Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Multifocal

Subclass of:

351 - Optics: eye examining, vision testing and correcting

351041000 - SPECTACLES AND EYEGLASSES

351159010 - Ophthalmic lenses

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
351159410 Multifocal 83
20130027659SPECTACLE LENSES AND METHOD OF MAKING SAME - A method of making a pair of spectacle lenses which may reduce induced binocular vision distortions where wearer and frame metrics and a lens class are inputted into a computer program, and the computer program determines the left and right lens front curve radius in which there is a substantially linear relationship between the rate of change of lateral vergence and degree of ocular rotation and then adjusts the left and right lens front curve radius and the left and right lens centre thickness such that the lateral inter-ocular static magnification target value is between about −3% and about +3% in the lateral plane and the stimulus to near vergence is within the wearer's vergence limits. The computer program then determines a left and right lens index of refraction and a left and right lens material and the generated lens parameters are then used to machine the spectacle lenses.01-31-2013
20130229617VARIABLE FOCUS SPECTACLES WITH BIPOLAR LENS UNITS AND FRONT MASKING LENSES - Variable focus spectacles including bipolar variable focus lens units and a front masking lens disposed in front of each variable focus lens unit. Each bipolar variable focus lens unit has a transparent rigid member, a transparent distensible membrane, a membrane support on which the membrane is mounted, a transparent liquid of a fixed volume filling in a sealed space between the rigid member and the membrane, and is connected to a bidirectional actuating mechanism for urging the membrane support and the rigid member to move toward and away from each other. Each front masking lens may have any suitable shape so long as its front surface is convex and reflections off that front surface typically dominate reflections off the underlying distensible membrane.09-05-2013
20130293834CONTACT LENS FOR MYOPIA CONTROL - This invention provides a contact lens for myopia control comprising: an object-side surface comprising a central zone, a transition zone and a peripheral zone which are concentric and have different refractive power, at least one of the three zones being aspheric; and an image-side surface; wherein the central zone provides correction power to focus a foveal image on the retina, the peripheral zone provides a myopic defocus effect by generating a para-fovea image in front of the retina, and the transition zone with one or more focuses provides a refractive power in diopter (D) ranging from +0.25 D to +8.00 D.11-07-2013
20140016087Fluid Lenses, Lens Blanks, and Methods of Manufacturing the Same - A lens blank for a fluid lens includes a rigid lens and a semi-flexible inflatable membrane attached to the rigid lens. The lens blank is divided into a cavity zone and a bonded zone. The cavity zone extends radially outward from a central area of the lens blank and a cavity is formed between the membrane and the rigid lens within the cavity zone. The bonded zone extends radially outward from the cavity zone and the membrane is bonded and fluidly sealed to the rigid lens throughout the bonded zone. The bonded zone is dimensioned to be trimmed to accommodate a plurality of frame shapes and sizes. Methods of manufacturing lens blanks are also provided. Arrays of lens blanks and fluid lenses are also provided.01-16-2014
20140104563Lenses, Devices, Methods and Systems for Refractive Error - The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.04-17-2014
20140347623VIEWER WITH MULTIFOCAL LENS AND METHOD FOR CHANGING FOCAL LENGTH OF VIEWER - A viewer includes a multifocal lens capable of setting one of a plurality of focal lengths. When a measuring section detects a change in gazing point distance, a selection section selects a focal length to be set among the plurality of focal lengths, and a determiner determines a time duration before a focal length of the multifocal lens is changed. A controller changes the focal length of the multifocal lens when a detector detects a blink or saccadic eye movement of the user before the determined time duration elapses.11-27-2014
20140362340NON-PROGRESSIVE CORRIDOR BI-FOCAL LENS WITH SUBSTANTIALLY TANGENT BOUNDARY OF NEAR AND DISTANT VISUAL FIELDS - An axially symmetric, bifocal, non-progressive ophthalmic lens which, in a smooth pathway between a distant vision field and a near vision field, has no perceptible progression of power, dividing line, image jump, nor other optical distortion.12-11-2014
351159420 Progressive 56
20120113387Progressive Power Lens and Progressive Power Lens Design Method - A progressive power lens including a distance portion for visual recognition of a far working distance, a near portion for visual recognition of a near working distance, and an intermediate portion provided between the distance portion and the near portion, the intermediate portion including a position of an amount of intermediate inset in which a visual line when the intermediate working distance is visually recognized passes an eyeball side surface of the progressive power lens, and addition at intermediate position for viewing an intermediate working distance smaller than the far working distance and larger than the near working distance being set to the position of the amount of intermediate inset.05-10-2012
20120176583Single Vision Ophthalmic Lens - An ophthalmic lens (07-12-2012
20120200822PROGRESSIVE-POWER LENS - An eye-side refractive surface 08-09-2012
20120218510Progressive-Power Lens and Progressive-Power Lens Design Method - A progressive-power lens includes an eyeball-side surface including a distance portion and a near portion having different values of dioptric power. An intermediate portion connects the distance portion and the near portion to each other. An object-side surface of the progressive-power lens includes a first region extending along a principal meridian and having a spherical shape having first curvature, a second region facing the distance portion and having a spherical shape having second curvature equal to the first curvature, and a third region located outside the first region and below the second region and having third curvature greater than the first curvature.08-30-2012
20120229755Progressive-Power Lens - A progressive-power lens has one surface which satisfies the following expressions09-13-2012
20120229756Progressive-Power Lens - A progressive-power lens has one surface which satisifies the following expressions09-13-2012
20120229757Progressive-Power Lens and Progressive-Power Lens Design Method - A progressive-power lens having an eyeball-side surface including a distance portion and a near portion having different values of dioptric power and an intermediate portion that connects the distance portion and the near portion to each other, and an object-side surface including a spherical first region having a first curvature and extending along a principal meridian, a spherical second region having a second curvature equal to the first curvature and facing the distance portion, and a third region located outside the first region and below the second region and having a third curvature smaller than the first curvature.09-13-2012
20120236255ADHESIVE SYSTEM FOR A LAMINATED LENS AND METHOD FOR APPLYING SAME - A method for laminating a functional film on to an optical base element and a tri-layer adhesive system for use in the method. The tri-layer adhesive includes a first latex adhesive layer disposed on the functional film and a second latex adhesive layer disposed on the optical base element. An HMA layer is disposed in between the latex layers to form a tri-layer adhesive to permanently retain the functionalized film on the optical base element. The method includes first coating a latex adhesive on the functional film and second coating a latex adhesive on the optical base element. An HMA is then coated on to one of the dried latex adhesive layers. The film is hot pressed on to the optical base element with the HMA sandwiched in between the latex layers to form a laminated optical device.09-20-2012
20120257161OPHTHALMIC LENS ELEMENT - A progressive ophthalmic lens element is disclosed. The progressive ophthalmic lens element includes an upper viewing zone, a lower viewing zone, a corridor, and a peripheral region disposed on each side of the lower viewing zone. The upper viewing zone includes a distance reference point (DRP) and a fitting cross, and provides a first refractive power for distance vision. The lower viewing zone, which is for near vision, provides an addition power relative to the first refractive power. The corridor connects the upper and lower zones and provides a refractive power varying from that of the upper viewing zone to that of the lower viewing zone. Each peripheral region includes a zone of positive power relative to the addition power which provides therein a positive refractive power relative to the refractive power of the lower viewing zone. The zones of relative positive power are disposed immediately adjacent to the lower viewing zone such that the lower viewing zone interposes the zones of relative positive power.10-11-2012
20120274893Spectacle Lens, Spectacle Lens Design Method, and Design Apparatus - A spectacle lens includes a first region which is located in at least part of a portion of a lens where a pivotal angle of an eyeball of a wearer ranges from 20 to 60 degrees and in which correcting astigmatism has priority over correcting average power based on prescribed power, and a second region which is formed inside the first region and in which correcting the average power has priority over correcting the astigmatism.11-01-2012
20130003014Refractive-Diffractive Multifocal Lens - Aspects of the present invention provide multifocal lenses having one or more multifocal inserts comprising one or more diffractive regions. A diffractive region of a multifocal insert of the present invention can provide a constant optical power or can provide a progression of optical power, or any combination thereof. A multifocal insert of the present invention can be fabricated from any type of material and can be inserted into any type of bulk lens material. A diffractive region of a multifocal insert of the present invention can be positioned to be in optical communication with one or more optical regions of a host lens to provide a combined desired optical power in one or more vision zones. Index matching layers of the present invention can be used to reduce reflection losses at interfaces of the host lens and multifocal insert.01-03-2013
20130038833PROGRESSIVE MULTIFOCAL OPHTHALMIC LENS - The invention relates to a finished or semi-finished lens which comprises: a disc containing all the points of the lens that have the same abscissa and the same ordinate as points located within a circle in the reference plane having a diameter of 30 millimetres and centred on the prism reference point; a progression length of less than 14.5 millimetres; a first specific point having a cylinder value equal to the maximum cylinder value of all the points of the lens located in the nasal area and in the disc; and a second specific point having a cylinder value equal to the maximum cylinder value of all the points of the lens located in the temporal area and in the disc; a first ratio between: the maximum gradient of the cylinder for the points of the lens that have the same abscissa and the same ordinate as the points located on segments connecting the mounting cross to the first and second specific points, and surface addition of less than 0.095 per millimetre; and a second ratio between: the maximum cylinder value of the first and second specific points, and surface addition of no more than 0.85. The invention enhances the comfort of the wearer.02-14-2013
20130057825Progressive-Power Lens Selector, Progressive Power Lens Selection Method, and Non-Transitory Computer Readable Storage Medium Storing A Progressive-Power Lens Selection Program - An accommodation ability acquisition unit, a near vision prescription range acquisition unit, a lens database storing design parameters of progressive-power lenses in response to addition power with respect to each of plural types, an accommodation ability computation unit computing used accommodation ability for near vision, a necessary addition power computation unit computing necessary addition power for near vision, a range computation unit computing the maximum distance ranges and the maximum near ranges when lenses are worn based on the necessary addition power in lenses selected as lenses having design elements of a set condition equal to or more than the necessary addition power of the plural types stored in the lens database, and an output control unit allowing a display device to display the maximum distance ranges and the maximum near ranges with respect to the lenses of the design types selected by a selecting unit in juxtaposition are provided.03-07-2013
20130083288Optical Lens, Method for Designing Optical Lens, and Apparatus for Manufacturing Optical Lens - optical lens including, an object-side surface including an atoric surface element and an eyeball-side surface including an element that cancels a surface power shift produced by the atoric surface element, wherein the atoric surface element causes horizontal surface power at a fitting point to be greater than vertical surface power at the fitting point and causes a difference between the horizontal surface power and the vertical surface power to decrease along a horizontal reference line passing through the fitting point in a direction from the fitting point toward a periphery of the optical lens or causes a sign of the difference between the horizontal surface power and the vertical surface power to change along the horizontal reference line.04-04-2013
20130100398PROGRESSIVE ADDITION LENS - A progressive addition lens device is disclosed. The device comprises a lens body formed with a progressive power surface having a temporal part and a nasal part. The surface is characterized by an optical power map having a plurality of contours corresponding to transitions between optical powers across the surface, wherein at least 70% of the contours are substantially monotonic at the temporal part.04-25-2013
20130114040Procedure for designing a progressive ophthalmic lens and corresponding lens - Procedure for designing a progressive ophthalmic lens and corresponding lens. Procedure for designing a progressive ophthalmic lens, comprising a top area (05-09-2013
20130141691PROGRESSIVE READING AND INTERMEDIATE DISTANCE LENS DEFINED BY EMPLOYMENT OF A ZERNIKE EXPANSION - There is provided a lens that includes a corridor having a width greater than or equal to about 6 millimeters. The lens has astigmatism less than or equal to about 0.5 diopter within the corridor. There is also provided an item of eyewear that includes such a lens, and a method for representing a surface of an ophthalmic lens.06-06-2013
20130148078PROGRESSIVE MULTIFOCAL OPHTHALMIC LENS - The invention relates to a lens having certain properties, including: a circle grouping together all the points of the lens having the same abscissa and the same ordinate as points located on a circle in the reference plane, having a diameter of 35 millimetres and centred on a point located 8.5 millimetres below the mounting cross and horizontally offset on the nasal side by 1.25 millimetres; a disc grouping together all the points of the lens having the same abscissa and the same ordinate as points located inside said circle; a progression length of less than 14.5 millimetres; a ratio difference between the value of the cylinder and the surface addition of less than 0.2 as an absolute value for every pair of points of the lens that are symmetrical relative to the mounting cross and have the same ordinate as the mounting cross, and an abscissa with an absolute value of less than 20 millimetres; a first ratio between: the maximum cylinder value for all the points of the circle; and the surface addition of less than 0.7; and a second ratio between: the maximum cylinder value for all the points of the disc; and the surface addition of no more than 1.05. The invention is suitable for improving the comfort of the wearer.06-13-2013
20130215379METHOD FOR SELECTING PROGRESSIVE OPHTHALMIC LENSES - The disclosure relates to a method for selecting progressive ophthalmic lenses for a given frame and wearer, the progressive ophthalmic lenses having one area for distance vision and one area for near vision, said given frame having two recesses suitable for receiving a progressive ophthalmic lens, respectively, said two recesses defining a recess midplane. The method includes the following steps: a) fitting said wearer with said given frame; b) determining the position of a first point of intersection between a first direction of the gaze of said wearer in a distance vision posture and said recess midplane; c) determining the position of a second point of intersection between the gaze of said wearer in a near vision posture and said recess midplane; d) assessing the distance between said intersection points; and, e) selecting progressive ophthalmic lenses in which the progression length corresponds to said distance assessed between said intersection points.08-22-2013
20130235336EYEGLASS LENS AND DESIGN METHOD, MANUFACTURING METHOD AND DESIGN SYSTEM FOR EYEGLASS LENS - An eyeglass lens, comprising: a hidden mark defining a predetermined reference point; and refractive portions arranged along a meridian extending substantially in a vertical direction via the predetermined reference point, and wherein the refractive portions comprises: a first refractive portion located on a lower side of the predetermined reference point and having a first refractive power; a second refractive portion located on an upper side of the predetermined reference point and having a second refractive power smaller than the first refractive power; and an intermediate refractive portion in which refractive power continuously decreases, and an aberration distribution in the first refractive portion is substantially symmetrical in a left and right direction with respect to the meridian extending in the vertical direction, and an aberration distribution in the second refractive portion is asymmetrical in the left and right direction with respect to the meridian shifted to an ear side.09-12-2013
20130235337METHOD FOR DETERMINING A BASE SYSTEM OF DIFFRACTION GRATINGS FOR COLOR FRINGE CORRECTION OF SPECTACLE LENSES - A method for producing a series of base lenses, which cover a predetermined power range, wherein each base lens of the series has a base power different from the base powers of the other base lenses of the series, and has at least one diffractive base grating, the method comprising: 09-12-2013
20130321762Progressive Addition Lens Design - Aspects of the present invention provide progressive addition lenses (PALs) and techniques for designing PALs that result in improved visual performance for the wearer, PALs of the present invention can have vision zones with widths that are more in line with the actual. or functional sizes used by wearers. PALs of the present invention can also introduce controlled amounts of unwanted astigmatism into one or more vision zones. By allowing vision zones to include manageable levels of astigmatism, the resulting PAL can avoid the harsh build-up of astigmatism typically found in conventional PALs at the periphery of the channel and viewing zones. Further, PALs of the present invention can be designed using a merit function to achieve an optimized iterative design that accounts for astigmatism vector orientation and not simply astigmatism magnitude as is the case with conventional PAL design.12-05-2013
20130335699METHOD FOR DETERMINING A PROGRESSIVE OPHTHALMIC LENS - Method for determining a progressive ophthalmic lens wherein: 12-19-2013
20140016088PROGRESSIVE OPHTHALMIC LENS - Disclosed is a progressive ophthalmic lens including a front surface and a rear surface, each surface having in each point an altitude, a mean sphere value and a cylinder value, the front surface of the lens including: —a far vision zone having a far vision reference point; —a near vision zone having a near vision reference point; —a main meridian, wherein the front surface is regressive and has: —a sphere gradient normalized value of less than 7.50·1001-16-2014
20140055742SPECTACLE LENS - A progressive power lens 02-27-2014
20140111763METHOD OF TREATING MYOPIA PROGRESSIONS - A method is provided for addressing myopia progression or inclination to myopia in which the influence of accommodative lag stress on myopia is reduced or eliminated to counter eye axial length growth. User depth of focus is increased to relieve stress from overall accommodative effort and stress from accommodation and accommodative lag to retard myopia progression and enable continuous and long tem treatment by the user.04-24-2014
20140132916Refractive-Diffractive Multifocal Lens - Aspects of the present invention provide multifocal lenses having one or more multifocal inserts comprising one or more diffractive regions. A diffractive region of a multifocal insert of the present invention can provide a constant optical power or can provide a progression of optical power, or any combination thereof. A multifocal insert of the present invention can be fabricated from any type of material and can be inserted into any type of bulk lens material. A diffractive region of a multifocal insert of the present invention can be positioned to be in optical communication with one or more optical regions of a host lens to provide a combined desired optical power in one or more vision zones. Index matching layers of the preset invention can be used to reduce reflection losses at interfaces of the host lens and multifocal insert.05-15-2014
20140146283PROGRESSIVE POWER LENS AND DESIGN METHOD FOR THE PROGRESSIVE POWER LENS - A progressive power lens including a far vision part and a near vision part (wherein an average power of a far vision measurement reference point is minus) including: an object side surface including a first element, and an eyeball side surface including a second element cancelling the first element. The first element includes an element of a tonic surface or an element of an atoric surface by which horizontal surface power is larger than vertical surface power at a fitting point positioned at a lower end of the far vision part. The far vision part includes an element by which the vertical surface power in a first coordinate of a principal sight line intersecting the fitting point is smaller than the vertical surface power in a second coordinate of the principal sight line whose distance from the fitting point surpasses the distance between the first coordinate and the fitting point.05-29-2014
20140146284PRESBYOPIC TREATMENT SYSTEM - A method and system for treating Presbyopia and pre-Presbyopia are provided that do not compromise the wearer's intermediate or distance vision. The system is a lens and a lens series, wherein the power profiles of the lenses are tailored to provide an amount of positive ADD power in the near vision zone that is slightly less than that which is normally required for near vision accommodation, while also providing an amount of negative spherical aberration in the peripheral optical zone. The dynamic ocular factors of the wearer's eye work in conjunction with the positive ADD power provided by the central optical zone and with the effective ADD gained from the negative spherical aberration provided by the peripheral optical zone to induce a minimally discernible amount of blur that is tuned to maximize the wearer's depth of focus.05-29-2014
20140160426Opthalmic Lens With Regressive And Non-Regressive Rotationally Symmetric Optical Design Elements - Aspects of the present invention provide an ophthalmic lens comprising at least one regressive and at least one non-regressive rotationally symmetric optical design element. The regressive and non-regressive optical design elements can be combined so as to form a desired optical power profile for the lens while simultaneously exploiting the different relative orientation of the astigmatic vectors of the constituent regressive and non-regressive design elements, thereby resulting in reduced unwanted astigmatism. The regressive and non-regressive rotationally symmetric optical design elements can be positioned on different lens surfaces and in optical communication or can be collapsed onto the same lens surface. The regressive and non-regressive rotationally symmetric optical design elements can each contribute to the total add power of an ophthalmic lens. The regressive and non-regressive rotationally symmetric optical design elements can be combined with any other optical design feature positioned on the same or a different surface of the lens.06-12-2014
20140176901METHOD FOR DESIGNING AND MACHINING AN OPHTHALMIC LENS, METHOD FOR MANUFACTURING A BEVELLED LENS AND CORRESPONDING LENSES - A central area of a lens is defined with a central perimeter coinciding with a perimeter of a frame, a temporal line divides the central area into a nasal area and a temporal area, a useful perimeter is formed from the nasal area and the temporal line, a useful area is delimited by the useful perimeter, and a prescription is determined for the user. The temporal line is outside a cone with at least a 30° opening, an apex of which is in a center of rotation of a user's eye, which is an optical axis. A lens thickness is optimized according to the thickness of the perimeter of the nasal area. Subsequently a transition area is defined extending between the useful perimeter and an external perimeter of the lens.06-26-2014
20140240662PROGRESSIVE ADDITION LENS - There is provided a progressive addition lens capable of improving both of astigmatism and power error on a peripheral part of a distance area, including a distance area used for a distance vision, and other area different from the distance area, wherein at least one of an eyeball side surface of a wearer and an object side surface in the progressive addition lens is formed into an aspheric form, and when a prescription value T to be obtained from formula “S+C/2” expressed by a prescribed spherical power S and a cylindrical power C, is minus, the area where a power deviation ΔD of a spherical equivalent power D from the prescription value T goes negative, exists on principal sight line in the distance area.08-28-2014
20140247424METHOD FOR OPTIMIZING THE POSTURAL PRISM OF AN OPHTHALMIC LENS - Methods for optimizing postural prism to be added to a pair of ophthalmic multifocal lenses (lenses) adapted to a wearer and to slow down myopia progression are described. The method includes an initial pair of lenses in a providing step S09-04-2014
20140293216Method For Determining An Ophthalmic Lens - The invention relates to a method for determining an ophthalmic lens wherein: a first and a second reference axes (Γ1, Γ2) are determined, the first reference axis being set to a value comprised between [10-02-2014
20140300856METHOD FOR STORING INFORMATION ON A SPECTACLES LENS, SPECTACLES LENS BLANK OR SPECTACLES LENS SEMI-FINISHED PRODUCT - Information is stored in an optical element in the form of a glass or plastic body embodied as spectacles lens, spectacles lens blank or spectacles lens semi-finished product. The information in the form of data is stored on or in the glass or plastic body by creating at least one marking with a marking system. The marking can be read by a reading apparatus. The marking system has an interface for reading information individualizing the optical element. The marking is created permanently by the marking system on or in the optical element at a definition point of a local body-specific coordinate system set by two points on or in the optical element. In this body coordinate system, the manufacturer specifies the position of the lens horizontal and/or the far and/or the near and/or the prism reference point.10-09-2014
20140307223Method For Transforming A Progressive Ophthalmic Surface - The present invention relates to a method for transforming an initial progressive ophthalmic surface which has to be manufactured by a manufacturing method, the transformation method comprising: a step of selecting a manufacturing method intended to be implemented, in which said manufacturing method introduces a reproducible surface defect, a step of selecting a predictive model of said reproducible surface defect, 10-16-2014
20140313475Active System of Vision and Associated Method for Improving Visual Comfort to a Wearer - Ophthalmic lens comprising: a primary zone on a first face; a secondary zone on the first face between said primary zone and the peripheral edge of the lens; first and second regions forming a partition of the secondary zone, which are contiguous and alternate with a pitch. A spectacle eyeglass obtained from said lens produces a first ophthalmic correction in the primary zone and in the first regions, and a second ophthalmic correction in the second regions different from said first ophthalmic correction. An active system of vision comprises an occultation device comprising: a selection device for selecting the wearer's viewing state; an optical occultation system to occult alternatively a first group and a second group according to the wearer's viewing state selected by the selection device, the first group comprising at least the primary zone and the first regions, and the second group comprising at least the second regions.10-23-2014
20140354944Method for Determining a Progressive Opthalmic Lens and a Set of Semi Finished Lens Blanks - A method for determining a progressive ophthalmic lens, comprising determining first, second and third intermediate values of regression as the strongest regression that can be applied on the front surface of the lens while keeping a mean sphere value in at least a portion of the lower part of the rear surface of the lens less or equal to, respectively, first, second and third predetermined values; and determining a value of regression (d) for the front surface as the maximum value among the first, second and third intermediate values of regression.12-04-2014
20150049301METHODS AND LENSES FOR ALLEVIATING ASTHENOPIA - The invention provides methods and lenses for reducing asthenopia related symptoms associated with proprioceptive disparity. In certain aspects, lenses of the invention include a distance portion and a near portion, and a progressive increase in minus power from the distance portion to the near portion. Additionally, lenses of the invention may include a prism and a progressive reduction in optical power, in which the prism and the progressive reduction are varied independently. In one embodiment, a lens is provided that has a base-in prism and that provides an increase in minus power from the distance vision portion of the lens to a near vision portion of the lens (i.e., a progressive reduction).02-19-2015
20150049302SPECTACLE LENS, AND METHOD FOR DESIGNING SPECTACLE LENS, MANUFACTURING METHOD AND MANUFACTURING SYSTEM OF THE SPECTACLE LENS - There is provided a spectacle lens, including: specific first and second reference points, and eye point between the first and second reference points on a meridian, with each point defined on a meridian; and a power variation portion where power is continuously varied from the first reference point to the second reference point, wherein a variation rate of an addition power is substantially zero in a circle of radius 4 mm with the first reference point as a center, and/or in a circle of radius 4 mm with the eye point as a center.02-19-2015
20150055082Progressive Ophthalmic Surface - A progressive lens comprising a progressive ophthalmic surface including a main progression meridian dividing the surface into a nasal portion and a temporal portion and passing through at least one fitting point Py of ordinate Yp in a coordinate system centered on a reference point O(0; 0). For the points located at an ordinate Yp on either side of said fitting point Py, the points of ordinate Yp being contained inside a 50 mm diameter disc centered on the reference point O:02-26-2015
20150055083PROGRESSIVE ADDITION LENS AND METHOD FOR DESIGNING PROGRESSIVE ADDITION LENS - There is provided a progressive addition lens, including: a distance portion and a near portion; an object side surface including a first toric surface element; and an eyeball side surface including a second toric surface element that cancels the first toric surface element, wherein the first toric surface element is the element in which a vertical surface power OVPf02-26-2015
20150077703LENS SET, METHOD OF DESIGNING LENS AND METHOD OF MANUFACTURING LENS - There is provided a progressive addition lens for spectacles including a distance portion and a near portion having different powers, wherein an equivalent spherical power of the distance portion is plus; and a first lens and a second lens having different addition powers from each other, and a difference between vertical surface power in the distance portion and vertical surface power in the near portion on an object-side surface of the first lens, and a difference between vertical surface power in the distance portion and vertical surface power in the near portion on an object-side surface of the second lens are the same.03-19-2015
20150092157Progressive Addition Lens for a Wearer - A progressive addition lens for a wearer, the optical lens having an addition lower by at least 0.5 diopter to the prescribed addition value of the wearer, wherein for a pupil diameter of 4 mm the modulation transfer function is greater or equal to 0.1 when measured for a spatial frequency comprised between 0 and 20 cycles per degree04-02-2015
20150098057Photochromic Polyurethane Laminate - A photochromic polyurethane laminate that is constructed to solve certain manufacturing difficulties involved in the production of plastic photochromic lenses is disclosed. The photochromic laminate includes at least two layers of a resinous material and a photochromic polyurethane layer that is interspersed between the two resinous layers and which contains photochromic compounds. The polyurethane layer is formed by curing a mixture of a solid thermoplastic polyurethane, at least one isocyanate prepolymer, at least one photochromic compound, and a stabilizing system.04-09-2015
20150109575Process For Determining A Pair Of Progressive Ophthalmic Lenses - The visual perception of a lens wearer is not only along the gaze direction, but also has a non-zero transverse extension, which is called perceptual span. Perceptual span is skewed to extend further in the reading direction, i.e., the line portion to be read next relative to the line portion that was just read. A technique is provided that determines a pair of progressive ophthalmic lenses that take such perceptual span into account.04-23-2015
20150146164Ophthalmic Lenses Taking Into Account The Wearer's Handedness - Ophthalmic lenses and spectacles for enhanced experience due to right-handedness or left-handedness.05-28-2015
20150316788OPHTHALMIC OPTICAL LENS FOR VISION CORRECTION HAVING ONE OR MORE AREAS OF MORE POSITIVE POWER - The present disclosure is directed to lens, methods of making, designing lens and/or methods using lens in which performance may be improved by providing one or more steps in the central portion of the optical zone and one or more steps in the peripheral portion of the optic zone. In some embodiments, such lens may be useful for correcting refractive error of an eye and/or for controlling eye growth.11-05-2015
20150316790Progressive Multifocal Ophthalmic Lens - A progressive multifocal ophthalmic lens includes at least three high power segments, at least three low power segments, and a plurality of progressive power segments. Shapes of the high power segments and the low power segments are sectors. The high power segments and the low power segments are disposed alternately along an arc direction of the progressive multifocal ophthalmic lens. Shapes of the progressive power segments are sectors. Two sides of each of the progressive power segments along the arc direction respectively connect one of the high power segments and one of the low power segments. The high power segments, the low power segments, and the progressive power segments form a progressive multifocal surface.11-05-2015
20150331254MULTIFOCAL OPHTHALMIC LENS - A multifocal ophthalmic lens, comprising a far vision (“FV”) area and a near vision (“NV”) area. When a value attained by subtracting the refractive power of said FV area from the refractive power of said NV area is an addition power Add, an average surface power D11-19-2015
20150338682Ophthalmic Lens Having At Least A Stable Zone - Ophthalmic lens having a first surface comprising a zone of optical interest, the zone of optical interest comprising at least: a far vision control point (FV), a near vision control point (NV), a main line (M) starting from one end of the zone of optical interest, ending on the opposite end of the zone of optical interest and passing through the far and near vision control points, wherein the main line (M) comprises at one end a first section (S11-26-2015
20150346515SPECTACLE LENSES - A pair of spectacle lenses includes: a first refractive portion; a second refractive portion whose refractive power is stronger than the first's; and a progressive power portion in which a refractive power changes progressively from the first to the second refractive portion, first refractive powers of a left and right of the lenses being different, progressive power portions lengths of the left and right of the lenses are different and changing rates of additions of the left and right of the lenses are different in accordance with a shift between left and right visual lines so that a difference between addition effects acting on the wearer's eyes is reduced when the left and right visual lines shift with respect to each other depending on the first refractive powers of the left and the right of the lenses being different where the wearer views an object through the lenses.12-03-2015
20150355480PAIR OF PROGRESSIVE OPHTHALMIC LENSES - A pair of progressive ophthalmic lenses (12-10-2015
20150378173PAIR OF PROGRESSIVE OPHTHAMLIC LENSES - A pair of progressive ophthalmic lenses (12-31-2015
20160011436PAIR OF PROGRESSIVE OPHTHALMIC LENSES01-14-2016
20160161764Lenses, Devices, Systems and Methods for Refractive Error - The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.06-09-2016
351159430 Three or more foci 1
20130050640Multifocal Lens - A multifocal lens has a number n>2 of principal powers, of which at least one principal power is refractive and at least one principal power is diffractive. The multifocal lens includes a first lens portion having at least one first annular zone and at least a second lens portion having at least one second annular zone, wherein the zones each have at least one main sub-zone and at least one phase sub-zone. For forming the n principal powers, a maximum of n−1 lens portions are combined, and an averaged refractive power of a zone of the first lens portion is equal to an averaged refractive power of a zone of the second lens portion.02-28-2013
351159440 Having a diffractive portion 11
20120200823Ophthalmic Lens with Multiple Phase Plates - An ophthalmic lens for providing a plurality of foci includes an optic having an anterior surface, a posterior surface, and an optical axis. The ophthalmic lens has a first region and a second region. The first region has a first refractive optical power and includes a first base curvature having a finite radius of curvature and a first phase plate having at least one diffraction order with a diffractive optical power. The first region is configured for forming a first focus and a second focus. The second region has a second refractive optical power and includes a second base curvature having a finite second radius of curvature that is different from the first radius of curvature and a second phase plate having at least one diffraction order with a diffractive optical power.08-09-2012
20120307202DIFFRACTIVE LENS EXHIBITING ENHANCED OPTICAL PERFORMANCE - The present invention provides improved ophthalmic lenses and methods for their design and use. Monofocal and multifocal diffractive ophthalmic lenses having reduced light scatter, improved light energy distribution properties, and/or other improvements in optical performance are provided. These properties are provided, at least in part, by the diffractive profiles of the invention, often having subtlety shaped echelettes with appropriately curving profiles. Smooth diffractive profiles may be used reduce light scatter. Diffractive profiles may be configured to limit the light energy in certain selected orders, thereby improving viewing quality and mitigating unwanted effects such as dysphotopsia. Diffractive profiles of may additionally or alternatively vary the light energy distributed between individual echelettes, providing additional advantages in various viewing situations.12-06-2012
20130107201REFRACTIVE-DIFFRACTIVE OPHTHALMIC DEVICE AND COMPOSITIONS USEFUL FOR PRODUCING SAME05-02-2013
20130201445Apodized hybrid diffractive-refractive IOL for pseudo-accommodation - In certain embodiments, an ophthalmic lens comprises an optic. The optic has an optical axis and surfaces comprising an anterior surface and a posterior surface. At least one of the surfaces has an inner refractive region and a refractive-diffractive structure disposed outwardly from the inner refractive region in a direction away from the optical axis. The inner refractive region is adapted to contribute refractively to a distance focus optical power. The refractive-diffractive structure comprises one or more diffractive regions and one or more refractive regions. A diffractive region is adapted to contribute diffractively to a multi-zone optical power, and a refractive region is adapted to contribute refractively to the distance focus optical power.08-08-2013
20130235338SINGLE MICROSTRUCTURE LENS, SYSTEMS AND METHODS - Systems and methods for providing enhanced image quality across a wide and extended range of foci encompass vision treatment techniques and ophthalmic lenses such as contact lenses and intraocular lenses (IOLs). Exemplary IOL optics can include a circular surface structure which acts as a diffractive or phase shifting profile. In some cases, a single ring IOL includes an anterior face and a posterior face, where a profile can be imposed on the anterior or posterior surface or face. The profile can have an inner portion such as a microstructure or central echelette, and an outer portion. Between the inner portion and the outer portion, there may be a transition zone that connects the inner and outer portions.09-12-2013
20130278891PUPIL DEPENDENT DIFFRACTIVE LENS FOR NEAR, INTERMEDIATE, AND FAR VISION - A multifocal diffractive lens comprises a multifocal diffractive structure coupled to a refractive component. The refractive component comprises at least one curved surface. The multifocal diffractive structure comprises a first plurality of substantially monofocal echellettes having a first optical power for near vision correction and a second plurality of substantially monofocal echellettes for far vision correction. The first plurality of substantially monofocal echellettes combined with the second plurality of substantially monofocal echellettes can provide a multifocal diffractive profile having decreased light scatter, chromatic aberration, and diffraction to non-viewing orders such that dysphotopsia is substantially inhibited. A third plurality of substantially monofocal echellettes having an intermediate optical power can be combined with the first plurality of substantially monofocal echellettes and the second plurality of substantially monofocal echellettes.10-24-2013
20130278892METHOD OF MAKING OPHTHALMIC LENSES WITH A STRUCTURED SURFACE - A method for fabricating a Fresnel lens or other lens having a structured surface such as refractive and/or diffractive bi-focal or other multi-focal lenses includes press-coating the structured surface with a low or very low refractive index coating material. The coating is sufficient thick to adequately cover the structured surface so that a smooth coating surface with good optical properties is obtained, for example in the case of a Fresnel structure a thickness greater than 1.5 times and less than 5 times the Fresnel structure height, and is cured in situ. A film, e.g., of PET, PC or PU or a film stack, e.g. a TAC/PVA/TAC film stack is prepared and a heat melting adhesive is applied to the side of the film or film stack to be contacted with the coated structured surface of the lens blank. The film or film stack is then laminated to the cured coating.10-24-2013
20140009736HIGH EFFICIENCY OPTIC - Ophthalmic lenses and methods for their design and use involve displacement functions based on the sum of a continuous cosine function and a continuous sine function, optionally over a plurality of echelettes. Exemplary monofocal and multifocal diffractive ophthalmic lenses provide reduced light scatter and/or improved light energy distribution properties. Such properties can be provided by diffractive profiles, often having subtlety shaped echelettes with appropriately curving profiles. Light scatter may be generated by the sharp corners associated with vertical steps between adjacent conventional diffractive echelettes. Smooth diffractive profiles of the invention reduce light scatter. Light energy directed toward non-viewing diffractive orders may have a unwanted effects on vision quality. Diffractive profiles as described herein may limit the light energy in certain, selected orders, thereby improving viewing quality and mitigating unwanted effects such as dysphotopsia. Diffractive profiles may also vary the light energy distributed between individual echelettes, providing additional advantages in various viewing situations.01-09-2014
20140168602MULTI-RING LENS, SYSTEMS AND METHODS FOR EXTENDED DEPTH OF FOCUS - Systems and methods for providing enhanced image quality across a wide and extended range of foci encompass vision treatment techniques and ophthalmic lenses such as contact lenses and intraocular lenses (IOLs). Exemplary IOL optics can include an aspheric refractive profile imposed on a first or second lens surface, and a diffractive profile imposed on a first or second lens surface. The aspheric refractive profile can focus light toward a far focus. The diffractive profile can include a central zone that distributes a first percentage of light toward a far focus and a second percentage of light toward an intermediate focus. The diffractive profile can also include a peripheral zone, surrounding the central zone, which distributes a third percentage of light toward the far focus and a fourth percentage of light toward the intermediate focus.06-19-2014
20140347624DIFFRACTION-TYPE MULTIFOCAL OPHTHALMIC LENS AND MANUFACTURING METHOD THEREOF - Provided is a diffraction-type multifocal ophthalmic lens for which halos are reduced. Also provided is a diffraction-type multifocal ophthalmic lens having three or more focal points, which is implemented on the basis of the discovery that the diffraction-type multifocal ophthalmic lens has a characteristic whereby multiple focal points can be generated in the intermediate region as well as the near and far regions. Also provided is a method for manufacturing a diffraction-type multifocal ophthalmic lens which provides a simple design and manufacturing method by means of a simple diffraction structure and by replacing a cumbersome computer simulation with a simple method. This diffraction-type multifocal ophthalmic lens has a diffraction structure (11-27-2014
20150331253MULTIFOCAL DIFFRACTIVE OPHTHALMIC LENS USING SUPPRESSED DIFFRACTIVE ORDER - A multifocal ophthalmic lens includes an ophthalmic lens and a diffractive element. The ophthalmic lens has a base curvature corresponding to a base power. The diffractive element produces constructive interference in at least four consecutive diffractive orders corresponding a range of vision between near and distance vision. The constructive interference produces a near focus, a distance focus corresponding to the base power of the ophthalmic lens, and an intermediate focus between the near focus and the distance focus. A diffraction efficiency of at least one of the diffractive orders is suppressed to less than ten percent.11-19-2015
351159450 With prismatic segment 2
20130135579SPECTACLE LENS AND METHOD FOR MAKING THE SAME - The invention is directed to a method for making a spectacle lens for a non-presbyopic person wherein the spectacle lens is a ready-to-wear lens and has at least one zone having an optical effect to reduce vision stress. In the method, at least one of the following is provided: the contour of the ready-to-wear spectacle lens and one or several visual points whereat the person looks through the ready-to-wear spectacle lens for one or several visual tasks in the near range. This method step is followed by setting at least one of: a design reference point of the zone, the extent of the zone, the optical effect within the zone based on the provided contour, and the visual points. The spectacle lens is then made with this zone.05-30-2013
20160048038Prescription Lenses for Smart Eyewear - An eyeglass device configured for use with a smart eyewear near-to-eye display includes a pair of lenses having a prism which directs an eye's gaze of the wearer to a first power region to focus an image displayed by the near-to-eye display of the smart eyewear and a second power region to focus an image outside or beyond the near-to-eye display of the smart eyewear; and a method for optimizing the visual acuity of a wearer of smart eyewear when observing an image generated by a near-to-eye display and an image outside or beyond the near-to-eye displayed image.02-18-2016
351159460 Astigmatic correction 2
20120262668Methods of designing progressive addition lenses - Embodiments of the invention pertain to a method for producing a spectacle lens with optimal correction across the entire lens that take the patient's complete measured wavefront into account. Specific embodiments also consider one or more additional factors such as vertex distance, intermediate power, add power, segmental fitting height, pantoscopic tilt, and use conditions. The lens wavefront can be achieved by optimizing a corrected wavefront, where the corrected wavefront is the effect of the patient's measured wavefront and/or the lens wavefront. The optimization of the corrected wavefront can involve representing the measured wavefront and/or the lens wavefront on a grid. In an exemplary embodiment, the grid can lie in a plane. During the optimization, a subset of the grid can be used for the representation of the measured wavefront at a point on the grid so that the portions of the measured wavefront that contribute to the corrected wavefront at that point on the grid are taken into account. The progressive addition lens can be utilized for distance, intermediate and reading use wherein the power progression is non-linear in any number or all of the near, intermediate, and far zones.10-18-2012
20120281182TORIC INTRAOCULAR LENS WITH SPATIALLY-VARIANT ASTIGMATISM - An intraocular lens for correcting or reducing the astigmatism of a cornea includes a pupil that is spatially divided into discrete zones, with each zone having a particular astigmatism magnitude and astigmatism orientation. In one embodiment, the zones all have the same astigmatism magnitude, which is equal and opposite the cornea astigmatism magnitude to within a particular tolerance, such as 0.25 diopters. In one embodiment, some or all of the zones all have different astigmatism orientations, with the angular separation between astigmatism orientations being on the order of the rotational misalignment tolerance of the lens to the cornea. The visual performance of such a lens deteriorates more slowly with rotational misalignment, when compared to a comparable lens having a uniform astigmatism orientation across its entire pupil, leading to more relaxed tolerances for a surgeon that implants the lens.11-08-2012
351159470 Aspherical 1
20120327363LENS SYSTEMS FOR PRESBYOPIA - A family of ophthalmic lenses for correcting presbyopia meets constraints for distance vision, near vision, and disparity and may be designed according to a process that incorporates a merit function accounting for binocular visual performance.12-27-2012
351159480 Multiple elements 3
20120140168Eyeglasses to compensate for fluctuating vision - Adjustable focus eyeglasses where the range of adjustment can be moved. That is, if a pair of adjustable focus eyeglasses have a range of 0 diopters to 2.75 diopters (to provide a 2.75 D ADD for reading for an emmetrope), this invention could, for example, permit the user to move the range from 0 D to 2.75 D to 2.00 D to 4.75 D so as to accommodate a short term change in the user's distance vision requirement. Each eye can be adjusted independently.06-07-2012
20130141692EYEGLASSES AND MEANS FOR THEIR ADJUSTMENT - Eyeglasses which comprise a pair of optical plates for each eye. Each of the optical plates is made up of a front plate and a rear plate and a return and hinge mechanism links the optical plates of each pair with one another. An adjustment mechanism facilitates relative movement of the optical plates, of each pair, in a plane substantially perpendicular to a viewing direction of the eyeglasses. The return and hinge mechanism and the adjustment mechanism are decoupled.06-06-2013
20190146242SPECTACLE LENS AND METHOD FOR PRODUCING A SPECTACLE LENS05-16-2019

Patent applications in all subclasses Multifocal

Website © 2025 Advameg, Inc.