENTING ELECTRICITY LEAKAGE, AND BATTERY PACK FOR A VEHICLE COMPRISING SAME - Provided are an exterior member for preventing electric leakage and a vehicle battery pack having the same. In detail, the present invention relates to an exterior member made of a polymer material having a moisture content of 7 wt % or less and electric conductivity of 30 S/cm or less when being left for 30 days under a relative humidity of 80% or more and including input and output terminal units, and a vehicle battery pack having the same. | 2012-02-02 |
20120025145 | COATING APPLICATOR, COATING APPLICATION METHOD AND ELECTRONIC DEVICE - A cylindrical coating nozzle having a flattened end is placed above a coating object being rotated. A coating solution is applied to a surface of the coating object by discharging the coating solution form a nozzle orifice at an end of the coating nozzle while moving the coating nozzle relative to the coating object in a direction intersecting a rotational direction of the coating object. The coating nozzle is formed with an angled notch at a part of the end thereof. A rotation control unit controls the rotation of the coating nozzle in a manner that the notch of the coating nozzle is positioned upstream from a position to feed the coating solution to the coating object being rotated. | 2012-02-02 |
20120025146 | II-III-N SEMICONDUCTOR NANOPARTICLES AND METHOD OF MAKING SAME - The present application provides nitride semiconductor nanoparticles, for example nanocrystals, made from a new composition of matter in the form of a novel compound semiconductor family of the type group II-III-N, for example ZnGaN, ZnInN, ZnInGaN, ZnAlN, ZnAlGaN, ZnAlInN and ZnAlGaInN. This type of compound semiconductor nanocrystal is not previously known in the prior art. The invention also discloses II-N semiconductor nanocrystals, for example ZnN nanocrystals, which are a subgroup of the group II-III-N semiconductor nanocrystals. | 2012-02-02 |
20120025147 | METHOD FOR PREPARING UNIQUE COMPOSITION HIGH PERFORMANCE ANODE MATERIALS FOR LITHIUM ION BATTERIES - A novel method for preparing unique composition high-performance anode materials with high energy density, high power density, high stability, and excellent cyclability for electrochemical energy storage devices, in particular for lithium ion batteries, wherein this method and material circumvent and surpass the limitations of those methods and materials currently available. | 2012-02-02 |
20120025148 | SPUTTERING TARGET OF OXIDE SEMICONDUCTORS AND THE MANUFACTURING METHODS OF OXIDE SEMICONDUCTOR LAYERS - A technique capable of forming an oxide semiconductor target with a high quality in a low cost is provided. In a step of manufacturing zinc tin oxide (ZTO target) used in manufacturing an oxide semiconductor forming a channel layer of a thin-film transistor, by purposely adding the group IV element (C, Si, or Ge) or the group V element (N, P, or As) to a raw material, excessive carriers caused by the group III element (Al) mixed in the step of manufacturing the ZTO target are suppressed, and a thin-film transistor having good current (Id)-voltage (Vg) characteristics is achieved. | 2012-02-02 |
20120025149 | BATTERY GRADE CATHODE COATING FORMULATION - A process for preparing a formulation comprising a carbon-deposited lithium metal phosphate, as precursor of a lithium ion battery electrode coating slurry. | 2012-02-02 |
20120025150 | Separation of single-walled carbon nanotubes by electronic type using block copolymers - The separation of single-walled carbon nanotubes (SWNTs), by electronic type using centrifugation of compositions of SWNTs and surface active block copolymers in density gradient media. | 2012-02-02 |
20120025151 | CURABLE EPOXY RESIN COMPOSITION - Curable epoxy resin composition including an epoxy resin component and a filler component and optionally a hardener component and further additives, wherein (a) the curable epoxy resin composition has been produced by separately mixing together at least a part of the epoxy resin component and at least a part of the filler component and optionally some or all of the optional additives, prior to mixing theses components with the optional hardener component and with any remaining optional additives present in the curable epoxy resin composition, and that (b) the mixing together of at least a part of the epoxy resin component and at least a part of the filler component and optionally some or all of the optional additives has been carried out at a temperature higher than the casting temperature of the curable epoxy resin composition, and electrical insulation systems made therefrom. | 2012-02-02 |
20120025152 | CONDUCTIVE SILVER POWDER PREPARATION METHOD - A conductive silver powder preparation method includes the following steps: forming a silver salt solution by mixing a silver salt with a DI (De-ionized) water; forming a sodium citrate solution by well-mixing a sodium citrate with the DI water; heating the silver salt solution until maintaining the silver salt solution at a constant temperature of no less than 80° C.; forming a brown solution by adding the sodium citrate solution into the heated silver salt solution; cooling the brown solution to the room temperature for precipitating to form a brown powder; and forming a conductive silver powder by freezing and drying the brown powder. This method simplifies the prior chemical method without usages of toxic reducing agent and additional protective agent, and complies with the requirements of environment, step simplification and economy. | 2012-02-02 |
20120025153 | SILICON CARBIDE SINGLE CRYSTAL AND MANUFACTURING METHOD OF THE SAME - A silicon carbide single crystal includes nitrogen as a dopant and aluminum as a dopant. A nitrogen concentration is 2×10 | 2012-02-02 |
20120025154 | SYNTHESIS OF NANOCOMPOSITE THERMOELECTRIC MATERIAL - A process for forming thermoelectric nanoparticles includes the steps of forming a core material reverse micelle or micelle, adding a bismuth containing compound to the core material reverse micelle or micelle forming a reverse micelle or micelle having the bismuth containing compound dispersed therein, adding a tellurium containing compound with the formed micelle or reverse micelle in the presence of a reducing agent that alloys with the bismuth containing compound forming composite thermoelectric nanoparticles having a core and shell structure, and washing the core and shell nanoparticles in a solvent mixture including ammonium hydroxide, water and methanol wherein the core and shell nanoparticles remain un-agglomerated and have a particle size of from 1-25 nanometers. | 2012-02-02 |
20120025155 | Preparation of Nanoparticle Materials - A method of producing nanoparticles comprises effecting conversion of a nanoparticle precursor composition to the material of the nanoparticles. The precursor composition comprises a first precursor species containing a first ion to be incorporated into the growing nanoparticles and a separate second precursor species containing a second ion to be incorporated into the growing nanoparticles. The conversion is effected in the presence of a molecular cluster compound under conditions permitting seeding and growth of the nanoparticles. | 2012-02-02 |
20120025156 | HOISTING DEVICE - A hoisting device includes a hoisting cable, a winch, a crown block and a traveling bottom block provided with a load attachment device. Both the crown block and the traveling bottom block include one or more sheaves having an essentially horizontally extending rotation shaft about which sheaves the hoisting cable is reeved. At least some of the traveling bottom block sheaves are associated with a releasable connector, and are thereby detachable from the load attachment device and displaceable to an inoperative position. The rotation shaft of multiple traveling bottom block sheaves and multiple crown block sheaves is essentially perpendicular to the rotation shaft of remaining multiple traveling bottom block sheaves and remaining multiple crown block sheaves. | 2012-02-02 |
20120025157 | LIFT ASSEMBLY, SYSTEM, AND METHOD - A lift assembly comprising a plurality of elongate members (e.g., cables) positioned for movement in a longitudinal direction, a drive mechanism (e.g., a drum) coupled to move the elongate members in the longitudinal direction, and a loft block including a sheave located to redirect at least one of the elongate members to a non-parallel path that is not parallel to the longitudinal direction, wherein a remainder of the elongate members travel along a parallel path that is above the sheave. The loft block can include an idler bar having an upper surface that is higher than an upper surface of the sheave. For example, the idler bar can be positioned directly above the sheave. | 2012-02-02 |
20120025158 | UNDER-FLOOR LIFTING JACK FOR HIGH-SPEED ELECTRIC MULTIPLE UNIT TRAINSET - The invention discloses an Under-Floor Lifting Jack for High-Speed EMU trainset, comprising: a Main Electric Control Part for controlling the Jack, multiple Bogie Lifting Means arranged in pits, Fixed Rails on the ground between adjacent pits, and Body Hoists movable along dedicated rails on both sides of the Bogie Lifting Means, wherein Lifting Rails of the Bogie Lifting Means and the Fixed Rails form continuous rails, and one or more of the Bogie Lifting Means are set in each pit and adapted for lifting individually or synchronously in combination according to the wheel positions of different types of Electric Multiple Unit Trainsets under the control of the Main Electric Control Part. The invention is compatible with the maintenance of various EMU trainsets, thus the same lifting jack can satisfy maintenance requirements of various EMU trainsets, resulting in high compatibility and construction cost-reduction of the maintenance base for the EMU trainset. | 2012-02-02 |
20120025159 | NONVOLATILE MEMORY DEVICE - According to one embodiment, a nonvolatile memory device includes a first conductive member and a second conductive member. The first conductive member extends in a first direction. The second conductive member extends in a second direction intersecting the first direction. A portion of the first conductive member connected to the second conductive member protrudes toward the second conductive member. A resistivity of the first conductive member in the first direction is lower than a resistivity of the first conductive member in a third direction of the protrusion of the first conductive member. A resistance value of the first conductive member in the third direction changes. A resistivity of the second conductive member in the second direction is lower than a resistivity of the second conductive member in the third direction. A resistance value of the second conductive member in the third direction changes. | 2012-02-02 |
20120025160 | NONVOLATILE MEMORY DEVICE - According to one embodiment, a nonvolatile memory device includes a stacked structure. The stacked structure includes a plurality of first interconnects, a plurality of second interconnects and a functional layer. The plurality of first interconnects extend in a first direction. The plurality of second interconnects are spaced from the first interconnects and extend in a second direction crossing the first direction. The functional layer is provided at each crossing position between the plurality of first interconnects and the plurality of second interconnects and has a transitioning function of transitioning between different resistance states and a rectifying function of rectifying current. The functional layer includes a metal layer, an opposed layer and a semiconductor layer. The semiconductor layer is provided between the metal layer and the opposed layer and is in contact with each of the metal layer and the opposed layer. | 2012-02-02 |
20120025161 | DIODE AND RESISTIVE MEMORY DEVICE STRUCTURES - In an electronic device, a diode and a resistive memory device are connected in series. The diode may take a variety of forms, including oxide or silicon layers, and one of the layers of the diode may make up a layer of the resistive memory device which is in series with that diode. | 2012-02-02 |
20120025162 | PHASE CHANGE RANDOM ACCESS MEMORY AND METHOD FOR FABRICATING THE SAME - A method for fabricating a PCRAM includes forming a switching element on a semiconductor substrate, forming an interlayer dielectric layer of a multilayer-structure by sequentially stacking a plurality of material layers having different etching properties on the semiconductor substrate having the switching element formed thereon, and by patterning the plurality of material layers to have different lengths or different side shapes, forming a heating electrode on sidewalls of the interlayer dielectric layer and an upper surface of the switching element, and forming a phase change material layer to fill a space inside of the heating electrode. | 2012-02-02 |
20120025163 | NON-VOLATILE SEMICONDUCTOR DEVICE - A variable resistance element that can stably perform a switching operation with a property variation being reduced by suppressing a sharp current that accompanies completion of forming process, and a non-volatile semiconductor memory device including the variable resistance element are realized. The non-volatile semiconductor memory device uses the variable resistance element for storing information in which a resistance changing layer is interposed between a first electrode and a second electrode, and a buffer layer is inserted between the first electrode and the resistance changing layer where a switching interface is formed. The buffer layer and the resistance changing layer include n-type metal oxides, and materials of the buffer layer and the resistance changing layer are selected such that energy at a bottom of a conduction band of the n-type metal oxide configuring the buffer layer is lower than that of the n-type metal oxide configuring the resistance changing layer. | 2012-02-02 |
20120025164 | VARIABLE RESISTANCE MEMORY WITH A SELECT DEVICE - According to various embodiments, a variable resistance memory element and memory element array that uses variable resistance changes includes a select device, such as an ovonic threshold switch. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element. | 2012-02-02 |
20120025165 | FLEXIBLE NANOSTRUCTURE ELECTRONIC DEVICES - A flexible electronic device is made up of nanostructures. Specifically, the device includes a flexible substrate, a film of nanostructures in contact with the flexible substrate, a first conducting element in contact with the film of nanostructures, and a second conducting element in contact with the film of nanostructures. The nanostructures may comprise nanotubes, such as carbon nanotubes disposed along the flexible substrate, such as an organic or polymer substrate. The first and second conductive elements may serve as electrical terminals, or as a source and drain. In addition, the electronic device may include a gate electrode that is in proximity to the nanotubes and not in electrical contact with the nanotubes. In this configuration, the device can operate as a transistor or a FET. The device may also be operated in a resistive mode as a chemical sensor (e.g., for sensing NH | 2012-02-02 |
20120025166 | METHOD OF FABRICATING NANOSIZED FILAMENTARY CARBON DEVICES OVER A RELATIVELY LARGE-AREA - Nanosized filamentary carbon structures (CNTs) nucleating over a catalyzed surface may be grown in an up-right direction reaching a second surface, spaced from the first surface, without the need of applying any external voltage source bias. The growth process may be inherently self-stopping, upon reaching a significant population of grown CNTs on the second surface. A gap between the two surfaces may be defined for CNT devices being simultaneously fabricated by common integrated circuit integration techniques. The process includes finding that for separation gaps of up to a hundred or more nanometers, a difference between the respective work functions of the materials delimiting the gap space, for example, different metallic materials or a doped semiconductor of different dopant concentration or type, may produce an electric field intensity orienting the growth of nucleated CNTs from the surface of one of the materials toward the surface of the other material. | 2012-02-02 |
20120025167 | Vertical Light Emitting Diode (VLED) Die Having Electrode Frame And Method Of Fabrication - A vertical light emitting diode (VLED) die includes a metal base; a mirror on the metal base; a p-type semiconductor layer on the reflector layer; a multiple quantum well (MQW) layer on the p-type semiconductor layer configured to emit light; and an n-type semiconductor layer on the multiple quantum well (MQW) layer. The vertical light emitting diode (VLED) die also includes an electrode and an electrode frame on the n-type semiconductor layer, and an organic or inorganic material contained within the electrode frame. The electrode and the electrode frame are configured to provide a high current capacity and to spread current from the outer periphery to the center of the n-type semiconductor layer. The vertical light emitting diode (VLED) die can also include a passivation layer formed on the metal base surrounding and electrically insulating the electrode frame, the edges of the mirror, the edges of the p-type semiconductor layer, the edges of the multiple quantum well (MQW) layer and the edges of the n-type semiconductor layer. | 2012-02-02 |
20120025168 | STRAIN CONTROL IN SEMICONDUCTOR DEVICES - A semiconductor device comprises the following elements: an active layer comprising a quantum well structure and a buffer layer beneath the active layer adapted to form a confinement layer for charge carriers in the active layer. The buffer layer is adapted so as not to increase an overall strain in the active layer. The active layer is already strained as a result of a lattice mismatch between the active layer and the buffer layer. Strain in the buffer layer may be controlled by use of a strain control buffer layer and by appropriate choices of material and composition for the buffer layer and for a substrate on which the buffer layer is grown. | 2012-02-02 |
20120025169 | NANOSTRUCTURE ARRAY TRANSISTOR - Transistors and methods for forming transistors from groups of nanostructures are disclosed herein. The transistor may be formed from an array of nanostructures that are grown vertically on a substrate. The nanostructures may have lower, middle and upper segments that may be formed with different materials and/or doping to achieve desired effects. Collectively, the lower segments may form the source or drain, with the middle segments collectively forming the channel. Alternatively, the lower segments could collectively form the emitter or collector, with the middle segments collectively forming the base. Transistor electrodes may be planar metal structures that surround sidewalls of the nanostructures. The transistors may be Field Effect Transistors (FETs) or bipolar junction transistors (BJTs). Heterojunction bipolar junction transistors (HBTs) and high electron mobility transistors (HEMTs) are possible. | 2012-02-02 |
20120025170 | P-TYPE SEMICONDUCTOR DEVICES - A semiconductor device comprises an active layer above a first confinement layer. The active layer comprises a layer of α-Sn less than 20 nm thick. The first confinement layer is formed of material with a wider band gap than α-Sn, wherein the band gap offset between α-Sn and this material allows confinement of charge carriers in the active layer so that the active layer acts as a quantum well. A similar second confinement layer may be formed over the active layer. This semiconductor device may be a p-FET. A method of fabricating such a semiconductor device is described. | 2012-02-02 |
20120025171 | Electronic Component with at Least One Organic Layer Arrangement - An electronic component, having an anode, a cathode and at least one organic layer arrangement, arranged between the anode and cathode and is in electrical contact with the anode and cathode and has at least one of the following: a zone which generates electrical charges upon application of an electric potential to the anode and cathode and has an np-junction, which is formed with a layer of a p-type organic semiconductor material and an n-doped layer of an n-type organic semiconductor material, which is in contact with a conductive layer of the anode, and a zone which generates further electrical charges upon application of the electric potential to the anode and cathode and has a pn-junction, which is formed with a layer of an n-type organic semiconductor material and a p-doped layer of a p-type organic semiconductor material, which is in contact with a conductive layer of the cathode. | 2012-02-02 |
20120025172 | ORGANIC LIGHT EMITTING DEVICE WITH OUTCOUPLING LAYER FOR IMPROVED LIGHT EXTRACTION - An organic light emitting device comprises an outcoupling layer having relatively high aspect ratio nanowires imbedded within an optically thick transparent high optical index film. The incorporation of nanowires increases the optical index of a light emitting assembly and provides a means for extracting light from a light emitting assembly of the organic light emitting device. | 2012-02-02 |
20120025173 | SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURING THE SAME, AND METHOD OF FORMING MULTILAYER SEMICONDUCTOR THIN FILM - A method of manufacturing a semiconductor device including a gate electrode, a gate insulating layer, source/drain electrodes, and a channel-forming region that are disposed on a base is provided. The method includes the steps of forming a thin film by application of a mixed solution including a polymeric insulating material and a dioxaanthanthrene compound represented by structural formula (1) below; and subsequently drying the thin film to induce phase separation of the polymeric insulating material and the dioxaanthanthrene compound, thereby forming the gate insulating layer from the polymeric insulating material and the channel-forming region from the dioxaanthanthrene compound: | 2012-02-02 |
20120025174 | PASSIVATING LAYER FOR FLEXIBLE ELECTRONIC DEVICES - An electronic device which comprises a first electrode, a second electrode, an active polymer layer between the first and the second electrodes, and a passivating layer adapted to enhance the lifetime of the electronic device. The passivating layer comprises a substantially amorphous titanium oxide having the formula of TiO | 2012-02-02 |
20120025175 | DIODE BASED ON ORGANIC MATERIAL - Semiconductor device, comprising a substrate with a first electrode and having a layer of organic material deposited over the substrate and the first electrode; and a second electrode deposited over the layer of organic material, wherein the second electrode comprises a dielectric layer that is separated from the layer of organic material by the material of the second electrode. | 2012-02-02 |
20120025176 | Organic Radiation-Emitting Component and Method for Producing an Organic Radiation-Emitting Component - An organic radiation-emitting component, comprising a first electrode ( | 2012-02-02 |
20120025177 | Phosphorescent light-emitting iridium complex containing pyridyltriazole ligand - An Ir complex having a pyridyl triazole ligand substituted with at least one substituent on its pyridyl ring, and a light emitting material comprising such Ir complex. Such light emitting material was found to have a significantly enhanced photophosphorescence quantum yield and hypsochromic blue shifted photophosphorescent emission over other Ir complexes with a pyridyl triazole ligand having no substituent in its pyridine ring. Use of such light emitting material and an organic light emitting device including the same. | 2012-02-02 |
20120025178 | Organometallic Complex, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device - An object is to provide a novel organometallic complex that has a broader emission spectrum in the wavelength range of green to blue. Other objects are to provide a light-emitting element using the organometallic complex, and a light-emitting device, an electronic device, and a lighting device each using the light-emitting element. Provided is an organometallic complex represented by a general formula (G1). Represented by the general formula (G1) is a novel organometallic complex that exhibits a broad emission spectrum in the wavelength range of green to blue. Further provided are a light-emitting element using the organometallic complex, and a light-emitting device, an electronic device, and a lighting device each using the light-emitting element. | 2012-02-02 |
20120025179 | PHOTOELECTRIC CONVERSION ELEMENT AND IMAGING DEVICE - A photoelectric conversion element includes: an electrically conductive thin layer; an organic photoelectric conversion layer containing a compound having a partial structure represented by formula (I) and a fullerene or a fullerene derivative; and a transparent electrically conductive thin layer: | 2012-02-02 |
20120025180 | ORGANIC ELECTROLUMINESCENT DEVICE - Provided is a structure of an organic EL element capable of reducing the product cost by drastically simplifying the fabrication process as compared with a conventional multi-photon organic EL element. An insulating organic layer having a low dielectric constant is interposed to smooth the transfer of electron charges between a strong electron-accepting material and an electron transport layer included in a charge generation layer of the conventional multi-photon organic EL element. | 2012-02-02 |
20120025181 | ORGANIC EL ELEMENT - An organic EL element ( | 2012-02-02 |
20120025182 | DONOR SUBSTRATE, PROCESS FOR PRODUCTION OF TRANSFER FILM, AND PROCESS FOR PRODUCTION OF ORGANIC ELECTROLUMINESCENT ELEMENT - The present invention provides a donor substrate, a process for production of a transfer film, and a process for production of an organic electroluminescent element, that allow obtaining a transfer film having a uniform composition distribution by way of a simple configuration. A donor substrate of the present invention is a substrate comprising a photothermal conversion layer and a donor layer, wherein the donor layer has a first organic layer arranged on a side of a transfer surface, and a second organic layer arranged on a side of the photothermal conversion layer; the first organic layer and the second organic layer are formed of vaporizable organic materials having dissimilar vaporization-starting temperatures; and the organic material that forms the first organic layer has a vaporization-starting temperature higher than that of the organic material that forms the second organic layer. | 2012-02-02 |
20120025183 | NOVEL ORGANIC COMPOUND, LIGHT-EMITTING DEVICE, AND IMAGE DISPLAY APPARATUS - Provided is an acenaphtho[1,2-k]benzo[e]acephenanthrene derivative represented by general formula (1): | 2012-02-02 |
20120025184 | LIGHT EMITTING DEVICE - In an electroluminescence device, highly efficient light emission is realized without reducing the durability thereof. The electroluminescence device includes electrodes, a plurality of layers deposited between the electrodes, a light emitting region between the plurality of layers, the light emitting region emitting light by application of an electric field between the electrodes. The plurality of layers include a metal thin-film in the vicinity of the light emitting region. The metal thin-film induces plasmon resonance on the surface thereof by the emitted light. Surface modification is provided on at least one of the surfaces of the metal thin-film. The surface modification includes an end group having polarity that makes the work function of the metal thin-film become close to the work function of at least a layer next to the metal thin-film. | 2012-02-02 |
20120025185 | ELECTROLUMINESCENCE DEVICE - An electroluminescence device ( | 2012-02-02 |
20120025186 | LIGHT EMITTING DEVICE - The luminance of different colors of light emitted from EL elements in a pixel portion of a light emitting device is equalized and the luminance of light emitted from the EL elements is raised. The pixel portion of the light emitting device has EL elements whose EL layers contain triplet compounds and EL elements whose EL layers contain singlet compounds in combination. The luminance of light emitted from the plural EL elements is thus equalized. Furthermore, a hole transporting layer has a laminate structure to thereby cause the EL elements to emit light of higher luminance. | 2012-02-02 |
20120025187 | Transistors, methods of manufacturing transistors, and electronic devices including transistors - Transistors, methods of manufacturing the transistors, and electronic devices including the transistors. The transistor may include an oxide channel layer having a multi-layer structure. The channel layer may include a first layer and a second layer that are sequentially arranged from a gate insulation layer. The first layer may be a conductor, and the second layer may be a semiconductor having a lower electrical conductivity than that of the first layer. The first layer may become a depletion region according to a gate voltage condition. | 2012-02-02 |
20120025188 | SEMICONDUCTOR DEVICE INTEGRATED WITH MONITORING DEVICE IN CENTER THEREOF - One type of a semiconductor device integrating with a monitoring device is disclosed. The device includes a plurality of gate fingers, two of which arranged in a center of the device has a space wider than a space between any other fingers to suppress the heat concentration on the center of the device. The monitoring region is arranged in this wider space to monitor the temperature dependence of the device. | 2012-02-02 |
20120025189 | SENSOR ARRAY SUBSTRATE AND METHOD OF FABRICATING THE SAME - Provided are a sensor array substrate and a method of fabricating the same. The sensor array substrate includes: a substrate in which a switching element region and a sensor region that senses light are defined; a first semiconductor layer which is formed in the sensor region; a first gate electrode which is formed on the first semiconductor layer and overlaps the first semiconductor layer; a second gate electrode which is formed in the switching element region; a second semiconductor layer which is formed on the second gate electrode and overlaps the second gate electrode; and a light-blocking pattern which is formed on the second semiconductor layer and overlaps the second semiconductor layer, wherein the first semiconductor layer and the second semiconductor layer are disposed on different layers, and the second gate electrode and the light-blocking pattern are electrically connected to each other. | 2012-02-02 |
20120025190 | Radiation detector - The present invention provides a radiation detector that may set output characteristics of an electrical signal for output so as to match the detection range of an amplifier. Namely, a charge storage capacitor is provided to each sensor section so as to be electrically connected to a bias line in parallel to the respective sensor section. | 2012-02-02 |
20120025191 | Semiconductor Device and Manufacturing Method Thereof - A method for manufacturing a semiconductor device, which enables miniaturization and reduction of defect, is provided. It includes forming an oxide semiconductor layer, and source and drain electrodes in contact with the oxide semiconductor layer, over an insulating surface; forming insulating layers over the source electrode and the drain electrode; forming a gate insulating layer over the oxide semiconductor layer, the source and drain electrodes, and the insulating layer; forming a conductive layer over the gate insulating layer; forming an insulating film covering the conductive layer; processing the insulating film so that at least part of a region of the conductive layer, which overlaps with the source electrode or the drain electrode, is exposed; and etching the exposed region of the conductive layer to form a gate electrode overlapping with at least part of the region sandwiched between the source electrode and the drain electrode, in a self-aligned manner. | 2012-02-02 |
20120025192 | Organic electroluminescence display and method for manufacturing the same - One embodiment of the present invention is an organic electroluminescence display, including: a substrate with a partition wall between adjacent organic electroluminescence elements; a first electrode layer formed on the substrate; a hole transport layer formed on both the first electrode layer and the partition wall; an underlayer formed on the hole transport layer; a first light emitting layer formed on the underlayer, emitted light from the first light emitting layer having a first wavelength; a second light emitting layer formed so as to partially overlap the first light emitting layer, emitted light from the second light emitting layer having a second wavelength, and the second wavelength being longer than the first wavelength; and a second electrode layer, wherein overlapping point of the first light emitting layer and the second light emitting layer is above the partition wall. | 2012-02-02 |
20120025193 | Semiconductor Device and Driving Method Thereof - A voltage equal to the threshold value of a TFT ( | 2012-02-02 |
20120025194 | THIN-FILM TRANSISTOR SENSOR AND METHOD OF MANUFACTURING THE TFT SENSOR - According to an aspect of the present invention, there is provided a thin-film transistor (TFT) sensor, including a bottom gate electrode on a substrate, an insulation layer on the bottom gate electrode, an active layer in a donut shape on the insulation layer, the active layer including a channel through which a current generated by a charged body flows, an etch stop layer on the active layer, the etch stop layer including a first contact hole and a second contact hole, and a source electrode and a drain electrode burying the first and second contact holes, the source and drain electrodes being disposed on the etch stop layer so as to face each other. | 2012-02-02 |
20120025195 | Confined Lateral Growth of Crystalline Material - In a structure for crystalline material growth, there is provided a lower growth confinement layer and an upper growth confinement layer that is disposed above and vertically separated from the lower growth confinement layer. A lateral growth channel is provided between the upper and lower growth confinement layers, and is characterized by a height that is defined by the vertical separation between the upper and lower growth confinement layers. A growth seed is disposed at a site in the lateral growth channel for initiating crystalline material growth in the channel. A growth channel outlet is included for providing formed crystalline material from the growth channel. With this growth confinement structure, crystalline material can be grown from the growth seed to the lateral growth channel outlet. | 2012-02-02 |
20120025196 | ORGANIC THIN FILM TRANSISTOR AND SEMICONDUCTOR INTEGRATED CIRCUIT - An organic thin film transistor includes an organic semiconductor layer, a source electrode and a drain electrode which are separated from each other and are individually in contact with the organic semiconductor layer, a gate insulating film which is in contact with the organic semiconductor layer between the source and drain electrodes, and a gate electrode which is opposed to the organic semiconductor layer and is in contact with the gate insulating film. In the organic thin film transistor, a high-concentration region of the organic semiconductor layer which is located near the source electrode has an impurity concentration set higher than an impurity concentration of a low-concentration region of the organic semiconductor layer, the low-concentration region being located near the gate electrode in the thickness direction of the organic semiconductor layer between the source and drain electrodes. | 2012-02-02 |
20120025197 | THIN FILM TRANSISTOR SUBSTRATE OF LIQUID CRYSTAL DISPLAY PANEL - A thin film transistor substrate of a liquid crystal display panel and manufacturing method thereof are disclosed. The thin film transistor substrate of the liquid crystal display panel includes a substrate, a storage capacitor electrode, a first insulated layer, a gate electrode, a gate insulated layer, a patterned semiconductor layer, a source electrode, a drain electrode, a second insulated layer, and at least one pixel electrode. A part of the storage capacitor electrode overlaps a part of the pixel electrode to form a storage capacitor and the storage capacitor electrode includes a patterned transparent conducting layer and a patterned opaque conducting layer. Moreover, the patterned transparent conducting layer and the patterned opaque conducting layer are defined by a gray-tone mask, and an area of the patterned transparent conducting layer is larger than an area of the patterned opaque conducting layer to improve the aperture ratio. | 2012-02-02 |
20120025198 | THIN FILM TRANSISTOR ARRAY SUBSTRATE - A thin film transistor array substrate includes a substrate having a plurality of pixel units arranged in a matrix, a plurality of first gate lines and second gate lines alternately arranged on the substrate, a plurality of source lines perpendicular to the first gate lines and the second gate lines formed on the substrate, and a plurality of thin film transistors respectively positioned in the pixel units. Each of the source lines further includes a main source line and a sub source line electrically connected to each other in parallel connection. | 2012-02-02 |
20120025199 | Image Sensor with Deep Trench Isolation Structure - Provided is a back side illuminated image sensor device. The image sensor device includes a substrate having a front side and a back side opposite the front side. The image sensor also includes a radiation-detection device that is formed in the substrate. The radiation-detection device is operable to detect a radiation wave that enters the substrate through the back side. The image sensor further includes a deep trench isolation feature that is disposed adjacent to the radiation-detection device. The image sensor device further includes a doped layer that at least partially surrounds the deep trench isolation feature in a conformal manner. | 2012-02-02 |
20120025200 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - In one embodiment, a method for manufacturing a semiconductor device is disclosed. The method can include depositing a first amorphous film having a first impurity, depositing a third amorphous lower-layer film on the first amorphous film, forming microcrystals on the third amorphous lower-layer film, depositing a third amorphous upper-layer film on the third amorphous lower-layer film to cover the microcrystals, depositing a second amorphous film having a second impurity on the third amorphous upper-layer film, and radiating microwaves to crystallize the third amorphous lower-layer film and the third amorphous upper-layer film to form a third crystal layer, and crystallize the first amorphous film and the second amorphous film to form a first crystal layer and a second crystal layer. | 2012-02-02 |
20120025201 | Inverted Trapezoidal Recess for Epitaxial Growth - A semiconductor device having an epitaxial layer a method of manufacture thereof is provided. The semiconductor device has a substrate with a trench formed therein and a recess formed below the trench. The recess has sidewalls with a (111) crystal orientation. The depth of the trench is such that the depth is greater than or equal to one-half a length of sidewalls of the recess. An epitaxial layer is formed in the recess and the trench. The depth of the trench is sufficient to cause dislocations formed between the interface of the semiconductor substrate and the epitaxial layer to terminate along sidewalls of the trench. | 2012-02-02 |
20120025202 | SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A semiconductor device includes a silicon substrate; a buffer layer provided on the silicon substrate and has a band gap greater than GaN; a first GaN layer provided on the buffer layer; and a second GaN layer provided directly on the first GaN layer, a carbon concentration of the first GaN layer being higher than a carbon concentration of the second GaN layer. | 2012-02-02 |
20120025203 | SEMICONDUCTOR DEVICE - A semiconductor device includes a first GaN layer formed on a substrate, the first GaN layer including a transition metal and an impurity under constant concentration, the impurity forming a deeper energy level in the first GaN layer than energy level formed by the transition metal, a second GaN layer formed on the first GaN layer, the second GaN layer including the transition metal and the impurity under inclined concentration, an inclined direction of the transition metal being same as an inclined direction of the impurity, and an electron supply layer formed on the second GaN layer. | 2012-02-02 |
20120025204 | SEMICONDUCTOR DEVICE HAVING Si-SUBSTRATE AND PROCESS TO FORM THE SAME - A semiconductor device and a process to form the semiconductor device are disclosed. The semiconductor device includes a Si substrate, active devices primarily made of nitride based compound semiconductor material, and passive devices. The Si substrate includes a via hole piercing from the back surface to the primary surface of the Si substrate. The active device is mounted on the primary surface so as to cover at least a portion of the via hole. The metal layer cover the whole back surface, inner surfaces of the via hole, and the back surface of the active device exposed in the via hole. | 2012-02-02 |
20120025205 | SEMICONDUCTOR DEVICE - A semiconductor device includes an AlGaN layer that is provided on a SiC substrate and has an acceptor concentration equal to or higher than a donor concentration, a GaN layer provided on the AlGaN layer, and an electron supply layer that is provided on the GaN layer and has a band gap greater than that of GaN. | 2012-02-02 |
20120025206 | SEMICONDUCTOR DEVICE - A semiconductor device includes a first GaN layer provided on a SIC substrate, a second GaN layer provided on the first GaN layer, and an electron supply layer that is provided on the second GaN layer and has a band gap greater than that of GaN, the first GaN layer having an acceptor concentration higher than that of the second GaN layer. | 2012-02-02 |
20120025207 | PROCESS FOR DIVIDING WAFER INTO INDIVIDUAL CHIPS AND SEMICONDUCTOR CHIPS - A process to divide a wafer into individual chips is disclosed. The process (1) etches semiconductor layers for an active device to form two grooves putting the virtual cut line therebetween, where the semiconductor wafer is to be divided along the virtual cut line; (2) etches the substrate in a region including the virtual cut line but offset from the groove from the back surface thereof so as to expose the semiconductor layers in the primary surface; and (3) etches the semiconductor layer exposed in step (2). | 2012-02-02 |
20120025208 | METHOD FOR MANUFACTURING SILICON CARBIDE SUBSTRATE AND SILICON CARBIDE SUBSTRATE - A method for manufacturing a silicon carbide substrate includes the steps of: preparing a base substrate made of silicon carbide and a SiC substrate made of single-crystal silicon carbide; forming a Si film made of silicon on a main surface of the base substrate; fabricating a stacked substrate by placing the SiC substrate on and in contact with the Si film; and connecting the base substrate and the SiC substrate to each other by heating the stacked substrate to convert, into silicon carbide, at least a region making contact with the base substrate and a region making contact with the SiC substrate in the Si film. | 2012-02-02 |
20120025209 | OPTICAL CONNECTION THROUGH SINGLE ASSEMBLY OVERHANG FLIP CHIP OPTICS DIE WITH MICRO STRUCTURE ALIGNMENT - A system includes an optical transceiver assembly, including a flip chip connection of a semiconductor die with a photonic transceiver that overhangs a substrate to which it is to be connected. The assembly further includes an alignment pin that is held to the semiconductor die at a micro-engineered structure in the semiconductor die. The alignment pin provides passive alignment of the photonic transceiver with an optical lens that interfaces the photonic transceiver to one or more optical channels. | 2012-02-02 |
20120025210 | OPTICAL MODULE ENCLOSING LEAD FRAME AND SEMICONDUCTOR OPTICAL DEVICE MOUNTED ON THE LEAD FRAME WITH TRANSPARAENT MOLD RESIN - An optical module with a new arrangement is disclosed. The optical module molds devices with a resin transparent to light subject to the device mounted on the lead frame and electrically connected with the lead frame by the bonding wire. The lead frame provides a screen apart from the device by a distance substantially comparable with a dimension of the device. The screen compensates the stress induced in the bonding wire due to a large discrepancy on the thermal expansion coefficient of the transparent resin. | 2012-02-02 |
20120025211 | COMPACT SENSOR PACKAGE STRUCTURE - The present invention discloses a compact sensor package structure, which comprises a package body, an LED chip and a sensor chip. The package body has a first room, a second room, a first hole and a second hole. The first and second rooms are independent to each other. The first and second holes interconnect the interiors and the external environments of the first and second rooms. The LED chip is arranged inside the first room, corresponding to the first hole and below the first hole. The LED chip projects light through the first hole. The sensor chip is arranged inside the second room, corresponding to the second hole and above/below the second hole. The sensor chip receives light via the second hole. The present invention features two independent rooms for two chips and prevents interference between the two chips. | 2012-02-02 |
20120025212 | GeSn Infrared Photodetectors - Photodiode devices with GeSn active layers can be integrated directly on p+ Si platforms under CMOS-compatible conditions. It has been found that even minor amounts of Sn incorporation (2%) dramatically expand the range of IR detection up to at least 1750 nm and substantially increases the absorption. The corresponding photoresponse can cover of all telecommunication bands using entirely group IV materials. | 2012-02-02 |
20120025213 | THIN FILM SEMICONDUCTOR SUBSTRATE AND APPARATUS FOR MANUFACTURING THE SAME - A flat panel display is manufactured by mass production and easily stored and transported at low cost. Provided is a thin film semiconductor substrate which faces a plastic substrate | 2012-02-02 |
20120025214 | LED PACKAGING STRUCTURE AND PACKAGING METHOD - The present invention relates to an LED packaging structure and packaging method. Said packaging structure includes a substrate, an LED chip, one or more convex walls and a colloid lens shaped by the restriction of the convex walls. Said convex walls are arranged on the substrate, at least one LED chip is arranged on the substrate within an area surrounded by the convex walls, and the colloid lens enclosing the LED chip is arranged within the area surrounded by the convex walls. The colloid lens is formed with desired colloid shape by placing a liquid colloid within the area confined by the convex walls and utilizing surface tension of the liquid, and is cured. Compared to prior art, the LED packaging structure of the present invention is simple and reasonable, with simple production process and lower costs. | 2012-02-02 |
20120025215 | SEMICONDUCTOR PACKAGE WITH HEAT DISSIPATING STRUCTURE - A semiconductor package includes a substrate, a number of electrodes formed in the substrate, a heat dissipating member fixed on the substrate, and at least one semiconductor chip mounted on the heat dissipating member and electrically connected to the electrodes. The heat dissipating member defines a receiving through hole and includes a conducting portion formed at the bottom of the receiving through hole. The at least one semiconductor chip is mounted on the conducting portion. The conducting portion efficiently conducts the heat generated by the semiconductor chip to the heat dissipating member and improves the heat dissipating efficiency of the semiconductor package. | 2012-02-02 |
20120025216 | PHOSPHOR SUSPENDED IN SILICONE, MOLDED/FORMED AND USED IN A REMOTE PHOSPHOR CONFIGURATION - A light emitting package comprising a support hosting at least one light emitting diode. A light transmissive dome comprised of a silicone including a phosphor material positioned to receive light emitted by the diode. A glass cap overlies said dome | 2012-02-02 |
20120025217 | LED LIGHTING MODULE - The invention relates to a light emitting diode (LED) module that is characterized by a thermally conductive substrate which is used as the base of the module; a plurality of cavities positioned on the module; each cavity is filled with a transparent or diffused encapsulant material and a plurality of LED semiconductors chips are mounted within each cavity. | 2012-02-02 |
20120025218 | SEMICONDUCTOR LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD - A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer located on at least one semiconductor light-emitting chip in order to emit various colored lights including white light. The semiconductor light-emitting device can include a base board, the chip mounted on the base board and a transparent plate disposed on the wavelength converting layer including a spacer and a phosphor having a high density. The wavelength converting layer can be formed in a thin uniform thickness between the transparent plate and a top surface of the chip using the spacer so as to extend toward the transparent plate. The semiconductor light-emitting device can be configured to improve light-emitting efficiency of the chip by using the thin wavelength converting layer including the phosphor having a high density, and therefore can emit a wavelength-converted light having a high light-emitting efficiency from a small light-emitting surface. | 2012-02-02 |
20120025219 | ARRANGEMENT OF OPTOELECTRONIC COMPONENTS - An arrangement includes at least two optoelectronic individual elements. At least two of the individual elements overlap partially in a lateral direction. Indirect or direct electrical contacting between the at least two laterally overlapping individual elements is brought about by at least one conductor track on a carrier top of the one individual element and by at least one conductor track on a carrier bottom of the other individual element. | 2012-02-02 |
20120025220 | POLARIZED, LED-BASED ILLUMINATION SOURCE - An illumination source includes a number of light emitting diodes (LEDs) operating at a first wavelength. Light from the LEDs illuminates a phosphor material that generates light at a second wavelength. A reflective polarizer transmits light at the second wavelength in a first polarization state and reflects light at the second wavelength in a second polarization state orthogonal to the first polarization state. The light at the second wavelength reflected by the reflective polarizer is directed back towards the phosphor material without an increase in angular range. In some embodiments the LEDs, having a conformal layer of phosphor material, are attached directly to the first surface of a liquid cooled plate. A liquid coolant contacts a second surface of the plate. | 2012-02-02 |
20120025221 | Light Emitting Device - Provided is a light emitting device having a light emitting element such as a light emitting diode. The light emitting device includes a plurality of light sources each including a light emitting element, a first light reflective member which surrounds the plurality of light sources, and a second light reflective member disposed ahead of the first light reflective member in a light radiation direction of the plurality of light sources with reference to the plurality of light sources. The second light reflective member includes a light transmitting material. | 2012-02-02 |
20120025222 | Light-Emitting Diode Integration Scheme - A circuit structure includes a carrier substrate, which includes a first through-via and a second through-via. Each of the first through-via and the second through-via extends from a first surface of the carrier substrate to a second surface of the carrier substrate opposite the first surface. The circuit structure further includes a light-emitting diode (LED) chip bonded onto the first surface of the carrier substrate. The LED chip includes a first electrode and a second electrode connected to the first through-via and the second through-via, respectively. | 2012-02-02 |
20120025223 | LED LIGHTING DEVICE WITH HIGH COLOUR RE-PRODUCIBILITY - The invention relates to a light emitting diode (LED) lighting device that is comprised of a plurality of LED components and is characterized by the mixture of; a first group of light source provided by blue LEDs mixed with luminescence conversion element and the blue light has a dominant wavelength in the range from 430 nm to 460 nm and the luminescence conversion element absorbs a portion of this blue light and converts to a secondary light have a peak wavelength in the range of 520 nm to 545 nm; a second group of light source provided by LEDs with dominant wavelength in the range of 600 nm to 610 nm and a third group of light source provided by LEDs with dominant wavelength in the range of 615 nm to 625 nm to produce mixture of light that has good color re-producibility. | 2012-02-02 |
20120025224 | ORGANIC EL DISPLAY PANEL AND METHOD OF MANUFACTURING THE SAME - An organic electroluminescence (EL) display panel and method of manufacturing an organic EL display panel. The display panel includes a substrate on which a thin-film transistor layer is formed, with an interlayer insulating film formed above the thin-film transistor layer. A plurality of strip-shaped barrier ribs are arranged in parallel on the interlayer insulating film. Each electrode of a plurality of first electrode groups has first electrodes arranged in a line and arranged between two adjacent barrier ribs of the plurality of strip-shaped barrier ribs, with each of the first electrodes including a transparent conductive film and a reflective metal film formed of a metal material. A plurality of light-emitting layers are each formed to cover a different electrode of the plurality of first electrode groups, while a second electrode is formed above the plurality of light-emitting layers. Each electrode of the plurality of first electrode groups is formed such that an end portion of the first electrode in a parallel direction with respect to the barrier ribs includes a single-film portion in which the transparent conductive film is not formed, and a portion of the first electrode other than the single-film portion includes a two-film portion in which the transparent conductive film is layered on the reflective metal film. A metal oxide film is formed on an entire surface of the single-film portion of each first electrode by partially oxidizing the metal material. | 2012-02-02 |
20120025225 | LIGHT-EMITTING ELEMENT, DISPLAY DEVICE, AND ELECTRONIC APPARATUS - A light-emitting element includes a blue light-emitting function layer provided between an anode and a cathode, a red light-emitting function layer provided between the anode and the blue light-emitting function layer, and a carrier selection layer provided between the blue light-emitting function layer and the red light-emitting function layer. The carrier selection layer includes a laminate of a hole transport layer and a first electron injection layer which are laminated in that order from the blue light-emitting function layer side. | 2012-02-02 |
20120025226 | DISPLAY DEVICE AND ELECTRONIC APPARATUS - A display device includes a first light-emitting element which includes a second layer having the function of flowing carriers and provided between a first anode and a first layer having the function of emitting light of a first color, and a third layer having the function of emitting light of a second color and provided between the first anode and the second layer; and a second light-emitting element which includes a fifth layer having the function of suppressing a flow of carriers and provided between a second anode and a fourth layer having the function of emitting light of the first color, and a first hole injection layer provided between the second anode and the fifth layer. | 2012-02-02 |
20120025227 | WATER RESISTANT SURFACE MOUNT DEVICE PACKAGE - The present invention is directed to LED packages and LED displays utilizing water resistant packages with improved structural integrity and customizable attributes. In some embodiments, the improved structural integrity is provided by various features in the lead frame that the casing material encompasses to improve the adhesion between the lead frame and the casing for a stronger, water resistant package. Moreover, in some embodiments the improved structural integrity and water resistance is further provided by cavity features that improve adhesion between the cavity and a protective encapsulant. Some embodiments also provide for packages with a greater overall height than the length of their side-exposed solder pins, which improves gel coverage of the side-exposed solder pins between adjacent packages. | 2012-02-02 |
20120025228 | LIGHT-EMITTING DEVICE WITH TEMPERATURE COMPENSATION - The present application provides a light-emitting device comprising a light-emitting diode group, a temperature compensation element electrically connected to the light-emitting diode group. When a junction temperature of the light-emitting diode group is increased from a first temperature to a second temperature during operation, the current flowing through the light-emitting diode group at the second temperature is larger than the current flowing through the light-emitting diode group at the first temperature. | 2012-02-02 |
20120025229 | DISPLAY DEVICE AND ORGANIC LIGHT EMITTING DIODE DISPLAY - A display device fabricated with a substrate; a display unit disposed on the substrate and including an electrode; a conductive protruding portion disposed along an outer side of the display unit and electrically connected to the electrode; a sealing substrate fixed to the substrate by an adhering layer surrounding substrate at the display unit and the conductive protruding portion, the adhering layer including a resin and a plurality of carbon fibers impregnated with the resin, and the sealing substrate including a through hole; a metal layer disposed at one side of the sealing substrate, facing the substrate, and contacting the conductive protruding portion electrically connected with the electrode; and a conductive connection portion filling the through hole and contacting the metal layer. | 2012-02-02 |
20120025230 | THREE-DIMENSIONAL LIGHT-EMITTING DEVICES AND METHOD FOR FABRICATING THE SAME - A three-dimensional LED structure with vertically displaced active-region includes at least two groups of vertically displaced surfaces on a non-planar substrate. The first group of surfaces are separated from the second group of surfaces by a vertical distance in the growth direction of the LED structure. The first group of surfaces are connected to the second group of surfaces by sidewalls, respectively. The sidewalls can be inclined or vertical and have a sufficient height so that a layer such as an n-type layer, an active-region, or a p-type layer in a first LED structure deposited on the first group of surfaces and a corresponding layer such as an n-type layer, an active-region, or a p-type layer in a second LED structure deposited on the second group of surfaces are separated by the sidewalls. The two groups of surfaces may be vertically displaced from each other in certain areas of an LED chip, while merge into an integral surface in other areas. A method for fabricating the three-dimensional LED structure is also provided. | 2012-02-02 |
20120025231 | SERIES CONNECTED FLIP CHIP LEDS WITH GROWTH SUBSTRATE REMOVED - LED layers are grown over a sapphire substrate. Individual flip chip LEDs are formed by trenching or masked ion implantation. Modules containing a plurality of LEDs are diced and mounted on a submount wafer. A submount metal pattern or a metal pattern formed on the LEDs connects the LEDs in a module in series. The growth substrate is then removed, such as by laser lift-off. A semi-insulating layer is formed, prior to or after mounting, that mechanically connects the LEDs together. The semi-insulating layer may be formed by ion implantation of a layer between the substrate and the LED layers. PEC etching of the semi-insulating layer, exposed after substrate removal, may be performed by biasing the semi-insulating layer. The submount is then diced to create LED modules containing series-connected LEDs. | 2012-02-02 |
20120025232 | III-NITRIDE LIGHT-EMITTING DIODE AND METHOD OF PRODUCING THE SAME - Embodiments of the present invention provides III-nitride light-emitting diodes, which primarily include a first electrode, a n-type gallium nitride (GaN) nanorod array consisted of one or more n-type GaN nanorods ohmic contacting with the first electrode, one or more indium gallium nitride (InGaN) nanodisks disposed on each of the n-type GaN nanorods, a p-type GaN nanorod array consisted of one or more p-type GaN nanorods, where one p-type GaN nanorod is disposed on top of the one ore more InGaN nanodisks disposed on each of the n-type GaN nanorods, and a second electrode ohmic contacts with the p-type GaN nanorod array. | 2012-02-02 |
20120025233 | LIGHT EMITTING DEVICE - According to one embodiment, a light emitting device includes a light emitting layer, a first electrode, a first and second layers, and a cladding layer. The first layer has a first impurity concentration of a first conductivity type, and allows a carrier to be diffused in the light emitting layer. The second layer has a second impurity concentration of the first conductivity type higher than the first impurity concentration, and includes a first and second surfaces. The first surface is with the first layer. The second surface has a formation region and a non-formation region of the first electrode. The non-formation region includes convex structures with an average pitch not more than a wavelength of the emission light. The cladding layer is provided between the first layer and the light emitting layer and has an impurity concentration of the first conductivity type. | 2012-02-02 |
20120025234 | Light-Emitting Diode with Textured Substrate - A light-emitting diode (LED) device is provided. The LED device has raised semiconductor regions formed on a substrate. LED structures are formed over the raised semiconductor regions such that bottom contact layers and active layers of the LED device are conformal layers. The top contact layer has a planar surface. In an embodiment, the top contact layers are continuous over a plurality of the raised semiconductor regions while the bottom contact layers and the active layers are discontinuous between adjacent raised semiconductor regions. | 2012-02-02 |
20120025235 | LIGHTING DEVICES THAT COMPRISE ONE OR MORE SOLID STATE LIGHT EMITTERS - A lighting device, comprising a solid state light emitter and a removable encapsulant element. A lighting device element, comprising a solid state light emitter and an encapsulant holding element configured to releasably hold a removable encapsulant element. A lighting device component, comprising a removable encapsulant element. A method, comprising removing a first removable encapsulant element from a lighting device that comprises at least a first solid state light emitter and inserting a second removable encapsulant element into the lighting device. An encapsulant element comprising a substantially transparent first material and a luminescent material within the first material. | 2012-02-02 |