Class / Patent application number | Description | Number of patent applications / Date published |
850046000 | Magnetic Force Microscopy [MFM] or apparatus therefor, e.g., MFM probes (EPO) | 10 |
20100154088 | MAGNETIC SENSOR AND SCANNING MICROSCOPE - A magnetic sensor simply is configured so as to magnetically measure not only conductive materials but also nonconductive materials over a wide temperature range and which offers high performance and high reliability, as well as a scanning microscope that uses the magnetic sensor. A scanning microscope according to the present invention includes a magnetic sensor with a magnetic sensing element provided at a free end of a cantilever-like flexible member and a strain gauge installed on the flexible member, driving means for driving the flexible member or a measurement sample, and control means for controlling driving provided by the driving means based on an output signal from the strain gauge. | 06-17-2010 |
20120079636 | MAGNETIC SENSOR AND SCANNING MICROSCOPE - An object of the present invention is to provide a magnetic sensor simply configured so as to magnetically measure not only conductive materials but also nonconductive materials over a wide temperature range and which offers high performance and high reliability, as well as a scanning microscope that uses the magnetic sensor. A scanning microscope according to the present invention includes a magnetic sensor with a magnetic sensing element provided at a free end of a cantilever-like flexible member and a strain gauge installed on the flexible member, driving means for driving the flexible member or a measurement sample, and control means for controlling driving provided by the driving means based on an output signal from the strain gauge. | 03-29-2012 |
20130174302 | MAGNETIC FIELD OBSERVATION DEVICE AND MAGNETIC FIELD OBSERVATION METHOD - A magnetic-field-observation device and method for measuring magnetic force near a magnetic material specimen's surface with high resolution and detecting the polarity of the magnetic pole of specimen's surface. The device including: a probe; excitation mechanism that excites it; scanning mechanism that relatively moves the probe and specimen; alternating magnetic field generation mechanism to make the probe periodically undergo magnetization reversal and apply thereto an alternating magnetic field having magnitude not making the specimen undergo magnetization reversal; and modulation measurement mechanism for measuring degree of periodical frequency modulation of the probe's oscillation caused by its apparent spring constant periodically changed by force of periodically changed intensity and applied to the probe by alternating force through magnetic interaction between magnetizations of the probe and specimen, by frequency demodulation or by measuring intensity of one sideband wave spectrum among spectrums generated by the frequency modulation. The method performed using the device. | 07-04-2013 |
20100154088 | MAGNETIC SENSOR AND SCANNING MICROSCOPE - A magnetic sensor simply is configured so as to magnetically measure not only conductive materials but also nonconductive materials over a wide temperature range and which offers high performance and high reliability, as well as a scanning microscope that uses the magnetic sensor. A scanning microscope according to the present invention includes a magnetic sensor with a magnetic sensing element provided at a free end of a cantilever-like flexible member and a strain gauge installed on the flexible member, driving means for driving the flexible member or a measurement sample, and control means for controlling driving provided by the driving means based on an output signal from the strain gauge. | 06-17-2010 |
20120079636 | MAGNETIC SENSOR AND SCANNING MICROSCOPE - An object of the present invention is to provide a magnetic sensor simply configured so as to magnetically measure not only conductive materials but also nonconductive materials over a wide temperature range and which offers high performance and high reliability, as well as a scanning microscope that uses the magnetic sensor. A scanning microscope according to the present invention includes a magnetic sensor with a magnetic sensing element provided at a free end of a cantilever-like flexible member and a strain gauge installed on the flexible member, driving means for driving the flexible member or a measurement sample, and control means for controlling driving provided by the driving means based on an output signal from the strain gauge. | 03-29-2012 |
20130174302 | MAGNETIC FIELD OBSERVATION DEVICE AND MAGNETIC FIELD OBSERVATION METHOD - A magnetic-field-observation device and method for measuring magnetic force near a magnetic material specimen's surface with high resolution and detecting the polarity of the magnetic pole of specimen's surface. The device including: a probe; excitation mechanism that excites it; scanning mechanism that relatively moves the probe and specimen; alternating magnetic field generation mechanism to make the probe periodically undergo magnetization reversal and apply thereto an alternating magnetic field having magnitude not making the specimen undergo magnetization reversal; and modulation measurement mechanism for measuring degree of periodical frequency modulation of the probe's oscillation caused by its apparent spring constant periodically changed by force of periodically changed intensity and applied to the probe by alternating force through magnetic interaction between magnetizations of the probe and specimen, by frequency demodulation or by measuring intensity of one sideband wave spectrum among spectrums generated by the frequency modulation. The method performed using the device. | 07-04-2013 |
850047000 | Resonance (EPO) | 3 |
20100205699 | MAGNETIC DEVICE INSPECTION APPARATUS AND MAGNETIC DEVICE INSPECTION METHOD - Applying an alternating current to a magnetic head as a sample generates an alternate-current magnetic field from the sample. A cantilever includes a probe that is made of a magnetic material or is coated with a magnetic material. The cantilever is displaced when it approaches the sample. Detecting the displacement of the cantilever detects distribution of the magnetic field from the sample. It is possible to fast measure distribution of the magnetic field generated from the sample when a frequency of the alternating current applied to the sample differs from a resonance frequency of the cantilever. | 08-12-2010 |
20130198914 | APPARATUS FOR PERFORMING MAGNETIC RESONANCE FORCE MICROSCOPY ON LARGE AREA SAMPLES - An apparatus for performing magnetic resonance force microscopy on one or more large area samples comprising a base plate, one or more heat sink plates coupled to the base plate, one or more suspension mechanisms coupled to the base plate and the heat sink plates, a probe head suspended from the one or more suspension mechanisms for scanning the one or more samples and a sample cylinder comprising a sample stage coupled to the probe head for sample positioning and an outer drum for isolating the sample stage. | 08-01-2013 |
20160109478 | MAGNETIC FIELD VALUE MEASURING DEVICE AND METHOD FOR MEASURING MAGNETIC FIELD VALUE - A magnetic field measuring device including: a vibrational probe unit having a probe that includes one or more material(s) whose intensity of magnetization is proportionate to an external magnetic field, a mechanical vibration source for the probe; a vibration detector detecting a vibration frequency and amplitude of the probe; an alternating-current magnetic field generator applying to the probe an alternating-current magnetic field; a direct-current external magnetic field generator applying a direct-current external magnetic field to the probe; a frequency modulation detector detecting frequency modulation occurring to the mechanical vibration of the probe; a direct-current external magnetic field controller adjusting the intensity of the direct-current external magnetic field applied to the probe; and a direct-current magnetic field determination unit determining a value of the direct-current magnetic field originating from a specimen. | 04-21-2016 |
20100205699 | MAGNETIC DEVICE INSPECTION APPARATUS AND MAGNETIC DEVICE INSPECTION METHOD - Applying an alternating current to a magnetic head as a sample generates an alternate-current magnetic field from the sample. A cantilever includes a probe that is made of a magnetic material or is coated with a magnetic material. The cantilever is displaced when it approaches the sample. Detecting the displacement of the cantilever detects distribution of the magnetic field from the sample. It is possible to fast measure distribution of the magnetic field generated from the sample when a frequency of the alternating current applied to the sample differs from a resonance frequency of the cantilever. | 08-12-2010 |
20130198914 | APPARATUS FOR PERFORMING MAGNETIC RESONANCE FORCE MICROSCOPY ON LARGE AREA SAMPLES - An apparatus for performing magnetic resonance force microscopy on one or more large area samples comprising a base plate, one or more heat sink plates coupled to the base plate, one or more suspension mechanisms coupled to the base plate and the heat sink plates, a probe head suspended from the one or more suspension mechanisms for scanning the one or more samples and a sample cylinder comprising a sample stage coupled to the probe head for sample positioning and an outer drum for isolating the sample stage. | 08-01-2013 |
20160109478 | MAGNETIC FIELD VALUE MEASURING DEVICE AND METHOD FOR MEASURING MAGNETIC FIELD VALUE - A magnetic field measuring device including: a vibrational probe unit having a probe that includes one or more material(s) whose intensity of magnetization is proportionate to an external magnetic field, a mechanical vibration source for the probe; a vibration detector detecting a vibration frequency and amplitude of the probe; an alternating-current magnetic field generator applying to the probe an alternating-current magnetic field; a direct-current external magnetic field generator applying a direct-current external magnetic field to the probe; a frequency modulation detector detecting frequency modulation occurring to the mechanical vibration of the probe; a direct-current external magnetic field controller adjusting the intensity of the direct-current external magnetic field applied to the probe; and a direct-current magnetic field determination unit determining a value of the direct-current magnetic field originating from a specimen. | 04-21-2016 |
850048000 | Probes, their manufacture, or their related instrumentation, e.g., holders (EPO) | 4 |
20100170017 | Magneto-Optical Detection of a Field Produced by a Sub-Resolution Magnetic Structure - A polarization microscope optically detects the effect of the magnetic field from a sub-optical resolution magnetic structure on a magneto-optical transducer. The magneto-optical transducer includes a magnetic layer with a magnetization that is changed by the magnetic field produced by the magnetic structure. The saturation field of the magnetic layer is sufficiently lower than the magnetic field produced by the magnetic structure that the area of magnetization change in the magnetic layer is optically resolvable by the polarization microscope. A probe may be used to provide a current to the sample to produce the magnetic field. By analyzing the optically detected magnetization, one or more characteristics of the sample may be determined. A magnetic recording storage layer may be deposited over the magnetic layer, where a magnetic field produced by the sample is written to the magnetic recording storage layer to effect the magnetization of the magnetic layer. | 07-01-2010 |
20110225684 | MAGNETIC HEAD INSPECTION METHOD AND MAGNETIC HEAD MANUFACTURING METHOD - A magnetic head inspection method is provided with the step that an area smaller than a half of a scanning and measurement area of a magnetic probe in a cantilever unit of the MFM is set as a scanning and measurement area on a surface of a recording portion of the magnetic head that is scanned by the AFM, so as to greatly reduce the inspection time (tact time) of the AFM. | 09-15-2011 |
20130263332 | INSPECTION APPARATUS AND METHOD FOR A MAGNETIC HEAD - A signal for excitation is supplied to a connection terminal of a magnetic head. A magnetic probe of a magnetic force microscope is made to fly over the magnetic head and to scan a plurality of scan lines at predetermined intervals in parallel with one side of the magnetic head. A magnetic field strength of the magnetic head is detected to form magnetic field strength profiles of the scan lines. An effective magnetic field strength profile that brings about a magnetic effective track width of the magnetic head is extracted on the basis of a result of detection and the magnetic effective track width of the magnetic head is obtained on the basis of the effective magnetic field strength profile. After extraction of the effective magnetic field strength profile, a scan for obtaining the magnetic effective track width of the magnetic head is stopped. | 10-03-2013 |
20100170017 | Magneto-Optical Detection of a Field Produced by a Sub-Resolution Magnetic Structure - A polarization microscope optically detects the effect of the magnetic field from a sub-optical resolution magnetic structure on a magneto-optical transducer. The magneto-optical transducer includes a magnetic layer with a magnetization that is changed by the magnetic field produced by the magnetic structure. The saturation field of the magnetic layer is sufficiently lower than the magnetic field produced by the magnetic structure that the area of magnetization change in the magnetic layer is optically resolvable by the polarization microscope. A probe may be used to provide a current to the sample to produce the magnetic field. By analyzing the optically detected magnetization, one or more characteristics of the sample may be determined. A magnetic recording storage layer may be deposited over the magnetic layer, where a magnetic field produced by the sample is written to the magnetic recording storage layer to effect the magnetization of the magnetic layer. | 07-01-2010 |
20110225684 | MAGNETIC HEAD INSPECTION METHOD AND MAGNETIC HEAD MANUFACTURING METHOD - A magnetic head inspection method is provided with the step that an area smaller than a half of a scanning and measurement area of a magnetic probe in a cantilever unit of the MFM is set as a scanning and measurement area on a surface of a recording portion of the magnetic head that is scanned by the AFM, so as to greatly reduce the inspection time (tact time) of the AFM. | 09-15-2011 |
20130263332 | INSPECTION APPARATUS AND METHOD FOR A MAGNETIC HEAD - A signal for excitation is supplied to a connection terminal of a magnetic head. A magnetic probe of a magnetic force microscope is made to fly over the magnetic head and to scan a plurality of scan lines at predetermined intervals in parallel with one side of the magnetic head. A magnetic field strength of the magnetic head is detected to form magnetic field strength profiles of the scan lines. An effective magnetic field strength profile that brings about a magnetic effective track width of the magnetic head is extracted on the basis of a result of detection and the magnetic effective track width of the magnetic head is obtained on the basis of the effective magnetic field strength profile. After extraction of the effective magnetic field strength profile, a scan for obtaining the magnetic effective track width of the magnetic head is stopped. | 10-03-2013 |
850049000 | Probes with magnetic coating (EPO) | 1 |
20100138964 | PROBES FOR ENHANCED MAGNETIC FORCE MICROSCOPY RESOLUTION - Magnetic Force Microscopy (MFM) probe tips that provide enhanced spatial resolution and methods of manufacture are provided. In one aspect, two or more magnetically-decoupled layers may be deposited on an AFM probe in order to create an active magnetic region at about the apex of the probe tip with dimensions less than about 10 nanometers. In another aspect, nanoscale patterning techniques may be employed to fabricate probe tips that possess plateau features. These plateau features may serve as substrates for the deposition of magnetic films having properties similar to magnetic recording media. Machining techniques, such as Focused Ion Beam (FIB) may be further employed to reduce the size of the magnetic materials deposited upon the substrate. Beneficially, because the plateaus of the substrate are substantially flat and of known geometry, and the magnetic properties of magnetic films deposited on flat surfaces are similar to those deposited upon the plateau, the magnetization of the MFM probe tips may be determined to high accuracy. In this manner, fine control over the magnetic properties of MFM probe tips may be achieved, providing enhanced MFM resolution. | 06-03-2010 |
20100138964 | PROBES FOR ENHANCED MAGNETIC FORCE MICROSCOPY RESOLUTION - Magnetic Force Microscopy (MFM) probe tips that provide enhanced spatial resolution and methods of manufacture are provided. In one aspect, two or more magnetically-decoupled layers may be deposited on an AFM probe in order to create an active magnetic region at about the apex of the probe tip with dimensions less than about 10 nanometers. In another aspect, nanoscale patterning techniques may be employed to fabricate probe tips that possess plateau features. These plateau features may serve as substrates for the deposition of magnetic films having properties similar to magnetic recording media. Machining techniques, such as Focused Ion Beam (FIB) may be further employed to reduce the size of the magnetic materials deposited upon the substrate. Beneficially, because the plateaus of the substrate are substantially flat and of known geometry, and the magnetic properties of magnetic films deposited on flat surfaces are similar to those deposited upon the plateau, the magnetization of the MFM probe tips may be determined to high accuracy. In this manner, fine control over the magnetic properties of MFM probe tips may be achieved, providing enhanced MFM resolution. | 06-03-2010 |