Class / Patent application number | Description | Number of patent applications / Date published |
850040000 | Probes, their manufacture, or their related instrumentation, e.g., holders (EPO) | 39 |
20090133169 | Independently-addressable, self-correcting inking for cantilever arrays - An improved method of loading tips and other surfaces with patterning compositions or inks for use in deposition. A method of patterning is described, the method comprising: (i) providing at least one array of tips; (ii) providing a plurality of patterning compositions; (iii) ink jet printing at least some of the patterning compositions onto some of the tips; and (iv) depositing at least some of the patterning compositions onto a substrate surface; wherein the ink jet printing is adapted to prevent substantial cross-contamination of the patterning composition on the tips. Good printing reproducibility and control of printing rate can be achieved. The surfaces subjected to ink jet printing can be treated to encourage localization of the ink at the tip. The method is particularly important for high density arrays. | 05-21-2009 |
20090178166 | Method for microfabricating a probe with integrated handle, cantilever, tip and circuit - A simple method for integrating a circuit onto a probe with a handle, a cantilever and a tip is provided. By fabricating a probe whose surface has recessed patterns of the desirable profile, a circuit can be formed on one part of the handle out over the cantilever and back onto a different part of the handle without employing a circuit lithography step. The circuit material constituting the circuit is deposited orthogonally to the probe surface with a line-of-sight technique. | 07-09-2009 |
20090205092 | METHOD OF FABRICATING A PROBE DEVICE FOR A METROLOGY INSTRUMENT AND A PROBE DEVICE PRODUCED THEREBY - A method of producing a probe device for a metrology instrument such as an AFM includes providing a substrate and forming a tip stock extending upwardly from the substrate. The tip stock is preferably FIB milled to form a tip of the probe device. The tip preferably has a high aspect ratio, with a height that is at least about 1 micron for performing critical dimension (e.g., deep trench) atomic force microscopy. The stock is preferably pedestal shaped having a distal end that is substantially planar which can be machined into a tip in at least less than about 2 minutes. With the preferred embodiments, the FIB milling step can be completed in substantially fewer and less complicated steps than known techniques to produce a high aspect ratio tip suitable for DT-AFM in less than about one minute. | 08-13-2009 |
20090241233 | SPM PROBE WITH SHORTENED CANTILEVER - An SPM probe with an elongated support element and a cantilever projecting beyond the front face of the support element and carrying a scanning tip, with the cantilever arranged at a front face side of the support element of the probe, protruding there from a front face side flank, and with the support element having an essentially trapezoidal cross-section with a longer and a shorter transverse edge at the face side flank, and also with critical corners at one of the transverse edges of the face side flank that are closest to a sample during the scanning process, wherein the support element has an elongated raised portion extending in the longitudinal direction of the support element and of the cantilever, with the raised portion having an essentially trapezoidal cross-section, and with the cantilever arranged on the face side on a narrow transverse edge of the raised portion of the support element, and with the raised portion with the cantilever arranged preferably at the longer transverse edge of the face side flank of the support element, and with the plane extending between the scanning tip and a theoretical straight line passing through one of the critical corners, parallel to the lateral longitudinal edges of the underside of the support element, forming an angle of tilt of at least 5 degrees relative to the transverse edge. | 09-24-2009 |
20090293162 | MONOLITHIC HIGH ASPECT RATIO NANO-SIZE SCANNING PROBE MICROSCOPE (SPM) TIP FORMED BY NANOWIRE GROWTH - A scanning probe where the micromachined pyramid tip is extended by the growth of an epitaxial nanowire from the top portion of the tip is disclosed. A metallic particle, such as gold, may terminate the nanowire to realize an apertureless near-field optical microscope probe. | 11-26-2009 |
20090300807 | Method for providing a probe for a probe-microscopic analysis of a test sample in a probe microscope and arrangement with a probe microscope - The present invention relates to a method for providing a measuring probe ( | 12-03-2009 |
20090313730 | METHOD FOR COST-EFFICIENT MANUFACTURING DIAMOND TIPS FOR ULTRA-HIGH RESOLUTION ELECTRICAL MEASUREMENTS AND DEVICES OBTAINED THEREOF - An atomic force microscopy probe configuration and a method for manufacturing the same are disclosed. In one aspect, the probe configuration includes a cantilever, and a planar tip attached to the cantilever. The cantilever only partially overlaps the planar tip, and extends along a longitudinal direction thereof. The planar tip is of a two-dimensional geometry having at least one corner remote from the cantilever, which corner during use contacts a surface to be scanned. | 12-17-2009 |
20090320167 | MECHANICAL VIBRATOR AND PRODUCTION METHOD THEREFOR - A mechanical oscillator which defines a starting point of a cantilever at a front edge of a base and can determine the length of the cantilever without depending on an alignment accuracy and an etching amount, and a fabrication method of the mechanical oscillator. The mechanical oscillator, produced by processing a wafer, comprises a base ( | 12-24-2009 |
20100043107 | Multiple Frequency Atomic Force Microscopy - An apparatus and technique for extracting information carried in higher eigenmodes or harmonics of an oscillating cantilever or other oscillating sensors in atomic force microscopy and related MEMs work is described. | 02-18-2010 |
20100077515 | Microchannel forming method and nanotipped dispensing device having a microchannel - A method of forming a microchannel as well as a thin film structure including same is made by forming a first thin film on a side of a substrate, forming a fugitive second thin film on the first thin film such that the second thin film defines a precursor of the elongated microchannel and a plurality of extensions connected to and extending transversely relative to the precursor along a length thereof A third thin film is formed on the first thin film and the fugitive second thin film such that the second thin film resides between the first thin film and the third thin film. A respective access site is formed in a region of the third thin film residing on a respective extension and penetrating to the fugitive second thin film. The fugitive second thin film forming the precursor is selectively removed from between the first thin film and the third thin film using an etching medium introduced through the access sites, thereby forming the microchannel between the first thin film and the third thin film. The method preferably further includes forming a sealing layer on the third thin film in a manner to close off open access sites remaining after selective removal of the second thin film. | 03-25-2010 |
20100154087 | METHOD FOR GROWING A CARBON NANOTUBE ON A NANOMETRIC TIP - The invention relates to a method for the catalytic growth of carbon nanotubes on nanometric tips by chemical vapour deposition assisted by a hot filament, that comprises a first step of applying a preliminary dual-layer coating of cobalt and titanium on said tip, the titanium layer having a thickness of between 0.1 nm and 0.2 nm and cobalt layer having a thickness of between 0.3 nm and 2 nm. | 06-17-2010 |
20100205698 | ATOMIC FORCE MICROSCOPY PROBE - A probe for atomic force microscopy (SM) comprising a micromechanical resonator (RMM) and a tip for atomic force microscopy (P | 08-12-2010 |
20100229264 | Large area, homogeneous array fabrication including controlled tip loading vapor deposition - Improved methods for loading arrays of tips with a material for subsequent deposition of the material from the tip to the substrate. Tip loading can be done by controlled vapor deposition which reduces the amount of non-specific material deposition onto a substrate. Improved nanoscale and microscale engineering and lithography can be achieved. Applications include better cellular studies including stem cell studies and stem cell differentiation control. | 09-09-2010 |
20100251439 | Large area, homogeneous array fabrication including leveling with use of bright spots - Better leveling procedures for patterning at the small scale including the nanoscale. A method comprising: providing at least one array of cantilevers comprising tips thereon, wherein the cantilevers comprise at least one relatively bright spot, or at least two relatively bright spots, near the tip upon viewing, providing a substrate, leveling the array and the substrate with respect to each other, wherein the relatively bright spot near the tip is viewed to determine a contact of the tip and substrate. | 09-30-2010 |
20110041224 | ATOMIC FORCE MICROSCOPE INCLUDING ACCELEROMETER - A microcantilever used in Atomic Force Microscopy (AFM) includes an elongated cantilevered body with a probe tip placed preferably near its free end and preferably along the cantilever's axis. Some embodiments of the present invention integrate into the microcantilever body an embedded or etched paddle that rotates rigidly about an axis parallel to that of the cantilever with hinges that connect the paddle to the cantilever body. In one embodiment the resonance frequency of this paddle resonator is higher than the fundamental resonance of the microcantilever so that the paddle rotation is proportional to the vertical microcantilever acceleration at the hinge location. The motion of the paddle can be detected using radiation irradiating the paddle; the reflected beam is centered onto a four quadrant photodiode as commonly found in AFM. The paddle's vertical motion is detected in the usual way by monitoring the vertical channel in the photodiode while its rotation is monitored from the lateral channel in the photodiode. By monitoring the vertical tip acceleration signal from the paddle rotation, it is possible to resolve the history of tip-sample force during oscillation cycles. A calibration method to convert the measured paddle rotation into vertical probe tip acceleration and instantaneous tip-sample force is also disclosed. | 02-17-2011 |
20110055987 | METHOD TO REDUCE WEDGE EFFECTS IN MOLDED TRIGONAL TIPS - A method of producing sharp tips useful for scanning probe microscopy and related applications is described. The tips are formed by deposition into a mold(s) formed in a sacrificial crystalline semiconductor substrate with an exposed {311} surface which has been etched with a crystallographic etchant to form a 3-sided, trihedral or trigonal pyramidal mold(s) or indentation(s). The resultant tips, when released from the sacrificial mold material or substrate, are typically formed in the shape of a trigonal pyramid or a tetrahedron. Another embodiment involves starting with a {100} surface and the formation of two tips on opposite ends of a wedge at trigonal or trihedral points of the wedge. These tips are less susceptible to the tip wedge effect typical of tips formed using known methods. | 03-03-2011 |
20120011624 | MICRO/NANO DEVICES FABRICATED FROM CU-HF THIN FILMS - An all-metal microdevice or nanodevice such as an atomic force microscope probe is manufactured from a copper-hafnium alloy thin film having an x-ray amorphous microstructure. | 01-12-2012 |
20120090057 | PRODUCTION SCALE FABRICATION METHOD FOR HIGH RESOLUTION AFM TIPS - A method of fabricating high resolution atomic force microscopy (AFM) tips including a single semiconductor nanowire grown at an apex of a semiconductor pyramid of each AFM tip is provided. The semiconductor nanowire that is grown has a controllable diameter and a high aspect ratio, without significant tapering from the tip of the semiconductor nanowire to its base. The method includes providing an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of said semiconductor cantilever. The semiconductor pyramid has an apex. A patterned oxide layer is formed on the AFM probe. The patterned oxide layer has an opening that exposes the apex of the semiconductor pyramid. A single semiconductor nanowire is grown on the exposed apex of the semiconductor pyramid utilizing a non-oxidized Al seed material as a catalyst for nanowire growth. | 04-12-2012 |
20120096602 | APPARATUS AND METHOD FOR THE FUNCTIONALISATION OF AFM TIPS - The present invention includes an apparatus that holds the probes to a solid support throughout the passages of the functionalisation process, thus avoiding user-dependent breakage or damage of the fragile AFM cantilevers. The apparatus allows the tips of the AFM probes to be placed face-down, which avoids the deposition of contaminants on their functional side. The device also allows functionalising the tips with small liquid volumes and cleaning. The present invention includes a functionalisation process preventing non-specific adsorption of molecules on the tip. | 04-19-2012 |
20120331593 | PRODUCTION SCALE FABRICATION METHOD FOR HIGH RESOLUTION AFM TIPS - A method of fabricating high resolution atomic force microscopy (AFM) tips including a single semiconductor nanowire grown at an apex of a semiconductor pyramid of each AFM tip is provided. The semiconductor nanowire that is grown has a controllable diameter and a high aspect ratio, without significant tapering from the tip of the semiconductor nanowire to its base. The method includes providing an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of said semiconductor cantilever. The semiconductor pyramid has an apex. A patterned oxide layer is formed on the AFM probe. The patterned oxide layer has an opening that exposes the apex of the semiconductor pyramid. A single semiconductor nanowire is grown on the exposed apex of the semiconductor pyramid utilizing a non-oxidized Al seed material as a catalyst for nanowire growth. | 12-27-2012 |
20130111637 | MODIFICATION OF ATOMIC FORCE MICROSCOPY TIPS BY DEPOSITION OF NANOPARTICLES WITH AN AGGREGATE SOURCE | 05-02-2013 |
20130227749 | ATOMIC FORCE MICROSCOPE PROBE - An atomic force microscope probe includes a carbon nanotube micro-tip structure. The carbon nanotube micro-tip structure includes an insulating substrate and a patterned carbon nanotube film structure. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined together to form a tip portion protruding and suspending from the edge of the surface of the insulating substrate. The two strip-shaped arms include a number of carbon nanotubes parallel to the surface of the insulating substrate. | 08-29-2013 |
20130276175 | Magnetic Actuation and Thermal Cantilevers for Temperature and Frequency Dependent Atomic Force Microscopy - Described are methods for magnetically actuating microcantilevers and magnetically actuated and self-heated microcantilevers. Also described are methods for determining viscoelastic properties and thermal transition temperatures of materials. | 10-17-2013 |
20130276176 | ATOMIC FORCE MICROSCOPE PROBE, METHOD FOR PREPARING SAME, AND USES THEREOF - An atomic force microscope probe comprising a piezo-electric resonator provided with two electrodes and coated with an insulating layer and a tip attached on the coated resonator and functionalized with at least one group or molecule of interest is disclosed. The disclosed technology also relates to preparation method and to different uses thereof. | 10-17-2013 |
20130283487 | IMAGE FORCE MICROSCOPY OF MOLECULAR RESONANCE - A new method in microscopy is provided which extends the domain of AFM's to nanoscale spectroscopy. Molecular resonance of nanometer features can be detected and imaged purely by mechanical detection of the force gradient between the interaction of the optically driven molecular dipole/multipole and its mirror image in a Platinum coated scanning probe tip. The method is extendable to obtain nanoscale spectroscopic information ranging from infrared to UV and RF. | 10-24-2013 |
20130347147 | Method and Apparatus for Nanomechanical Measurement Using an Atomic Force Microscope - A control-based approach is provided for achieving accurate indentation quantification in broadband and in-liquid nanomechanical property measurements using atomic force microscope (AFM). Accurate indentation measurement is desirable for probe-based material property characterization because the force applied and the indentation generated are the fundamental physical variables that are measured in the characterization process. Large measurement errors, however, occur when the measurement frequency range becomes large (i.e., broadband), or the indentation is measured in liquid on soft materials. Such large measurement errors are generated due to the inability of the conventional method to account for the convolution of the instrument dynamics with the viscoelastic response of the soft sample when the measurement frequency becomes large, and the random-like thermal drift and the distributive hydrodynamic force effects when measuring the indentation in liquid. | 12-26-2013 |
20140007308 | Scanned Probe Microscopy (SPM) Probe Having Angled Tip | 01-02-2014 |
20140007309 | METHOD FOR STAGING CANCER PROGRESSION BY AFM | 01-02-2014 |
20140130213 | INTERFEROMETRIC ATOMIC-FORCE MICROSCOPY DEVICE AND METHOD - A high-bandwidth AFM probe having a diffraction grating characterized by a diffraction characteristic that monotonically changes along the length of the diffraction grating is disclosed. AFM probes in accordance with the present invention are capable of high-sensitivity performance over a broad range of operating conditions, such as operating wavelength and measurement media. A method for estimating at least one physical property of a surface based on high-frequency signal components in the output signal from a high-bandwidth AFM probe is also disclosed. The method enables determination of tip-surface interaction forces based on the relationship between a first motion of the base of the AFM probe and a second motion of the tip of the AFM probe. | 05-08-2014 |
20140130214 | MONOLITHIC INTERFEROMETRIC ATOMIC FORCE MICROSCOPY DEVICE - A fiber-facet AFM probe enabling high-resolution, high sensitivity measurement of a sample surface is presented. AFM probes in accordance with the present invention include an optically resonant cavity that is defined by two mirrors, at least one of which is a photonic-crystal mirror. One of the mirrors is movable and is mechanically coupled with an AFM tip such that a force imparted on the tip by an interaction with the sample surface induces a change in the cavity length of the optically resonant cavity and, therefore, its reflectivity. | 05-08-2014 |
20140173786 | ELECTROCHEMICALLY-GROWN NANOWIRES AND USES THEREOF - Nanowire apparatus and methods of using the same are disclosed. The apparatus include nanowires that are attached to and extend from varying substrates and can be used in the manipulation of cells and/or sensing of cellular and subcellular characteristics. The methods include using the apparatus to sense forces exerted by a single cell or using the apparatus to manipulate one or more cells. | 06-19-2014 |
20140310839 | MECHANICAL DETECTION OF RAMAN RESONANCE - An atomic force microscope based apparatus and method for detecting Raman effect on a sample of interest utilizes first and second electromagnetic sources to emit first electromagnetic radiation of frequency Vi and second electromagnetic radiation of frequency V2 onto a probe tip, which is coupled to a structure that can oscillate the probe tip. The frequency Vi and the frequency v2 are selected to induce Raman effect on a sample engaged by the probe tip that results in Raman force interactions between the probe tip and the sample. Oscillations of the probe tip due to the Raman force interactions are then measured. | 10-16-2014 |
20150362525 | SURFACE FORCE MEASURING METHOD AND SURFACE FORCE MEASURING APPARATUS - The present invention provides a method and an apparatus for measuring a force (which will be referred to as surface force) acting between two material surfaces. A surface force measuring method includes moving an object ( | 12-17-2015 |
20090133169 | Independently-addressable, self-correcting inking for cantilever arrays - An improved method of loading tips and other surfaces with patterning compositions or inks for use in deposition. A method of patterning is described, the method comprising: (i) providing at least one array of tips; (ii) providing a plurality of patterning compositions; (iii) ink jet printing at least some of the patterning compositions onto some of the tips; and (iv) depositing at least some of the patterning compositions onto a substrate surface; wherein the ink jet printing is adapted to prevent substantial cross-contamination of the patterning composition on the tips. Good printing reproducibility and control of printing rate can be achieved. The surfaces subjected to ink jet printing can be treated to encourage localization of the ink at the tip. The method is particularly important for high density arrays. | 05-21-2009 |
20090178166 | Method for microfabricating a probe with integrated handle, cantilever, tip and circuit - A simple method for integrating a circuit onto a probe with a handle, a cantilever and a tip is provided. By fabricating a probe whose surface has recessed patterns of the desirable profile, a circuit can be formed on one part of the handle out over the cantilever and back onto a different part of the handle without employing a circuit lithography step. The circuit material constituting the circuit is deposited orthogonally to the probe surface with a line-of-sight technique. | 07-09-2009 |
20090205092 | METHOD OF FABRICATING A PROBE DEVICE FOR A METROLOGY INSTRUMENT AND A PROBE DEVICE PRODUCED THEREBY - A method of producing a probe device for a metrology instrument such as an AFM includes providing a substrate and forming a tip stock extending upwardly from the substrate. The tip stock is preferably FIB milled to form a tip of the probe device. The tip preferably has a high aspect ratio, with a height that is at least about 1 micron for performing critical dimension (e.g., deep trench) atomic force microscopy. The stock is preferably pedestal shaped having a distal end that is substantially planar which can be machined into a tip in at least less than about 2 minutes. With the preferred embodiments, the FIB milling step can be completed in substantially fewer and less complicated steps than known techniques to produce a high aspect ratio tip suitable for DT-AFM in less than about one minute. | 08-13-2009 |
20090241233 | SPM PROBE WITH SHORTENED CANTILEVER - An SPM probe with an elongated support element and a cantilever projecting beyond the front face of the support element and carrying a scanning tip, with the cantilever arranged at a front face side of the support element of the probe, protruding there from a front face side flank, and with the support element having an essentially trapezoidal cross-section with a longer and a shorter transverse edge at the face side flank, and also with critical corners at one of the transverse edges of the face side flank that are closest to a sample during the scanning process, wherein the support element has an elongated raised portion extending in the longitudinal direction of the support element and of the cantilever, with the raised portion having an essentially trapezoidal cross-section, and with the cantilever arranged on the face side on a narrow transverse edge of the raised portion of the support element, and with the raised portion with the cantilever arranged preferably at the longer transverse edge of the face side flank of the support element, and with the plane extending between the scanning tip and a theoretical straight line passing through one of the critical corners, parallel to the lateral longitudinal edges of the underside of the support element, forming an angle of tilt of at least 5 degrees relative to the transverse edge. | 09-24-2009 |
20090293162 | MONOLITHIC HIGH ASPECT RATIO NANO-SIZE SCANNING PROBE MICROSCOPE (SPM) TIP FORMED BY NANOWIRE GROWTH - A scanning probe where the micromachined pyramid tip is extended by the growth of an epitaxial nanowire from the top portion of the tip is disclosed. A metallic particle, such as gold, may terminate the nanowire to realize an apertureless near-field optical microscope probe. | 11-26-2009 |
20090300807 | Method for providing a probe for a probe-microscopic analysis of a test sample in a probe microscope and arrangement with a probe microscope - The present invention relates to a method for providing a measuring probe ( | 12-03-2009 |
20090313730 | METHOD FOR COST-EFFICIENT MANUFACTURING DIAMOND TIPS FOR ULTRA-HIGH RESOLUTION ELECTRICAL MEASUREMENTS AND DEVICES OBTAINED THEREOF - An atomic force microscopy probe configuration and a method for manufacturing the same are disclosed. In one aspect, the probe configuration includes a cantilever, and a planar tip attached to the cantilever. The cantilever only partially overlaps the planar tip, and extends along a longitudinal direction thereof. The planar tip is of a two-dimensional geometry having at least one corner remote from the cantilever, which corner during use contacts a surface to be scanned. | 12-17-2009 |
20090320167 | MECHANICAL VIBRATOR AND PRODUCTION METHOD THEREFOR - A mechanical oscillator which defines a starting point of a cantilever at a front edge of a base and can determine the length of the cantilever without depending on an alignment accuracy and an etching amount, and a fabrication method of the mechanical oscillator. The mechanical oscillator, produced by processing a wafer, comprises a base ( | 12-24-2009 |
20100043107 | Multiple Frequency Atomic Force Microscopy - An apparatus and technique for extracting information carried in higher eigenmodes or harmonics of an oscillating cantilever or other oscillating sensors in atomic force microscopy and related MEMs work is described. | 02-18-2010 |
20100077515 | Microchannel forming method and nanotipped dispensing device having a microchannel - A method of forming a microchannel as well as a thin film structure including same is made by forming a first thin film on a side of a substrate, forming a fugitive second thin film on the first thin film such that the second thin film defines a precursor of the elongated microchannel and a plurality of extensions connected to and extending transversely relative to the precursor along a length thereof A third thin film is formed on the first thin film and the fugitive second thin film such that the second thin film resides between the first thin film and the third thin film. A respective access site is formed in a region of the third thin film residing on a respective extension and penetrating to the fugitive second thin film. The fugitive second thin film forming the precursor is selectively removed from between the first thin film and the third thin film using an etching medium introduced through the access sites, thereby forming the microchannel between the first thin film and the third thin film. The method preferably further includes forming a sealing layer on the third thin film in a manner to close off open access sites remaining after selective removal of the second thin film. | 03-25-2010 |
20100154087 | METHOD FOR GROWING A CARBON NANOTUBE ON A NANOMETRIC TIP - The invention relates to a method for the catalytic growth of carbon nanotubes on nanometric tips by chemical vapour deposition assisted by a hot filament, that comprises a first step of applying a preliminary dual-layer coating of cobalt and titanium on said tip, the titanium layer having a thickness of between 0.1 nm and 0.2 nm and cobalt layer having a thickness of between 0.3 nm and 2 nm. | 06-17-2010 |
20100205698 | ATOMIC FORCE MICROSCOPY PROBE - A probe for atomic force microscopy (SM) comprising a micromechanical resonator (RMM) and a tip for atomic force microscopy (P | 08-12-2010 |
20100229264 | Large area, homogeneous array fabrication including controlled tip loading vapor deposition - Improved methods for loading arrays of tips with a material for subsequent deposition of the material from the tip to the substrate. Tip loading can be done by controlled vapor deposition which reduces the amount of non-specific material deposition onto a substrate. Improved nanoscale and microscale engineering and lithography can be achieved. Applications include better cellular studies including stem cell studies and stem cell differentiation control. | 09-09-2010 |
20100251439 | Large area, homogeneous array fabrication including leveling with use of bright spots - Better leveling procedures for patterning at the small scale including the nanoscale. A method comprising: providing at least one array of cantilevers comprising tips thereon, wherein the cantilevers comprise at least one relatively bright spot, or at least two relatively bright spots, near the tip upon viewing, providing a substrate, leveling the array and the substrate with respect to each other, wherein the relatively bright spot near the tip is viewed to determine a contact of the tip and substrate. | 09-30-2010 |
20110041224 | ATOMIC FORCE MICROSCOPE INCLUDING ACCELEROMETER - A microcantilever used in Atomic Force Microscopy (AFM) includes an elongated cantilevered body with a probe tip placed preferably near its free end and preferably along the cantilever's axis. Some embodiments of the present invention integrate into the microcantilever body an embedded or etched paddle that rotates rigidly about an axis parallel to that of the cantilever with hinges that connect the paddle to the cantilever body. In one embodiment the resonance frequency of this paddle resonator is higher than the fundamental resonance of the microcantilever so that the paddle rotation is proportional to the vertical microcantilever acceleration at the hinge location. The motion of the paddle can be detected using radiation irradiating the paddle; the reflected beam is centered onto a four quadrant photodiode as commonly found in AFM. The paddle's vertical motion is detected in the usual way by monitoring the vertical channel in the photodiode while its rotation is monitored from the lateral channel in the photodiode. By monitoring the vertical tip acceleration signal from the paddle rotation, it is possible to resolve the history of tip-sample force during oscillation cycles. A calibration method to convert the measured paddle rotation into vertical probe tip acceleration and instantaneous tip-sample force is also disclosed. | 02-17-2011 |
20110055987 | METHOD TO REDUCE WEDGE EFFECTS IN MOLDED TRIGONAL TIPS - A method of producing sharp tips useful for scanning probe microscopy and related applications is described. The tips are formed by deposition into a mold(s) formed in a sacrificial crystalline semiconductor substrate with an exposed {311} surface which has been etched with a crystallographic etchant to form a 3-sided, trihedral or trigonal pyramidal mold(s) or indentation(s). The resultant tips, when released from the sacrificial mold material or substrate, are typically formed in the shape of a trigonal pyramid or a tetrahedron. Another embodiment involves starting with a {100} surface and the formation of two tips on opposite ends of a wedge at trigonal or trihedral points of the wedge. These tips are less susceptible to the tip wedge effect typical of tips formed using known methods. | 03-03-2011 |
20120011624 | MICRO/NANO DEVICES FABRICATED FROM CU-HF THIN FILMS - An all-metal microdevice or nanodevice such as an atomic force microscope probe is manufactured from a copper-hafnium alloy thin film having an x-ray amorphous microstructure. | 01-12-2012 |
20120090057 | PRODUCTION SCALE FABRICATION METHOD FOR HIGH RESOLUTION AFM TIPS - A method of fabricating high resolution atomic force microscopy (AFM) tips including a single semiconductor nanowire grown at an apex of a semiconductor pyramid of each AFM tip is provided. The semiconductor nanowire that is grown has a controllable diameter and a high aspect ratio, without significant tapering from the tip of the semiconductor nanowire to its base. The method includes providing an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of said semiconductor cantilever. The semiconductor pyramid has an apex. A patterned oxide layer is formed on the AFM probe. The patterned oxide layer has an opening that exposes the apex of the semiconductor pyramid. A single semiconductor nanowire is grown on the exposed apex of the semiconductor pyramid utilizing a non-oxidized Al seed material as a catalyst for nanowire growth. | 04-12-2012 |
20120096602 | APPARATUS AND METHOD FOR THE FUNCTIONALISATION OF AFM TIPS - The present invention includes an apparatus that holds the probes to a solid support throughout the passages of the functionalisation process, thus avoiding user-dependent breakage or damage of the fragile AFM cantilevers. The apparatus allows the tips of the AFM probes to be placed face-down, which avoids the deposition of contaminants on their functional side. The device also allows functionalising the tips with small liquid volumes and cleaning. The present invention includes a functionalisation process preventing non-specific adsorption of molecules on the tip. | 04-19-2012 |
20120331593 | PRODUCTION SCALE FABRICATION METHOD FOR HIGH RESOLUTION AFM TIPS - A method of fabricating high resolution atomic force microscopy (AFM) tips including a single semiconductor nanowire grown at an apex of a semiconductor pyramid of each AFM tip is provided. The semiconductor nanowire that is grown has a controllable diameter and a high aspect ratio, without significant tapering from the tip of the semiconductor nanowire to its base. The method includes providing an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of said semiconductor cantilever. The semiconductor pyramid has an apex. A patterned oxide layer is formed on the AFM probe. The patterned oxide layer has an opening that exposes the apex of the semiconductor pyramid. A single semiconductor nanowire is grown on the exposed apex of the semiconductor pyramid utilizing a non-oxidized Al seed material as a catalyst for nanowire growth. | 12-27-2012 |
20130111637 | MODIFICATION OF ATOMIC FORCE MICROSCOPY TIPS BY DEPOSITION OF NANOPARTICLES WITH AN AGGREGATE SOURCE | 05-02-2013 |
20130227749 | ATOMIC FORCE MICROSCOPE PROBE - An atomic force microscope probe includes a carbon nanotube micro-tip structure. The carbon nanotube micro-tip structure includes an insulating substrate and a patterned carbon nanotube film structure. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined together to form a tip portion protruding and suspending from the edge of the surface of the insulating substrate. The two strip-shaped arms include a number of carbon nanotubes parallel to the surface of the insulating substrate. | 08-29-2013 |
20130276175 | Magnetic Actuation and Thermal Cantilevers for Temperature and Frequency Dependent Atomic Force Microscopy - Described are methods for magnetically actuating microcantilevers and magnetically actuated and self-heated microcantilevers. Also described are methods for determining viscoelastic properties and thermal transition temperatures of materials. | 10-17-2013 |
20130276176 | ATOMIC FORCE MICROSCOPE PROBE, METHOD FOR PREPARING SAME, AND USES THEREOF - An atomic force microscope probe comprising a piezo-electric resonator provided with two electrodes and coated with an insulating layer and a tip attached on the coated resonator and functionalized with at least one group or molecule of interest is disclosed. The disclosed technology also relates to preparation method and to different uses thereof. | 10-17-2013 |
20130283487 | IMAGE FORCE MICROSCOPY OF MOLECULAR RESONANCE - A new method in microscopy is provided which extends the domain of AFM's to nanoscale spectroscopy. Molecular resonance of nanometer features can be detected and imaged purely by mechanical detection of the force gradient between the interaction of the optically driven molecular dipole/multipole and its mirror image in a Platinum coated scanning probe tip. The method is extendable to obtain nanoscale spectroscopic information ranging from infrared to UV and RF. | 10-24-2013 |
20130347147 | Method and Apparatus for Nanomechanical Measurement Using an Atomic Force Microscope - A control-based approach is provided for achieving accurate indentation quantification in broadband and in-liquid nanomechanical property measurements using atomic force microscope (AFM). Accurate indentation measurement is desirable for probe-based material property characterization because the force applied and the indentation generated are the fundamental physical variables that are measured in the characterization process. Large measurement errors, however, occur when the measurement frequency range becomes large (i.e., broadband), or the indentation is measured in liquid on soft materials. Such large measurement errors are generated due to the inability of the conventional method to account for the convolution of the instrument dynamics with the viscoelastic response of the soft sample when the measurement frequency becomes large, and the random-like thermal drift and the distributive hydrodynamic force effects when measuring the indentation in liquid. | 12-26-2013 |
20140007308 | Scanned Probe Microscopy (SPM) Probe Having Angled Tip | 01-02-2014 |
20140007309 | METHOD FOR STAGING CANCER PROGRESSION BY AFM | 01-02-2014 |
20140130213 | INTERFEROMETRIC ATOMIC-FORCE MICROSCOPY DEVICE AND METHOD - A high-bandwidth AFM probe having a diffraction grating characterized by a diffraction characteristic that monotonically changes along the length of the diffraction grating is disclosed. AFM probes in accordance with the present invention are capable of high-sensitivity performance over a broad range of operating conditions, such as operating wavelength and measurement media. A method for estimating at least one physical property of a surface based on high-frequency signal components in the output signal from a high-bandwidth AFM probe is also disclosed. The method enables determination of tip-surface interaction forces based on the relationship between a first motion of the base of the AFM probe and a second motion of the tip of the AFM probe. | 05-08-2014 |
20140130214 | MONOLITHIC INTERFEROMETRIC ATOMIC FORCE MICROSCOPY DEVICE - A fiber-facet AFM probe enabling high-resolution, high sensitivity measurement of a sample surface is presented. AFM probes in accordance with the present invention include an optically resonant cavity that is defined by two mirrors, at least one of which is a photonic-crystal mirror. One of the mirrors is movable and is mechanically coupled with an AFM tip such that a force imparted on the tip by an interaction with the sample surface induces a change in the cavity length of the optically resonant cavity and, therefore, its reflectivity. | 05-08-2014 |
20140173786 | ELECTROCHEMICALLY-GROWN NANOWIRES AND USES THEREOF - Nanowire apparatus and methods of using the same are disclosed. The apparatus include nanowires that are attached to and extend from varying substrates and can be used in the manipulation of cells and/or sensing of cellular and subcellular characteristics. The methods include using the apparatus to sense forces exerted by a single cell or using the apparatus to manipulate one or more cells. | 06-19-2014 |
20140310839 | MECHANICAL DETECTION OF RAMAN RESONANCE - An atomic force microscope based apparatus and method for detecting Raman effect on a sample of interest utilizes first and second electromagnetic sources to emit first electromagnetic radiation of frequency Vi and second electromagnetic radiation of frequency V2 onto a probe tip, which is coupled to a structure that can oscillate the probe tip. The frequency Vi and the frequency v2 are selected to induce Raman effect on a sample engaged by the probe tip that results in Raman force interactions between the probe tip and the sample. Oscillations of the probe tip due to the Raman force interactions are then measured. | 10-16-2014 |
20150362525 | SURFACE FORCE MEASURING METHOD AND SURFACE FORCE MEASURING APPARATUS - The present invention provides a method and an apparatus for measuring a force (which will be referred to as surface force) acting between two material surfaces. A surface force measuring method includes moving an object ( | 12-17-2015 |
850041000 | Conductive probes (EPO) | 5 |
20090249522 | SYSTEM AND METHODS FOR CONTROLLING PROPERTIES OF NANOJUNCTION DEVICES - An exemplary, highly integrated, SPM-based system for measuring the conductivity and/or force of substance under programmable engaging/stretching processes is described. A sample bias is applied across two electrodes. A substance to be measured is sandwiched between them. A first electrode is first brought relative to a second electrode (engaging) in programmable pathways that can be described as stretching distance versus time curves. The process of engaging the electrodes continues until a certain current reached, a certain force reached and whichever case happens first. The electrodes are then separated (stretching) in programmable pathways that can be described as stretching distance versus time curves. A periodic modulation can be applied to the engaging/stretching process to realize different stretch pathways. The sample bias across the electrodes is kept constant or swept in a programmable shape over time, described as a voltage-versus time curve. The conductivity, engaging/stretching distance, and/or force are measured simultaneously. | 10-01-2009 |
20100077516 | PLATINUM SILICIDE TIP APICES FOR PROBE-BASED TECHNOLOGIES - Tips including a platinum silicide at an apex of a single crystal silicon tip are provided herein. Also, techniques for creating a tip are provided. The techniques include depositing an amount of platinum (Pt) on a single crystal silicon tip, annealing the platinum and single crystal silicon tip to form a platinum silicide, and selectively etching the platinum with respect to the formed platinum silicide. | 03-25-2010 |
20120192319 | Fabrication of a microcantilever microwave probe - A microwave probe having a metal tip on the free end of a microcantilever. In one embodiment, a pyramidal pit is isotropically etched in a device wafer of monocrystalline silicon. Oxidation may sharpen the pit. Deposited metal forms the metal tip in the pit and a bottom shield. Other metal sandwiched between equally thick dielectric layers contact the tip and form a conduction path along the cantilever for the probe and detected signals. Further metal forms a top shield overlying the conduction path and the dielectrically isolated tip and having equal thickness to the bottom shield, thus producing together with the symmetric dielectric layers a balanced structure with reduced thermal bending. The device wafer is bonded to a handle wafer. The handle is formed and remaining silicon of the device wafer is removed to release the cantilever. | 07-26-2012 |
20130019351 | PRODUCTION SCALE FABRICATION METHOD FOR HIGH RESOLUTION AFM TIPS - A high resolution AFM tip is provided which includes an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of the semiconductor cantilever, the semiconductor pyramid having an apex. The AFM tip also includes a single Al-doped semiconductor nanowire on the exposed apex of the semiconductor pyramid, wherein the single Al-doped semiconductor nanowire is epitaxial with respect to the apex of the semiconductor pyramid. | 01-17-2013 |
20160033550 | CONDUCTIVE ATOMIC FORCE MICROSCOPE AND METHOD OF OPERATING THE SAME - A conductive atomic force microscope including a plurality of probe structures each including a probe and a cantilever connected thereto, a power supplier applying a bias voltage, a current detector detecting a first current flowing between a sample object and each of the probes and a second current flowing between a measurement object and each of the probes, and calculating representative currents for the sample and measurement objects based on the first and second currents, respectively, and a controller calculating a ratio between representative currents of the sample object measured by each of the probe structures, calculating a scaling factor for scaling the representative current with respect to the measurement object measured by each of the probes, and determine a reproducible current measurement value based on the second measurement current and the scaling factor may be provided. | 02-04-2016 |
20090249522 | SYSTEM AND METHODS FOR CONTROLLING PROPERTIES OF NANOJUNCTION DEVICES - An exemplary, highly integrated, SPM-based system for measuring the conductivity and/or force of substance under programmable engaging/stretching processes is described. A sample bias is applied across two electrodes. A substance to be measured is sandwiched between them. A first electrode is first brought relative to a second electrode (engaging) in programmable pathways that can be described as stretching distance versus time curves. The process of engaging the electrodes continues until a certain current reached, a certain force reached and whichever case happens first. The electrodes are then separated (stretching) in programmable pathways that can be described as stretching distance versus time curves. A periodic modulation can be applied to the engaging/stretching process to realize different stretch pathways. The sample bias across the electrodes is kept constant or swept in a programmable shape over time, described as a voltage-versus time curve. The conductivity, engaging/stretching distance, and/or force are measured simultaneously. | 10-01-2009 |
20100077516 | PLATINUM SILICIDE TIP APICES FOR PROBE-BASED TECHNOLOGIES - Tips including a platinum silicide at an apex of a single crystal silicon tip are provided herein. Also, techniques for creating a tip are provided. The techniques include depositing an amount of platinum (Pt) on a single crystal silicon tip, annealing the platinum and single crystal silicon tip to form a platinum silicide, and selectively etching the platinum with respect to the formed platinum silicide. | 03-25-2010 |
20120192319 | Fabrication of a microcantilever microwave probe - A microwave probe having a metal tip on the free end of a microcantilever. In one embodiment, a pyramidal pit is isotropically etched in a device wafer of monocrystalline silicon. Oxidation may sharpen the pit. Deposited metal forms the metal tip in the pit and a bottom shield. Other metal sandwiched between equally thick dielectric layers contact the tip and form a conduction path along the cantilever for the probe and detected signals. Further metal forms a top shield overlying the conduction path and the dielectrically isolated tip and having equal thickness to the bottom shield, thus producing together with the symmetric dielectric layers a balanced structure with reduced thermal bending. The device wafer is bonded to a handle wafer. The handle is formed and remaining silicon of the device wafer is removed to release the cantilever. | 07-26-2012 |
20130019351 | PRODUCTION SCALE FABRICATION METHOD FOR HIGH RESOLUTION AFM TIPS - A high resolution AFM tip is provided which includes an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of the semiconductor cantilever, the semiconductor pyramid having an apex. The AFM tip also includes a single Al-doped semiconductor nanowire on the exposed apex of the semiconductor pyramid, wherein the single Al-doped semiconductor nanowire is epitaxial with respect to the apex of the semiconductor pyramid. | 01-17-2013 |
20160033550 | CONDUCTIVE ATOMIC FORCE MICROSCOPE AND METHOD OF OPERATING THE SAME - A conductive atomic force microscope including a plurality of probe structures each including a probe and a cantilever connected thereto, a power supplier applying a bias voltage, a current detector detecting a first current flowing between a sample object and each of the probes and a second current flowing between a measurement object and each of the probes, and calculating representative currents for the sample and measurement objects based on the first and second currents, respectively, and a controller calculating a ratio between representative currents of the sample object measured by each of the probe structures, calculating a scaling factor for scaling the representative current with respect to the measurement object measured by each of the probes, and determine a reproducible current measurement value based on the second measurement current and the scaling factor may be provided. | 02-04-2016 |
850042000 | Functionalization (EPO) | 1 |
20100058500 | NANOSTRUCTURE ON A PROBE TIP - Techniques for forming a nanostructure on a probe tip are provided. | 03-04-2010 |
20100058500 | NANOSTRUCTURE ON A PROBE TIP - Techniques for forming a nanostructure on a probe tip are provided. | 03-04-2010 |