Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


01st week of 2012 patent applcation highlights part 12
Patent application numberTitlePublished
20120001101External Position Indicator of Ram Blowout Preventer - Method and blowout preventer for sealing a well. The blowout preventer includes a body having first and second chambers, the first chamber extending substantially perpendicular to and intersecting the second chamber; a ram block configured to move within the first chamber to seal a first region of the second chamber from a second region of the second chamber; a rod connected to the ram block and configured to extend along the first chamber; a piston connected to the rod and configured to move along and within the first chamber; a bonnet configured to receive the piston, the bonnet being detachably attached to the body; and an indicator device partially mounted outside the bonnet and configured to indicate a physical position of the ram block within the body.2012-01-05
20120001102HIGHLY CLEAN AND HOT VALVE - A highly clean and high temperature valve apparatus includes a valve driving unit and a valve casing connected to a bonnet supporting a valve stem slidably. A stem portion has one end positioned in a circumferential wall closed at its two ends by upper and lower covers, and supports one end of the valve stem with its other end extending through the lower cover. The stem portion has its ends supported respectively by first and second bellows for closing an axial through hole of the lower cover tightly. A first pipe communicates with a first space isolated by the first bellows, and a second pipe communicates with a second space isolated by the first bellows. The fluid quantities in the first and second spaces are increased or decreased relative to each other, thereby to drive the stem portion supported in a floating state by the first and second bellows.2012-01-05
20120001103CONTROL DEVICE - In a control device for a technical processing plant, a pneumatically driven actuator having an actuator stem is provided together with a valve operated by the actuator, the valve having a valve stem. A valve element is attached to the valve stem. A stem connector connects the two stems to each other for a forced transmission of axial actuating movements and for modifying an axial distance between adjacent ends of the valve stem and the actuator stem to adjust a total axial length of the two stems. The stem connector comprises two half-shells connected to each other, and two positioning devices are provided for a friction-locking coupling of the half-shells to the respective ends. At least one of the positioning devices is designed to modify an axial attachment position of the half-shells along one of the stems.2012-01-05
20120001104VALVE CONTROL APPARATUS - A magnetic sensing surface of a stroke sensor is placed in an angular range between a first imaginary line and a second imaginary line. The first imaginary line is an imaginary line that coincides with a center line between first and second magnets of a magnetic movable body when a wastegate valve is placed to have a full close degree of the wastegate valve. The second imaginary line is an imaginary line that coincides with the center line between the first and second magnets when the wastegate valve is placed to have a half degree between the full close degree and a full open degree of the wastegate valve.2012-01-05
20120001105VALVE CONTROL APPARATUS AND ELECTRIC DRIVING APPARATUS - A valve control apparatus is provided with a valve, a shaft supporting the valve, an end-gear of an actuator driving the valve. The shaft is press-inserted into the end-gear. A stopper disposed on the shaft regulates a valve operation range. The end-gear can engage with the middle gear of the reduction-gears mechanism even in out of the gear-operation-angle range. When a rotation angle sensor detects a rotation angle of the end-gear in out of the gear-operation-angle range, it is determined that a malfunction occurs in a rotation-force-transmitting path.2012-01-05
20120001106VARIABLE ORIFICE GAS FLOW MODULATING VALVE - A temperature control system for a gas appliance utilizes an improved variable orifice gas flow modulating valve capable of direct modulation of gas flow through an orifice directly into a gas burner to provide a constantly maintained temperature in an appliance working compartment, as selected by human interface via a temperature selector. An actuator attached to a gas fitting body of the valve provides for linear movement of a metering pin into the taper inside the orifice, accomplishing the variable controlled modulated flow of gas directly into the burner. The actuator is controlled by an input signal from a programmable controller whose output is determined by calculations based on inputs from a temperature selector and a temperature sensor located in the gas appliance working compartment.2012-01-05
20120001107Solenoid valve - A solenoid valve has a tapered valve seat disposed between a first flow passage and a second flow passage, a reduced diameter side of the valve seat that is connected with the first flow passage, and a valve body having a closing portion that reduces its diameter toward a tip facing the valve seat. The first flow passage and the second flow passage are connected/disconnected by sliding the valve body for contacting/detaching the closing portion to the valve seat, and a groove is disposed on the closing portion facing the direction of a fluid flow.2012-01-05
20120001108ELECTROMAGNETIC LINEAR VALVE - An electromagnetic linear valve comprises a valve body, a movable element and an electromagnetic unit driving the movable element in the valve body and a spring leaf, wherein said valve body is divided into two valve chambers by a baffle where a through hole is formed to make the two valve chambers connected, and two valve chambers have an air inlet vent and an exhaust vent respectively, and the movable element has a valve plug blocking the through hole on the baffle, and the said valve body comprises a upper valve body and a lower valve body wherein said upper valve body and lower valve body are connected by ultrasonic welding. The upper valve body and the lower valve body of the present invention are connected by ultrasonic welding so that the connection is tight, stable, and the damage of other components caused by rotating a bolt in the assembling process is avoided.2012-01-05
20120001109ELECTROMAGNETIC LINEAR VALVE - An electromagnetic linear valve includes: (a) a plunger including a large outside-diameter portion and a small outside-diameter portion, and (b) a housing having a through-hole and including a large inside-diameter portion in which the large outside-diameter portion is inserted with a clearance being defined between the large inside-diameter portion and the large outside-diameter portion, and a small inside-diameter portion in which the small outside-diameter portion is inserted with a clearance being defined between the small inside-diameter portion and the outside-diameter portion. The plunger has an end portion which serves as a valve body that is to be seated on a valve seat constituted by an opening of the through-hole. The large outside-diameter portion has an end portion constituted by another end portion of the plunger that is opposite to the above-described end portion of the plunger. The clearance between the small inside-diameter portion and the small outside-diameter portion is smaller than the clearance between the large inside-diameter portion and the large outside-diameter portion.2012-01-05
20120001110PLUG VALVE FOR GAS STOVE - A plug valve for a gas stove, consisting at least of a natural-gas nozzle, a propane-gas nozzle, a valve body, a cock, an adjusting rod, an O-shaped ring, a stop ring, a spring, a stop plate, a cover, a pair of screws, and a valve rod. The adjusting rod, the O-shaped ring, and the stop ring are disposed in the cock, the cock, the spring, the stop plate, the cover, and the valve rod are disposed in the valve body via the screws, the natural-gas nozzle or the propane-gas nozzle is disposed in the valve body. Switching between natural gas and propane gas, flow adjustment thereof are convenient, and no special tool is required, which make the invention suitable for a wide range of users. The plug of he invention is safe and reliable.2012-01-05
20120001111VALVE CONTROL APPARATUS - A rotational moving point of a connection between a rod and a valve swings between a full open point, at which the valve is fully opened, and a full close point, at which the valve is fully closed. An apex of this swing is set at a point, which is between the full close point and a half point and satisfies a relationship of θP>θA where θP denotes an angle that is defined between a first imaginary line, which connects between a bearing center of a rod bearing and the full open point, and a second imaginary line, which connects between the bearing center and the apex of the swing, and θA denotes an angle that is defined between the first imaginary line and a third imaginary line, which connects between the bearing center and the full close point.2012-01-05
20120001112APPARATUS AND METHOD FOR EXTRACTION OR ADDITION OF SUBSTANCES FROM OR TO A BODY OF LIQUID - Apparatus, methods, and systems are provided for separating substances from a container or body of fluid. The apparatus comprises a body containing a flow-through passageway adapted to attach to the flow-through passageway; an assembly adapted to selectively seal the flow through passageway; and a reservoir in communication with flow-through passageway; wherein the reservoir is configured to cause the assembly to unseal the flow-through passageway when the reservoir is attached to the flow-through passageway2012-01-05
20120001113CARBURETOR AND METHODS THEREFOR - A carburetor having an inlet opening that includes a pair of concavities operative to direct air toward the metering rod of the carburetor. A carburetor having an inlet opening that includes an arcuate manifold adjacent to the inlet opening and in fluid communication with a fuel reservoir. A carburetor having a slide assembly that includes a positioning mechanism operative to adjust the position of the metering rod relative to the throttle slide. A throttle slide that includes a flow guide that bisects an arcuate relief on an underside thereof. A method for configuring the throat of a carburetor that includes an upper portion of a first diameter and a lower portion of a second diameter that is offset from the first diameter. The method comprises deriving an optimum size for the first and second diameters and the offset based on the pumping efficiency and operating parameters of the engine.2012-01-05
20120001114SHUT-OFF VALVE - This invention relates to a shut-off valve, and primarily to a valve for shutting-off the flow of a fluid such as a mains water supply to commercial premises or a domestic dwelling. The shut-off valve (2012-01-05
20120001115PROCESS AND MAGNETIC REAGENT FOR THE REMOVAL OF IMPURITIES FROM MINERALS - A magnetic reagent contains magnetic microparticles and a compound of the formula (I) as defined herein. The magnetic reagent may be used in a magnetic separation process for the removal of impurities from mineral substrates.2012-01-05
20120001116MAGNETIC MULTILAYER PIGMENT FLAKE AND COATING COMPOSITION - The present invention provides a magnetic multilayer pigment flake and a magnetic coating composition that are relatively safe for human health and the environment. The pigment flake includes one or more magnetic layers of a magnetic alloy having a substantially nickel-free composition including about 40 wt % to about 90 wt % iron, about 10 wt % to about 50 wt % chromium, and about 0 wt % to about 30 wt % aluminum. The coating composition includes a plurality of the pigment flakes disposed in a binder medium.2012-01-05
20120001117Self-Organising Thermoelectric Materials - In a process for producing thermoelectric materials with a polyphasic structure, in which particles of a first phase with a characteristic length of not more than 10 μm are present in homogeneous dispersion in a second phase, by self-assembly, an a least binary thermoelectric material is melted together with a metal which is not a component of the at least binary thermoelectric material, or a chalcogenide of said metal, and, after mixing, is cooled or bonded by reactive grinding.2012-01-05
20120001118Polishing slurry for chalcogenide alloy - The invention provides a chemical mechanical polishing composition for chemical mechanical polishing of a chalcogenide phase change alloy substrate. The composition comprises by weight percent, water, 0.1 to 30 colloidal silica abrasive, at least one polishing agent selected from 0.05 to 5 halogen compound, 0.05 to 5 phthalic acid, 0.05 to 5 phthalic anhydride and salts, derivatives and mixtures thereof. The chemical mechanical polishing composition has a pH of 2 to less than 7.2012-01-05
20120001119High Energy Density Cathode Materials for Lithium Ion Batteries - Compounds and materials for improved cathodes are provided. A compound of the present invention can be of the general form Li2012-01-05
20120001120Manufacturing Method of Electrode Material - One object is to provide a manufacturing method of an electrode material with which a characteristic of a power storage device can be improved. Another object is to provide a power storage device to which the above-mentioned electrode material is applied, and an application mode thereof. In a manufacturing method of an electrode material comprising a compound represented by a general formula A2012-01-05
20120001121Oxygen-absorbable Solvent-soluble Resin and Oxygen-absorbable Adhesive Resin Composition - Disclosed is an oxygen-absorbable solvent-soluble resin having both oxygen absorbability and adhesive properties. Specifically disclosed is an oxygen-absorbable solvent-soluble resin which comprises an acid component (A), an acid component (B) and a polyester having a constituent unit derived from a glycol component, wherein the ratio of the amount of the acid component (A) to the total amount of the acid components is 40 to 80 mol % and the ratio of the amount of the acid component (B) to the total amount of the acid components is 15 to 35 mol %. The acid component (A): tetrahydrophthalic acid or a derivative thereof, or tetrahydrophthalic anhydride or a derivative thereof; and the acid component (B): terephthalic acid.2012-01-05
20120001122USE OF HOLLOW BODIES FOR PRODUCING WATER-ABSORBING POLYMER STRUCTURES - The present invention relates to water-absorbing polymer structures at least partly comprising hollow bodies with a shell of an inorganic or organic material. The invention further relates to a process for producing water-absorbing polymer structures, to the water-absorbing polymer structures obtainable by this process, to a composite, to a process for producing a composite, to the composite obtainable by this process, to chemical products, for instance foams, moldings or fibers, to the use of water-absorbing polymer structures or of a composite in chemical products, for instance foams, moldings or fibers, and to the use of hollow bodies with a shell of an inorganic or organic material.2012-01-05
20120001123THIOPHENE DERIVATIVES, AND LC MEDIA COMPRISING SAME - The present invention relates to thiophene derivatives, to processes and intermediates for the preparation thereof, to the use thereof for optical, electro-optical and electronic purposes, in particular in liquid-crystal (LC) media and LC displays, and to LC media and LC displays comprising same.2012-01-05
20120001124INK FOR ORGANIC ELECTROLUMINESCENT DEVICE, MANUFACTURING METHOD OF ORGANIC ELECTROLUMINESCENT DEVICE, ORGANIC DISPLAY PANEL, ORGANIC DISPLAY APPARATUS, ORGANIC ELECTROLUMINESCENT APPARATUS, INK , FORMING METHOD OF FUNCTIONAL LAYER, AND ORGANIC ELECTROLUMINESCENT DEVICE - An ink for an organic electroluminescent device includes a functional material, a first solvent, a second solvent, and a third solvent. The functional material is for forming a functional layer of the organic electroluminescent device. The first solvent is for dissolving the functional material. The second solvent has a diester backbone and a second boiling point that is at most equal to a first boiling point of the first solvent or greater than the first boiling point of the first solvent by at most 20° C. The third solvent is an aliphatic alcohol and has a third boiling point that is less than the first boiling point of the first solvent and less than the second boiling point of the second solvent.2012-01-05
20120001125Gas mixing device, synthetic gas manufacturing apparatus, gas mixing method, and synthetic gas manufacturing method - Provides is a gas mixing device capable of promptly mixing a combustible gas with a combustion supporting gas with its simple configuration, and a synthetic gas manufacturing apparatus using the device. In a gas mixing device which supplies a combustible gas and a combustion supporting gas from flow channels of a double pipe including an inner pipe and an outer pipe and mixes the gases, a first guide member guides the gas, flowing out from a gas outflow port on one end side of the inner pipe, outward, and a second guide member is formed in an annular shape along an inner peripheral wall of the outer pipe of the second guide member so that the inner peripheral portion is located closer to the upstream side than the outer peripheral portion and the inner peripheral portion is located closer to the center than the outer peripheral portion of the first guide member. In addition, a third guide member is provided so as to face a region surrounded by the second guide member.2012-01-05
20120001126PROCESS TO PREPARE A HYDROGEN RICH GAS MIXTURE - Process to prepare a hydrogen rich gas mixture from a halogen containing gas mixture comprising hydrogen and at least 50 vol. % carbon monoxide, on a dry basis, by contacting the halogen containing gas mixture with water having a temperature of between 150 and 250° C. to obtain a gas mixture poor in halogen and having a steam to carbon monoxide molar ratio of between 0.2:1 and 0.9:1 and subjecting said gas mixture poor in halogen to a water gas shift reaction wherein part or all of the carbon monoxide is converted with the steam to hydrogen and carbon dioxide in the presence of a catalyst as present in one fixed bed reactor or in a series of more than one fixed bed reactors and wherein the temperature of the gas mixture as it enters the reactor or reactors is between 190 and 230° C.2012-01-05
20120001127HOLE TRANSPORT COMPOSITIONS AND RELATED DEVICES AND METHODS (I) - A composition comprising: at least one compound comprising a hole transporting core, wherein the core is covalently bonded to a first arylamine group and also covalently bonded to a second arylamine group different from the first, and wherein the compound is covalently bonded to at least one intractability group, wherein the intractability group is covalently bonded to the hole transporting core, the first arylamine group, the second arylamine group, or a combination thereof, and wherein the compound has a molecular weight of about 5,000 g/mole or less. Blended mixtures of arylamine compounds, including fluorene core compounds, can provide good film formation and stability when coated onto hole injection layers. Solution processing of OLEDs is a particularly important application.2012-01-05
20120001128SEMICONDUCTIVE COMPOSITION AND THE POWER CABLE USING THE SAME - A semiconductive composition and a power cable using the same are provided. A semiconductive composition includes, per 100 parts by weight of a polyolefin base resin, 0.5 to 2.15 parts by weight of carbon nanotubes, and 0.1 to 1 parts by weight of an organic peroxide crosslinking agent.2012-01-05
20120001129Mixture for Preventing Surface Stains - In order to achieve the object of providing a mixture by means of which, in particular, sintered moldings can be obtained that are virtually free of surface stains produced by soot particles, a mixture is proposed which comprises at least one pressing aid and at least one additive, wherein the additive is selected from a group of substances which have releasable carbon dioxide.2012-01-05
20120001130METHOD FOR MANUFACTURING CONDUCTIVE ADHESIVE CONTAINING ONE-DIMENSIONAL CONDUCTIVE NANOMATERIAL - A method for manufacturing a conductive adhesive containing a one-dimensional (1D) conductive nanomaterial is revealed. The method produces a conductive adhesive by mixing the 1D conductive nanomaterial with water-based or solvent-based resin solution. The conductive adhesive has good industrial applications, not influenced by industrial adaptability and environmental adaptability. The conductive adhesive obtained also has better conductivity. Moreover, the amount of the 1D conductive nanomaterial used in the present invention is less than the amount of conductive nanoparticles used and the cost is reduced effectively.2012-01-05
20120001131Hydrogen-Absorbing Alloy and Electrode for Nickel-Metal Hydride Secondary Batteries - A hydrogen-absorbing alloy, which is used as a negative electrode material of nickel-metal hydride secondary batteries for hybrid electric vehicles, and particularly for batteries to drive electric motors of hybrid electric vehicles, is an AB2012-01-05
20120001132Rechargeable Battery Cathode Material - A novel cathode material for a rechargeable battery has the chemical formula Li2012-01-05
20120001133PIGMENT COMPOSITION, INKJET RECORDING INK, COLORING COMPOSITION FOR COLOR FILTER, AND COLOR FILTER - A pigment composition including (A) an azo pigment represented by formula (1), and2012-01-05
20120001134LIGAND EXCHANGE THERMOCHROMIC, (LETC), SYSTEMS - Ligand exchange of thermochromic, LETC, systems exhibiting a reversible change in absorbance of electromagnetic radiation as the temperature of the system is reversibly changed are described. The described LETC systems include one or more than one transition metal ion, which experiences thermally induced changes in the nature of the complexation or coordination around the transition metal ion(s) and, thereby, the system changes its ability to absorb electromagnetic radiation as the temperature changes.2012-01-05
20120001135Antireflective Coatings for Via Fill and Photolithography Applications and Methods of Preparation Thereof - An absorbing composition is described herein that includes at least one inorganic-based compound, at least one absorbing compound, and at least one material modification agent. In addition, methods of making an absorbing composition are also described that includes: a) combining at least one inorganic-based compound, at least one absorbing compound, at least one material modification agent, an acid/water mixture, and one or more solvents to form a reaction mixture; and b) allowing the reaction mixture to form the absorbing composition at room temperature. Another method of making an absorbing composition includes: a) combining at least one inorganic-based compound, at least one absorbing compound, at least one material modification agent, an acid/water mixture, and one or more solvents to form a reaction mixture; and b) heating the reaction mixture to form the absorbing composition. Yet another method of making an absorbing composition is described that includes: a) combining at least one inorganic-based compound, at least one absorbing compound, at least one material modification agent, and one or more solvents to form a reaction mixture, wherein the at least one material modification agent comprises at least one acid and water; and b) heating the reaction mixture to form an absorbing material, a coating or a film. In other methods of making an absorbing composition described herein, those methods include: a) combining at least one inorganic-based compound, at least one absorbing compound, at least one material modification agent, and one or more solvents to form a reaction mixture, wherein the at least one material modification agent comprises at least one acid and water; and b) allowing the reaction mixture to form an absorbing material, a coating or a film.2012-01-05
20120001136CHEMILUMINESCENT COMPOSITIONS, ENHANCING REAGENTS FOR CHEMILUMINESCENCE AND METHODS FOR THE PREPARATION AND USE THEREOF - The present disclosure provides a chemiluminescent composition where the chemiluminescent substrate is 1,2-dioxetane, which contains 1,2-dioxetane and an alkyl dimethyl benzyl quaternary ammonium salt having the structure of general formula I. The present disclosure also provides an enhancing reagent and methods for enhancing chemiluminescence of 1,2-dioxetane, where the enhancing reagent contains an alkyl dimethyl benzyl quaternary ammonium salt having the structure of general formula I.2012-01-05
20120001137PAPER PUSHING DEVICE - According to various embodiments, the present teachings relate to a paper pushing device. The paper pushing device can include a shaft configured to be received and anchored in an opening of a substrate, for example, a retaining board. The paper pushing device can include a base that extends from the shaft, and a paddle connected to the base at a shoulder. The base can extend in a first direction perpendicular to the shaft and away from the central axis of the shaft, and the paddle can extend in a second direction opposite the first direction and past the central axis of the shaft. Methods are also provided whereby the paper pushing device can be used in various die-cutting and workpiece manipulating operations.2012-01-05
20120001138Posts For Road Safety Barrier - A road safety barrier having a plurality of ropes supported by posts rigidly mounted on or in the ground is described. Each rope is held in tension against the posts and supported in a longitudinally oriented indentation in a side of the posts. The ropes are released from a post and the post is not pulled from the ground when a vertical force is exerted on the rope. The post may have a circular cross-section and the indentation has a bottom oriented substantially parallel to the ground such that the rope is biased to exit upward out of the indentation. The ropes when weaved are tensioned against the posts and this gives rise to a combined frictional resistance to displacement of the ropes relative to each post along the length of the safety barrier.2012-01-05
20120001139ICE-RINK DASHERBOARDS LACKING PROTRUDING SILLS - A system to reduce or eliminate the sill of dasher boards on the play area side of a transparent plane is disclosed. The system features spacers and extensions which support the transparent panes in a more inward position. The system can be installed initially or used to retrofit an arena. The system is suitable for straight and curved-corner portions of the boards assembly. The system is suitable for use with panes of tempered glass or of transparent plastic.2012-01-05
20120001140VOLTAGE SENSITIVE RESISTOR (VSR) READ ONLY MEMORY - Disclosed is a voltage sensitive resistor (VSR) write once (WO) read only memory (ROM) device which includes a semiconductor device and a VSR connected to the semiconductor device. The VSR WO ROM device is a write once read only device. The VSR includes a CVD titanium nitride layer having residual titanium-carbon bonding such that the VSR is resistive as formed and can become less resistive by an order of 102012-01-05
20120001141RRAM structure and method of making the same - An RRAM includes a resistive layer including a dielectric layer and surplus oxygen ions or nitrogen ions from a treatment on the dielectric layer after the dielectric layer is formed. When the RRAM is applied with a voltage, the oxygen ions or nitrogen ions occupy vacancies in the dielectric layer to increase resistance of the resistive layer. When the RRAM is applied with another voltage, the oxygen ions or nitrogen ions are removed from the vacancies to lower the resistance of the resistive layer.2012-01-05
20120001142CARBON-BASED MEMORY ELEMENT - One embodiment of the disclosure can provide a storage layer of a resistive memory element comprising a resistance changeable material. The resistance changeable material can include carbon. Contact layers can be provided for contacting the storage layer. The storage layer can be disposed between a bottom contact layer and a top contact layer. The resistance changeable material can be annealed at a predetermined temperature over a predetermined annealing time for rearranging an atomic order of the resistance changeable material.2012-01-05
20120001143Switchable Junction with Intrinsic Diode - A switchable junction (2012-01-05
20120001144RESISTIVE RAM DEVICES AND METHODS - The present disclosure includes a high density resistive random access memory (RRAM) device, as well as methods of fabricating a high density RRAM device. One method of forming an RRAM device includes forming a resistive element having a metal-metal oxide interface. Forming the resistive element includes forming an insulative material over the first electrode, and forming a via in the insulative material. The via is conformally filled with a metal material, and the metal material is planarized to within the via. A portion of the metal material within the via is selectively treated to create a metal-metal oxide interface within the via. A second electrode is formed over the resistive element.2012-01-05
20120001145AVOIDING DEGRADATION OF CHALCOGENIDE MATERIAL DURING DEFINITION OF MULTILAYER STACK STRUCTURE - A storage element structure for phase change memory (PCM) cell and a method for forming such a structure are disclosed. The method of forming a storage element structure, comprises providing a multilayer stack comprising a chalcogenide layer (2012-01-05
20120001146NANOSCALE METAL OXIDE RESISTIVE SWITCHING ELEMENT - A non-volatile memory device structure. The non-volatile memory device structure comprises a first electrode formed from a first metal material, a resistive switching element overlying the first electrode. The resistive switching element comprises a metal oxide material characterized by one or more oxygen deficient sites. The device includes a second electrode overlying the resistive switching layer, the second electrode being formed from a second metal material. The second electrode is made from a noble metal. The one or more oxygen deficient sites are caused to migrate from one of the first electrode or the second electrode towards the other electrode upon a voltage applied to the first electrode or the second electrode. The device can have a continuous change in resistance upon applying a continuous voltage ramp, suitable for an analog device. Alternatively, the device can have a sharp change in resistance upon applying the continuous voltage ramp, suitable for a digital device.2012-01-05
20120001147Non-Volatile Resistive Oxide Memory Cells, Non-Volatile Resistive Oxide Memory Arrays, And Methods Of Forming Non-Volatile Resistive Oxide Memory Cells And Memory Arrays - A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. Insulative material is deposited over the first electrode. An opening is formed into the insulative material over the first electrode. The opening includes sidewalls and a base. The opening sidewalls and base are lined with a multi-resistive state layer comprising multi-resistive state metal oxide-comprising material which less than fills the opening. A second conductive electrode of the memory cell is formed within the opening laterally inward of the multi-resistive state layer lining the sidewalls and elevationally over the multi-resistive state layer lining the base. Other aspects and implementations are contemplated.2012-01-05
20120001148STRESS-ENGINEERED RESISTANCE-CHANGE MEMORY DEVICE - A resistance-change memory device using stress engineering is described, including a first layer including a first conductive electrode, a second layer above the first layer including a resistive-switching element, a third layer above the second layer including a second conductive electrode, where a first stress is created in the switching element at a first interface between the first layer and the second layer upon heating the memory element, and where a second stress is created in the switching element at a second interface between the second layer and the third layer upon the heating. A stress gradient equal to a difference between the first stress and the second stress has an absolute value greater than 50 MPa, and a reset voltage of the memory element has a polarity relative to a common electrical potential that has a sign opposite the stress gradient when applied to the first conductive electrode2012-01-05
20120001149FLEXIBLE MICROCAVITIES THROUGH SPIN COATING - A mechanically flexible array of optically pumped vertical cavity surface emitting lasers, fabricated using spin coating. The array uses InGaP colloidal quantum dots as an active medium and alternating polymer layers of different refractive indices as Bragg mirrors. Enhanced spontaneous emission is produced. The flexible array can be peeled off a substrate, producing a flexible structure that can conform to a wide variety of shapes, and having an emission spectrum that can be mechanically tuned. The flexible array can be used to create a flexible infrared light bandage.2012-01-05
20120001150MEMORY CELL THAT EMPLOYS A SELECTIVELY FABRICATED CARBON NANO-TUBE REVERSIBLE RESISTANCE-SWITCHING ELEMENT AND METHODS OF FORMING THE SAME - In some aspects, a method of fabricating a memory cell is provided that includes fabricating a steering element above a substrate, and fabricating a reversible-resistance switching element coupled to the steering element by selectively fabricating carbon nano-tube (“CNT”) material above the substrate, wherein the CNT material comprises a single CNT. Numerous other aspects are provided.2012-01-05
20120001151Semiconductor light emitting device and wafer - A semiconductor light emitting device includes a first layer made of at least one of n-type GaN and n-type AlGaN; a second layer made of Mg-containing p-type AlGaN; and a light emitting section provided between the first layer and the second layer. The light emitting section included a plurality of barrier layers made of Si-containing Al2012-01-05
20120001152SEMICONDUCTOR LIGHT EMITTING DIODE AND MANUFACTURING METHOD THEREOF - A semiconductor light emitting diode (LED) and a manufacturing method thereof are disclosed. The method for manufacturing a semiconductor light emitting diode (LED) includes: forming a light emission structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer on a substrate with prominences and depressions; removing the substrate from the light emission structure to expose a first concavoconvex portion corresponding to the prominences and depressions; forming a protection layer on the first concavoconvex portion; removing a portion of the protection layer to expose a convex portion of the first concavoconvex portion; and forming a second concavoconvex portion on the convex portion of the first concavoconvex portion. The semiconductor light emitting diode (LED) includes: a light emission structure including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer; a first concavoconvex portion formed on the light emission structure and having a second concavoconvex portion at a convex portion thereof; and a protection layer filling up a concave portion of the first concavoconvex portion.2012-01-05
20120001153PULSED GROWTH OF CATALYST-FREE GROWTH OF GaN NANOWIRES AND APPLICATION IN GROUP III NITRIDE SEMICONDUCTOR BULK MATERIAL - Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.2012-01-05
20120001154Aromatic amine derivative and organic electroluminescence device using the same - An aromatic amine derivative represented by the following formula (1), wherein at least one of Ar2012-01-05
20120001155FUSING PORPHYRINS WITH POLYCYCLIC AROMATIC HYDROCARBONS AND HETEROCYCLES FOR OPTOELECTRONIC APPLICATIONS - A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated, heterocyclic rings can be obtained by a thermal fusion process. By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,β fashion is achieved, resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.2012-01-05
20120001156ORGANIC LIGHT EMITTING DIODE DISPLAY - An organic light emitting diode display is disclosed. The organic light emitting diode display includes: a substrate including a first region and a second region, a first gate electrode formed over the first region, a second gate electrode formed over the second region, a first gate insulator formed on the first gate electrode, a second gate insulator formed on the second gate electrode, a first semiconductor layer formed on the first gate insulator, the first semiconductor layer including a first channel region, a second semiconductor layer formed on the second gate insulator, the second semiconductor layer including a second channel region, an interlayer insulator formed over the substrate and over at least part of the first and second semiconductor layers, a first etching stop layer formed over the first channel region and surrounded by the interlayer insulator, a second etching stop layer formed over the second channel region and surrounded by the interlayer insulator, a first source electrode and a first drain electrode contacting the first semiconductor layer through the interlayer insulator, and a second source electrode and a second drain electrode contacting the second semiconductor layer through the interlayer insulator.2012-01-05
20120001157ORGANIC MATERIAL AND ORGANIC LIGHT EMITTING DEVICE USING THE SAME - Disclosed are an organic composition including a compound represented by Chemical Formula 1, and an organic light emitting device including the composition.2012-01-05
20120001158ORGANIC ELECTROLUMINESCENT DEVICE - Disclosed is a highly reliable organic electroluminescent device, in particular, a phosphorescent organic electroluminescent device using a low-molecular-weight host material, wherein a good balance between electron and hole injection and an efficient mechanism of phosphorescence are maintained. The organic electroluminescent device contains a light-emitting layer between an anode layer and a cathode layer and the light-emitting layer comprises a phosphorescent dopant material and a host material with a molecular weight of not more than 10,000. The host material is composed of a first host material and a second host material that is different from the first host material and the first host material differs from the second host material by not more than 0.1 eV in the ionization potential (IP), by not more than 0.1 eV in the electron affinity (EA), and by not more than 0.1 eV in the triplet energy (T1).2012-01-05
20120001159INSULATING LAYER, ORGANIC THIN FILM TRANSISTOR USING THE INSULATING LAYER, AND METHOD OF FABRICATING THE ORGANIC THIN FILM TRANSISTOR - Provided is an insulating layer in which an inorganic material is added to an organic polymer to thereby improve the insulating properties, an organic thin film transistor using the insulating layer, and a method of fabricating the organic thin film transistor. An insulating layer for an organic thin film transistor including a vinyl polymer and an inorganic material is provided. Here, a weight ratio of the vinyl polymer to the inorganic material may be in the range of 1:0.0001 to 1:0.5. Accordingly, it is possible to fabricate a thin film at low temperature and, further, to fabricate an insulating layer having a high-dielectric constant, not affecting other layers formed in the previous processes during the formation of the insulating layer.2012-01-05
20120001160ORGANIC ELECTROLUMINESCENCE DEVICE - An organic electroluminescent device (2012-01-05
20120001161LIGHT EMITTING DEVICE MATERIAL AND LIGHT EMITTING DEVICE - Disclosed is an organic electroluminescent element which has achieved both high luminous efficiency and low driving voltage by containing a light-emitting element material, which comprises a specific pyrene compound, in one of the layers that constitute the light-emitting element, preferably in a light-emitting layer or in an electron-transporting layer.2012-01-05
20120001162ORGANIC SEMICONDUCTOR MATERIAL AND ORGANIC THIN-FILM TRANSISTOR - An organic thin-film transistor comprising a gate electrode, a gate insulator layer, an organic semiconductor layer, a source electrode and a drain electrode wherein the organic semiconductor layer consists of the organic semiconductor material having the structure represented by the general formula (1) shown below, and the organic semiconductor layer has crystallinity:2012-01-05
20120001163PHOTOELECTRIC CONVERSION ELEMENT, MANUFACTURING METHOD THEREOF, OPTICAL SENSOR, AND SOLAR CELL - A photoelectric conversion element is provided which includes a photoelectrode (2012-01-05
20120001164ORGANIC ELECTRONIC DEVICE WITH ELECTRON TUNNELING LAYER - There is provided an organic electronic device including an anode; a photoactive layer; an electron transport layer; an electron tunneling layer having a thickness in the range of 10-50 Å; and a cathode.2012-01-05
20120001165MATERIAL FOR PHOSPHORESCENT LIGHT-EMITTING ELEMENT AND ORGANIC ELECTROLUMINESCENT ELEMENT USING SAME - Provided is an organic electroluminescent device (organic EL device), which has improved luminous efficiency, has sufficient driving stability, and has a simple construction. The organic EL device of the present invention is an organic electroluminescent device, including a light-emitting layer and a hole-transporting layer between an anode and a cathode laminated on a substrate, in which the light-emitting layer contains a phosphorescent light-emitting dopant and an indolocarbazole compound that serves as a host material, or alternatively, the hole-transporting layer contains an indolocarbazole compound. The indolocarbazole compound is represented by the following formula (1). In the formula: A2012-01-05
20120001166PARELLEL OPTICAL TRANSCEIVER MODULE - A silicon-on-insulator wafer is provided. The silicon-on-insulator wafer includes a silicon substrate having optical vias formed therein. In addition, an optically transparent oxide layer is disposed on the silicon substrate and the optically transparent oxide layer is in contact with the optical vias. Then, a complementary metal-oxide-semiconductor layer is formed over the optically transparent oxide layer.2012-01-05
20120001167THIN FILM TRANSISTOR AND DISPLAY DEVICE - A thin film transistor allowed to suppress a failure caused by an interlayer insulating film and improve reliability of a self-alignment structure, and a display device including this thin film transistor are provided. The thin film transistor includes: a gate electrode; an oxide semiconductor film having a channel region facing the gate electrode, and having a source region on one side of the channel region, and a drain region on the other side of the channel region; an interlayer insulating film provided in contact with the oxide semiconductor film as well as having a connection hole, and including an organic resin film; and a source electrode and a drain electrode connected to the source region and the drain region, respectively, via the connection hole.2012-01-05
20120001168SEMICONDUCTOR DEVICE - In a transistor including an oxide semiconductor, hydrogen in the oxide semiconductor leads to degradation of electric characteristics of the transistor. Thus, an object is to provide a semiconductor device having good electrical characteristics. An insulating layer in contact with an oxide semiconductor layer where a channel region is formed is formed by a plasma CVD method using a silicon halide. The insulating layer thus formed has a hydrogen concentration less than 6×102012-01-05
20120001169SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device having favorable electric characteristics and a manufacturing method thereof are provided. A transistor includes an oxide semiconductor layer formed over an insulating layer, a source electrode layer and a drain electrode layer which overlap with part of the oxide semiconductor layer, a gate insulating layer in contact with part of the oxide semiconductor layer, and a gate electrode layer over the gate insulating layer. In the transistor, a buffer layer having n-type conductivity is formed between the source electrode layer and the oxide semiconductor layer and between the drain electrode layer and the oxide semiconductor layer. Thus, parasitic resistance is reduced, resulting in improvement of on-state characteristics of the transistor.2012-01-05
20120001170SEMICONDUCTOR DEVICE - An object is to provide a semiconductor device including an oxide semiconductor, which has stable electrical characteristics and improved reliability. In a transistor including an oxide semiconductor film, insulating films each including a material containing a Group 13 element and oxygen are formed in contact with the oxide semiconductor film, whereby the interfaces with the oxide semiconductor film can be kept in a favorable state. Further, the insulating films each include a region where the proportion of oxygen is higher than that in the stoichiometric composition, so that oxygen is supplied to the oxide semiconductor film; thus, oxygen defects in the oxide semiconductor film can be reduced. Furthermore, the insulating films in contact with the oxide semiconductor film each have a stacked structure so that films each containing aluminum are provided over and under the oxide semiconductor film, whereby entry of water into the oxide semiconductor film can be prevented.2012-01-05
20120001171Semiconductor Structures with Rare-earths - The present invention discloses structures to increase carrier mobility using engineered substrate technologies for a solid state device. Structures employing rare-earth compounds enable heteroepitaxy of different semiconductor materials of different orientations.2012-01-05
20120001172RAPID CRYSTALLIZATION OF HEAVILY DOPED METAL OXIDES AND PRODUCTS PRODUCED THEREBY - A method of making a doped metal oxide comprises heating a first doped metal oxide with a laser, to form a crystallized doped metal oxide. The crystallized doped metal oxide has a different crystal structure than the first doped metal oxide.2012-01-05
20120001173FLEXIBLE SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SAME - There is provided a flexible semiconductor device. The flexible semiconductor device of the present invention comprising a support layer, a semiconductor structure portion formed on the support layer, and a resin film formed on the semiconductor structure portion. The resin film comprises an opening formed by a laser irradiation therein, and also an electroconductive member which is in contact with the surface of the semiconductor structure portion is disposed within the opening of the resin film.2012-01-05
20120001174Test Structure for Controlling the Incorporation of Semiconductor Alloys in Transistors Comprising High-K Metal Gate Electrode Structures - When forming critical threshold adjusting semiconductor alloys and/or strain-inducing embedded semiconductor materials in sophisticated semiconductor devices, at least the corresponding etch processes may be monitored efficiently on the basis of mechanically gathered profile measurement data by providing an appropriately designed test structure. Consequently, sophisticated process sequences performed on bulk semiconductor devices may be efficiently monitored and/or controlled by means of the mechanically obtained profile measurement data without significant delay. For example, superior uniformity upon providing a threshold adjusting semiconductor alloy in sophisticated high-k metal gate electrode structures for non-SOI devices may be achieved.2012-01-05
20120001175SEMICONDUCTOR DEVICE CAPABLE OF SUPPRESSING A COUPLING EFFECT OF A TEST-DISABLE TRANSMISSION LINE - Semiconductor device and semiconductor memory device include a plurality of internal circuits configured to perform test operations in response to their respective test mode signals and a plurality of test-mode control units configured to control the test operations of the internal circuits to be disabled in response to a test-off signal.2012-01-05
20120001176ETCH DEPTH DETERMINATION STRUCTURE - A semiconductor device wafer includes a test structure. The test structure includes a layer of material having an angle-shaped test portion disposed on at least a portion of a surface of the semiconductor wafer. A ruler marking on the surface of the semiconductor wafer proximate the test portion is adapted to facilitate measurement of a change in length of the test portion.2012-01-05
20120001177SEMICONDUCTOR DEVICE - In a multi-chip semiconductor device, a second semiconductor chip is stacked on a first semiconductor chip with an adhesive layer being interposed therebetween, and the first and second semiconductor chips are sealed by resin containing a mixture of, e.g., a filler. The first semiconductor chip includes a first region on a surface of which the second semiconductor chip is stacked, and a second region on a surface of which the second semiconductor chip does not stacked. In one of interconnect layers including an uppermost layer, a wiring pattern is not provided, which extends across a border between the first and second regions.2012-01-05
20120001178THIN FILM TRANSISTOR - A thin film transistor with favorable electric characteristics is provided. The thin film transistor includes a gate electrode, a gate insulating layer, a semiconductor layer which includes a microcrystalline semiconductor region and an amorphous semiconductor region, an impurity semiconductor layer, a wiring, a first oxide region provided between the microcrystalline semiconductor region and the wiring, and a second oxide region provided between the amorphous semiconductor region and the wiring. wherein a line tangent to the highest inclination of an oxygen profile in the first oxide region (m1) and a line tangent to the highest inclination of an oxygen profile in the second oxide region (m2) satisfy a relation of 12012-01-05
20120001179SEMICONDUCTOR DEVICE - It is an object to provide a semiconductor device including an oxide semiconductor, which has stable electric characteristics and high reliability. A semiconductor device having a stacked-layer structure of a gate insulating layer; a first gate electrode in contact with one surface of the gate insulating layer; an oxide semiconductor layer in contact with the other surface of the gate insulating layer and overlapping with the first gate electrode; and a source electrode, a drain electrode, and an oxide insulating layer which are in contact with the oxide semiconductor layer is provided, in which the nitrogen concentration of the oxide semiconductor layer is 2×102012-01-05
20120001180Semiconductor Device and Method for Manufacturing the Same - Provided is a structure to obtain a reliable electrical contact through a narrow contact hole formed in an insulating layer, which is required in the miniaturization of a semiconductor device. An exemplified structure includes a thin film transistor comprising: a lower electrode over and in contact with a semiconductor layer, the lower electrode comprising a metal or a metal compound; an insulating layer over the lower electrode, the insulating layer having a contact hole reaching the lower electrode; a conductive silicon whisker grown from a surface of the lower electrode; and an upper electrode over the insulating layer and in contact with the conductive silicon whisker. The ability of the conductive silicon whisker grown from the lower electrode to ohmically contact with the lower and upper electrodes leads to a reliable electrical contact between the thin film transistor and a wiring.2012-01-05
20120001181LAYER HAVING FUNCTIONALITY, METHOD FOR FORMING FLEXIBLE SUBSTRATE HAVING THE SAME, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - It is an object of the present invention to provide a method for forming a layer having functionality including a conductive layer and a colored layer and a flexible substrate having a layer having functionality with a high yield. Further, it is an object of the present invention to provide a method for manufacturing a semiconductor device that is small-sized, thin, and lightweight. After coating a substrate having heat resistance with a silane coupling agent, a layer having functionality is formed. Then, after attaching an adhesive to the layer having functionality, the layer having functionality is peeled from the substrate. Further, after coating a substrate having heat resistance with a silane coupling agent, a layer having functionality is formed. Then, an adhesive is attached to the layer having functionality. Thereafter, the layer having functionality is peeled from the substrate, and a flexible substrate is attached to the layer having functionality.2012-01-05
20120001182ORGANIC LIGHT-EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - An organic light-emitting display device that may be easily manufactured and has an excellent display quality, the organic light-emitting display device including: an active layer of a thin-film transistor (TFT) formed on a substrate and including a semiconductor material; a lower electrode of a capacitor formed on the substrate and including a semiconductor material in which impurity ions are doped; a first insulating layer formed on the substrate so as to cover the active layer and the lower electrode; a gate electrode of the TFT formed on the first insulating layer and including a first gate electrode including silver (Ag) or an Ag alloy, a second gate electrode including a transparent conductive material, and a third gate electrode including metal that are sequentially stacked in the order stated; a plurality of pixel electrodes formed on the first insulating layer and including a first pixel electrode including Ag or an Ag alloy and a second pixel electrode including a transparent conductive material that are sequentially stacked in the order stated; an upper electrode of the capacitor formed on the first insulating layer and including a first upper electrode including Ag or an Ag alloy and a second upper electrode including a transparent conductive material that are sequentially stacked in the order stated; source and drain electrodes of the TFT electrically connected to the active layer; an organic layer disposed on the pixel electrode and including an organic emission layer; and an opposite electrode disposed facing each of the pixel electrodes while the organic layer is interposed between the opposite electrode and each of the pixel electrodes, and a method of manufacturing the organic light-emitting display device.2012-01-05
20120001183Method of producing display device, display device, method of producing thin-film transistor substrate, and thin-film transistor substrate - A method of producing a display device includes the steps of forming gate electrodes on a substrate so that an arrangement of a source and a drain, in a pixel row direction, of a thin-film transistor formed in each of pixels on the substrate is reversed every pixel row; forming a gate insulating film and an amorphous semiconductor thin film on the substrate in that order so as to cover the gate electrodes; crystallizing the semiconductor thin film by irradiating the semiconductor thin film with an energy beam so that a scanning direction of the energy beam is the same with respect to the arrangement of the source and the drain in the pixel row direction; and forming a light-emitting element connected to the thin-film transistor.2012-01-05
20120001184ORGANIC LIGHT-EMITTING DISPLAY DEVICE - A transparent organic light-emitting display device has an improved transmittance and a reduced voltage drop in an opposite electrode. The organic light-emitting display device includes: a first substrate having a transmitting region and a plurality of pixel regions separated from each other by the transmitting region interposed between the pixel regions; a plurality of pixel electrodes being located at the pixel regions, respectively; an opposite electrode facing the pixel electrodes and being at the transmitting region and the pixel regions; a second substrate facing the opposite electrode and being bonded to the first substrate; a first conductive unit being between the second substrate and the opposite electrode, opposite ends of the first conductive unit contacting the second substrate and the opposite electrode, respectively; and a second conductive unit facing the first conductive unit and contacting the opposite electrode that is between the first conductive unit and the second conductive unit.2012-01-05
20120001185Organic Light Emitting Diode Display and Manufacturing Method Thereof - An organic light emitting diode display includes: a substrate having first and second regions; a first thin film transistor (TFT) including source and drain electrodes at the first region; a second TFT including source and drain electrodes at the second region; a protective layer on the first and second TFTs; a planarization layer pattern on the protective layer; a first pixel electrode electrically connected to the source electrode or the drain electrode of the first TFT through a first via contact hole through the protective layer; and a second pixel electrode electrically connected to the source electrode or the drain electrode of the second TFT through a second via contact hole formed through the protective layer and the planarization layer pattern, the planarization layer pattern corresponding to a shape of the second pixel electrode and located between the protective layer and the second pixel electrode.2012-01-05
20120001186ORGANIC EL DISPLAY PANEL AND METHOD OF MANUFACTURING THE SAME - A display panel and method of manufacturering a display panel. A plurality of contact holes penetrate through an interlayer insulation film and have wiring lines connecting first electrode plates and second electrode plates with a thin-film transistor layer. The first electrode plates and the second electrode plates each include at least one concavity. The at least one concavity included in each of the first and second electrode plates coincide with the plurality of contact holes. A total volume of the at least one concavity in any of the first electrode plates is larger than a total volume of the at least one concavity in any of the second electrode plates, while a volume of a portion of the first organic functional layer corresponding to any of the first electrode plates at least approximates a volume of the second organic functional layer corresponding to any of the second electrode plates. A portion of the first organic functional layer entered into the at least one concavity in any of the first electrode plates is larger than a portion of the second organic functional layer entered into the at least one concavity in any of the second electrode plates, so that in locations other than the at least one concavity in the first electrode plates and the second electrode plates, the first organic functional layer is thinner than the second organic functional layer.2012-01-05
20120001187Electronic Device - There is provided an electronic device in which the deterioration of the device is prevented and an aperture ratio is improved without using a black mask and without increasing the number of masks. In the electronic device, a first electrode (2012-01-05
20120001188TRANSFLECTIVE TYPE LIQUID CRYSTAL DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - A method of manufacturing a transflective type liquid crystal display device includes forming an organic film having different film thicknesses on a passivation film covering a TFT, etching the passivation film to form a contact hole, etching a reflective electrode and a transmissive electrode formed on the organic film by using a resist pattern having different film thicknesses, removing, by ashing, a thin film portion of the resist pattern, and a thin film portion of the organic film exposed from the transmissive electrode to form an opening, etching the reflective electrode by using the resist pattern left after the removal of the thin film portion, and bonding substrates in such a manner that a sealing material in a shape of a frame is arranged in the opening of the organic film.2012-01-05
20120001189THIN-FILM TRANSISTOR ARRAY AND IMAGE DISPLAY DEVICE IN WHICH THIN-FILM TRANSISTOR ARRAY IS USED - In a thin-film transistor array according to an embodiment of the present invention, thin-film transistors are disposed in a matrix array, the thin-film transistor including a gate electrode that is formed on a substrate, a gate insulating layer that is formed on the gate electrode, a source electrode that is formed on the gate insulating layer, a pixel electrode that is formed on the gate insulating layer, a drain electrode that is connected to the pixel electrode, and a semiconductor layer that is formed between the source electrode and the drain electrode, the gate electrode is connected to a gate line while the source electrode is connected to a source line, the thin-film transistor is formed in a range of the source line and the thin-film transistor array includes a stripe insulating film such that the source line and the semiconductor layer are covered with the stripe insulating film.2012-01-05
20120001190THIN FILM TRANSISTOR AND METHOD OF FABRICATING SAME - The invention provides a thin film transistor that can improve its operating speed by improving crystallinity near a bottom surface of a channel layer. Of laser light irradiated onto an amorphous silicon layer, light transmitted through the amorphous silicon layer is absorbed by a gate electrode 2012-01-05
20120001191ARRAY SUBSTRATE, METHOD OF MANUFACTURING THE ARRAY SUBSTRATE, AND DISPLAY APPARATUS INCLUDING THE ARRAY SUBSTRATE - An array substrate is disclosed. In one embodiment, the substrate includes 1) a transistor area in which a transistor is formed, 2) a capacitor area in which a capacitor is formed, wherein the capacitor is electrically connected to the transistor and 3) a light transmittance area adjacent to at least one of the transistor area and the capacitor area. The substrate further includes 1) a first insulating layer formed in at least one of the transistor area and the capacitor area, wherein the first insulating layer is not formed in the light transmittance area and 2) a second insulating layer having i) a first portion arranged to substantially overlap with the first insulating layer in the at least one area, and ii) a second portion formed in the light transmittance area.2012-01-05
20120001192BIPOLAR TRANSISTOR HAVING SELF-ADJUSTED EMITTER CONTACT - A semiconductor device, comprising a substrate layer made of a semiconductor material of a first conductivity type and having a first insulation region, and a vertical bipolar transistor having a first vertical portion of a collector made of monocrystalline semiconductor material of a second conductivity type and disposed in an opening of the first insulation region, a second insulation region lying partly on the first vertical portion of the collector and partly on the first insulation region and having an opening in the region of the collector, in which opening a second vertical portion of the collector made of monocrystalline material is disposed, said portion including an inner region of the second conductivity type, a base made of monocrystalline semiconductor material of the first conductivity type, a base connection region surrounding the base in the lateral direction, a T-shaped emitter made of semiconductor material of the second conductivity type and overlapping the base connection region, wherein the base connection region, aside from a seeding layer adjacent the substrate or a metallization layer adjacent a base contact, consists of a semiconductor material which differs in its chemical composition from the semiconductor material of the collector, the base and the emitter and in which the majority charge carriers of the first conductivity type have greater mobility compared thereto.2012-01-05
20120001193Polishing method, polishing apparatus and GaN wafer - A polishing method can process and flatten, in a practical processing time and with high surface accuracy, a surface of a substrate of a Ga element-containing compound semiconductor. The polishing method includes: bringing a Ga element-containing compound semiconductor substrate (2012-01-05
20120001194SEMICONDUCTOR DEVICE - A semiconductor device includes a Si substrate having a principal plane that is a crystal surface inclined at an off angle of 0.1 degrees or less with respect to a (111) plane, an AlN layer that is provided so as to contact the principal plane of the Si substrate and is configured so that an FWHM of a rocking curve of a (002) plane by x-ray diffraction is not greater than 2000 seconds, and a GaN-based semiconductor layer formed on the AlN layer.2012-01-05
20120001195SEMICONDUCTOR SUBSTRATE AND SEMICONDUCTOR DEVICE - A semiconductor substrate inclu8des an AlN layer that is formed so as to contact a Si substrate and has an FWMH of a rocking curve of a (002) plane by x-ray diffraction, the FWMH being less than or equal to 1500 seconds, and a GaN-based semiconductor layer formed on the AlN layer.2012-01-05
20120001196LIGHT EMITTING DEVICE, METHOD OF MANUFACTURING THE SAME, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING SYSTEM - Provided are a light emitting device, a method of manufacturing the same, a light emitting device package, and a lighting system. The light emitting device includes: a light emitting structure layer including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; an oxide protrusion disposed on at least a portion of the second conducive semiconductor layer; and a current spreading layer on the second conductive semiconductor layer and the oxide protrusion.2012-01-05
20120001197LAYOUT FOR MULTIPLE-FIN SRAM CELL - The present disclosure provides a static random access memory (SRAM) cell. The SRAM cell includes a plurality of fin active regions formed on a semiconductor substrate, wherein the plurality of fin active regions include a pair adjacent fin active regions having a first spacing and a fin active region having a second spacing from adjacent fin active regions, the second spacing being greater than the first spacing; a plurality of fin field-effect transistors (FinFETs) formed on the plurality of fin active regions, wherein the plurality of FinFETs are configured to a first and second inverters cross-coupled for data storage and at least one port for data access; a first contact disposed between the first and second the fin active regions, electrically contacting both of the first and second the fin active regions; and a second contact disposed on and electrically contacting the third fin active region.2012-01-05
20120001198ISOLATION REGION, SEMICONDUCTOR DEVICE AND METHODS FOR FORMING THE SAME - An isolation region is provided. The isolation region includes a first groove and an insulation layer filling the first groove. The first groove is embedded into a semiconductor substrate and includes a first sidewall, a bottom surface and a second sidewall that extends from the bottom surface and joins to the first sidewall. An angle between the first sidewall and a normal line of the semiconductor substrate is larger than a standard value. A method for forming an isolation region is further provided. The method includes: forming a first trench on a semiconductor substrate, wherein an angle between a sidewall of the first trench and a normal line of the semiconductor substrate is larger than a standard value; forming a mask on the sidewall to form a second trench on the semiconductor substrate by using the mask; and forming an insulation layer to fill the first and second trenches. A semiconductor device and a method for forming the same are still further provided. In the semiconductor device, a material of the semiconductor substrate is interposed between a second groove bearing a semiconductor layer for forming an S/D region and the first and second sidewalls. The present invention is beneficial to reduce leakage current.2012-01-05
20120001199POWER SEMICONDUCTOR DEVICE - A bipolar power semiconductor device is provided with an emitter electrode on an emitter side and a collector electrode on a collector side. The device has a trench gate electrode and a structure with a plurality of layers of different conductivity types in the following order: at least one n doped source region, a p doped base layer, which surrounds the at least one source region, an n doped enhancement layer, a p doped additional well layer, an additional n doped enhancement layer, an additional p doped well layer, an n doped drift layer and a p doped collector layer. The trench gate electrode has a gate bottom, which is located closer to the collector side than the additional enhancement layer bottom.2012-01-05
20120001200SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device includes: a semiconductor chip; a protective film and an insulating film sequentially stacked over the semiconductor chip, and each having openings that expose source, drain, and gate pads; a heat dissipation terminal made of a material having a higher thermal conductivity than the insulating film; connection terminals formed on the source, drain, and gate pads and surrounded by the insulating film; and a mount substrate having connection pads. The semiconductor chip has a source electrode having a plurality of source fingers, a drain electrode having a plurality of drain fingers, and a gate electrode having a plurality of gate fingers. The source, drain, and gate pads are connected to the source electrode, the drain electrode, and the gate electrode, respectively. The connection terminals are respectively connected to the connection pads. The heat dissipation terminal is in close contact with the mount substrate.2012-01-05
Website © 2025 Advameg, Inc.