Class / Patent application number | Description | Number of patent applications / Date published |
342357290 | The supplementary measurement being of a radio-wave signal type (IPC) | 69 |
20100207816 | WIRELESS UTILITY ASSET MAPPING DEVICE METHOD - A wireless utility asset mapping device method comprises locating a utility asset, and placing a wireless utility asset mapping device over the location of the utility asset. The wireless utility asset mapping devices comprises a pole. A positioning receiver is connected to the pole. A wireless modem is connected to the pole and to the positioning receiver. At least one weatherproof housing is connected to the pole and encloses the positioning receiver and the wireless modem. A coordinate of the wireless utility asset mapping device is determined. The coordinated is wirelessly transmitted to a remote asset tracking computer. | 08-19-2010 |
20100220008 | SYSTEM AND METHOD FOR OPTIMAL TIME, POSITION AND HEADING SOLUTION THROUGH THE INTEGRATION OF INDEPENDENT POSITIONING SYSTEMS - A system for, and method of, blending (or integrating) pseudo-range or position measurements and bearing-to-transmitter measurements from an eLORAN or LORAN-C receiver and position (alternatively, pseudo ranges) and velocity (alternatively pseudo-range rate) measurements from a GPS receiver. The described system can also be integrated with additional external positioning systems. In the context of an inertial navigation system (INS) application, this combined GPS/LORAN signal can be employed to provide external positioning solutions, potentially integrated with measurements from devises such as accelerometers, gyroscopes, altimeters, etc. The system includes a GPS signal input, a LORAN signal input, preprocessors for each, and an integrator to combine the two preprocessed signals to estimate errors in the full trajectory variables. | 09-02-2010 |
20100253576 | RECEIVER FOR RADIO POSITIONING SIGNALS - A GPS, GLONASS or Galileo receiver for radio positioning signals wherein at least a part of the computing of position related data based on radio signals received from a plurality of space vehicles is carried out by a graphics or sound processor. The receiver thus makes use of available computing resources, thus achieving a lower bill of material. | 10-07-2010 |
20110025557 | Positioning With Wireless Local Area Networks And WLAN-Aided Global Positioning Systems - Accurate position capability can be quickly provided using a Wireless Local Area Network (WLAN). When associated with a WLAN, a wireless device can quickly determine its relative and/or coordinate position based on information provided by an access point in the WLAN. Before a wireless device disassociates with the access point, the WLAN can periodically provide time, location, and decoded GPS data to the wireless device. In this manner, the wireless device can significantly reduce the time to acquire the necessary GPS satellite data (i.e. on the order of seconds instead of minutes) to determine its coordinate position. | 02-03-2011 |
20110050493 | POSITION INFORMATION PROVIDING SYSTEM INDOOR TRANSMITTER AND METHOD FOR PROVIDING POSITION INFORMATION - Provided is a position information providing system which can reduce a time required for acquiring position information. An indoor transmitter is adapted to provide position information by using a second positioning signal compatible with a first positioning signal which is a spread spectrum signal from each of a plurality of satellites. The indoor transmitter includes an EEPROM which stores therein position data for identifying an installation location thereof, an FPGA operable to generate a second positioning signal including the position data as a spread spectrum signal, and a transmitting section operable to transmit the spread spectrum signal. The second positioning signal is generated to repeat the same content in a cycle shorter than that of the first positioning signal. | 03-03-2011 |
20110109504 | Alternative Geolocation Capabilities - A global positioning system (GPS) receiver receives signals from at least three or more high-definition television (HDTV) transmitters at HDTV transmitting power and frequency bands. The GPS receiver includes dynamic reconfigurable logic hardware to decode data patterns (i.e., dynamic algorithm patterns) in the received signals to compute and/or identify GPS receiver's physical location. | 05-12-2011 |
20110115670 | Method and Apparatus for Receiving a Global Positioning System Signal Using a Cellular Acquisition Signal - Method and apparatus for a GPS device that uses at least one cellular acquisition signal is described. More particularly, a GPS device is configured to receive at least one cellular acquisition signal for obtaining benefits associated with AGPS with only a small subset of AGPS circuitry to interact with a cell phone network. This facilitates use of GPS devices without subscription to a cell phone service provider, thus avoiding cellular subscription fees. | 05-19-2011 |
20110122021 | ACQUISITION GUARD TIME REDUCTION USING TRIANGULATION RANGING - Embodiments provide systems, devices, and methods for determining acquisition guard times and acquisition control parameters or distance metrics for terminals in a satellite communication network using triangulation and single terminal ranging. A terminal or multiple terminals from the network may be selected as ranging terminals; the terminals may include normal user terminals used for determining a satellite position or a satellite distance. Ranging terminals may first enter a network and synchronize to TDMA frame timing by adjusting the acquisition control parameters. An adjusted acquisition control parameter may also be called a transmit timing control parameter. A satellite position or a distance difference between a real-time and a nominal satellite position may be estimated from timing control parameters. Information about the satellite position and/or the distance difference in satellite position may then be used to reduce acquisition guard times for other terminals using various techniques to compute acquisition control parameters. | 05-26-2011 |
20110128183 | ROBUST LOCATION ESTIMATION - A method of collecting information for supplementing a trusted estimate of position. The method comprises: receiving first information sufficient to derive a trusted estimate of a first position; receiving an indication that a supplementary estimate of a second position in the vicinity of the first position may be required; in response to the indication, sensing information comprising the identity of at least one terrestrial wireless source observable in the vicinity of the first position; and storing the sensed information in association with the first position. The method enables the trusted estimate of the first position to subsequently be used to estimate any said second position from which the at least one wireless source is observable. | 06-02-2011 |
20110163913 | Practical Method for Upgrading Existing GNSS User Equipment with Tightly Integrated Nav-Com Capability - A practical method for adding significant new high-performance, tightly integrated Nav-Com capability to any Global Navigation Satellite System (GNSS) user equipment, such as GPS receivers, requires no hardware modifications to the existing user equipment. In one example, the iGPS concept is applied to a Defense Advanced GPS Receiver (DAGR) and combines Low Earth Orbiting (LEO) satellites, such as Iridium, with GPS or other GNSS systems to significantly improve the accuracy, integrity, and availability of Position, Navigation, and Timing (PNT)—in some cases by three orders of magnitude, to enable high precision GNSS carrier phase observable to be more readily exploited to improve PNT availability—even under interference conditions or occluded environments, and to enable new communication enhancements made available by the synthesis of precisely coupled navigation and communication modes. To achieve time synchronization stability to the required sub-20 ps level between the existing DAGR and a plug-in iGPS enhancement module, a special-purpose wideband reference signal is generated by the iGPS module and coupled to the DAGR via the existing antenna port, so that no hardware modification of the DAGR is required. | 07-07-2011 |
20110187591 | HYBRID WIRELESS AREA NETWORK (WAN) AND GLOBAL POSITIONING SYSTEM (GPS) CIRCUIT BOARD AND METHOD FOR SEAMLESS INDOOR AND OUTDOOR TRACKING - Systems and methods for distance and location tracking a wireless device are disclosed. More specifically, according to one aspect of the present disclosure, a Wireless Area Network-Location Based Services (WAN-LBS) algorithm that utilizes a hybrid Wireless Area Network (WAN) and Global Positioning System (GPS) circuit board and method for seamless indoor and outdoor tracking is disclosed. The WAN-LBS algorithm, in conjunction with the hybrid WAN/GPS circuit board, optimizes the degrees of precision and accuracy for distance measurements in locating a fixed or mobile IEEE 802® device. In one embodiment, the hybrid WAN/GPS circuit board according to the present disclosure integrates the data of a GPS receiver and several IEEE 802 standards based receivers. In another embodiment, the WAN-LBS algorithm according to the present disclosure utilizes received data, acquired by the hybrid circuit board, to calculate distances to the tracking devices, seamlessly in both indoor and outdoor environments. | 08-04-2011 |
20110205109 | POSITION MEASURING DEVICE AND POSITION MEASURING METHOD BY MEANS OF GPS - In a position measuring method, GPS ranging data obtained at a reference station | 08-25-2011 |
20110210889 | METHOD AND SYSTEM FOR ESTIMATING POSITION WITH BIAS COMPENSATION - A primary phase measurement device measures a first carrier phase and a second carrier phase of carrier signals received by the location-determining receiver. A secondary phase measurement device measures the third carrier phase and the fourth carrier phase of other carrier signals. A real time kinematic engine estimates a first integer ambiguity set associated with the measured first carrier phase and a second integer ambiguity set associated with the measured second carrier phase. The real time kinematic engine estimates a third ambiguity set associated with the measured third carrier phase and a fourth ambiguity set associated with the measured fourth carrier phase. A compensator is capable of compensating for the inter-channel bias in at least one of the third ambiguity set and the fourth ambiguity set by modeling a predictive filter in accordance with various inputs or states of the filter estimated by an estimator. | 09-01-2011 |
20110215966 | APPARATUS, METHOD, MANUFACTURE, AND SYSTEM FOR SENSING SUBSTITUTION FOR LOCATION-BASED APPLICATIONS - A method and apparatus for communicating over a network is provided. The method includes selecting between location-sensing methods for an LBA, such as between GPS and network triangulation. For each location-sensing method, a dynamic determination is made as to whether the accuracy of the location-sensing method, in the current environment, meets the application requirements. If two or more location-sensing methods meet the application requirements, then, location-sensing method selected is the location-sensing method that, from among the location-sensing methods that meet the application requirement, consumes the least power. Otherwise, the location-sensing method that is most accurate for the current environment is selected. | 09-08-2011 |
20110260915 | POSITIONAL INFORMATION TRANSMITTER, POSITIONAL INFORMATION RECEIVER, AND POSITION MEASURING SYSTEM - The present invention provides a positional information transmitter, a positional information receiver and a position measuring system capable of measuring a position under moving circumstances. The positional information transmitter transmits positional information for specifying the current position. The positional information transmitter comprises a memory unit which stores therein a plurality of first positional information indicative of the latitude of the current position and a plurality of second positional information indicative of the longitude of the current position, a transmission unit which generates a first positional information signal corresponding to a wireless signal including the first positional information stored in the memory unit and a second positional information signal corresponding to a wireless signal including the second positional information stored therein, and transmits the generated first and second positional information signals, and a timing controller which controls the transmission unit in such a manner that the transmission unit repeatedly transmits the first positional information signal in different periods and repeatedly transmits the second positional information signal in different periods. | 10-27-2011 |
20110291882 | CO-OPERATIVE GEOLOCATION - A method and apparatus for extending the coverage of geolocation to indoor locations through cooperative geolocation. The method includes establishing an ad-hoc wireless network comprising a plurality of devices including a first device. The method includes receiving, at the first device, position information from the plurality of devices and determining a physical location of the first device based on the received position information. In an embodiment, the position information is transmitted in response to a request by the first device. In an embodiment, the position information may include a time of arrival of the request received by each of the plurality of devices; and the time of arrival may be associated with a GNSS time. In an embodiment, the ad-hoc wireless network may be a Wi-Fi network, which is associated with one of the IEEE 802.11 standards. | 12-01-2011 |
20110291883 | POSITIONING SYSTEM, POSITION INFORMATION TRANSMITTER, COMMUNICATION TERMINAL, AND CONTROL METHOD OF THE POSITIONING SYSTEM - A position information transmitter including: a digital processing device including a CPU and a position information database storing position information of the position information transmitter and information of channels used by other position information transmitters; and a radio transmitting device executing a signal modulation, wherein the digital processing device generates spread spectrum signals from the position information of the position information transmitter and information of channels used by other position information transmitters, by using the C/A code, and the radio transmitting device modulates the spread spectrum signals and transmits modulated signals as a radio signals. | 12-01-2011 |
20110298659 | SYSTEM AND METHOD FOR USING A SATELLITE POSITIONING SYSTEM TO FILTER WLAN ACCESS POINTS IN A HYBRID POSITIONING SYSTEM - This disclosure describes a system and method for using a satellite positioning system to filter WLAN access points in a hybrid positioning system. In some embodiments, the method can include detecting WLAN APs in range of the WLAN and satellite enabled device, obtaining satellite measurements from at least two satellites to provide a plurality of possible satellite locations of the device, and providing a weight for each AP based on the distance from the WLAN APs to the possible satellite locations of the device. | 12-08-2011 |
20110304503 | SIMULTANEOUS LOCALIZATION AND RF MODELING - The simultaneous localization and RF modeling technique pertains to a method of providing simultaneous localization and radio frequency (RF) modeling. In one embodiment, the technique operates in a space with wireless local area network coverage (or other RF transmitters). Users carrying Wi-Fi-enabled devices traverse this space while the mobile devices record the Received Signal Strength (RSS) measurements corresponding to access points (APs) in view at various unknown locations and report these RSS measurements, as well as nay other available location fix to a localization server. A RF modeling algorithm runs on the server and is used to estimate the location of the APs using the recorded RSSI measurements and any other available location information. All of the observations are constrained by the physics of wireless propagation. The technique models these constraints and uses a genetic algorithm to solve them, thereby providing an absolute location of the mobile device. | 12-15-2011 |
20120013504 | Mobile Device Battery Management - In general, the subject matter described in this specification can be embodied in methods, systems, and program products. Data representing a plurality of power management profiles for a battery-operated wireless computing device are stored on the device. The power management profiles correspond to different power consumption levels. Each power management profile defines a feature for determining a geographic location of the device from among a plurality of features that are available for determining the geographic location of the device, and a frequency for employing the feature to determine the geographic location of the device. A first battery level of the device is determined. If the determined battery level is lower than a first predetermined amount, the device switches from a first power management profile having a first consumption level to a second power management profile having a second consumption level that is lower than the first consumption level. | 01-19-2012 |
20120032842 | Triply Redundant Integrated Navigation and Asset Visibility System - Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller. | 02-09-2012 |
20120062415 | LOCATION INFORMATION DECISION METHOD IN INTEGRATED TERMINAL - Provided is a method of efficiently determining a location of a terminal. The method includes receiving both of a GPS signal and a mobile communication signal. When the GPS signal is not received, a location calculated using the mobile communication signal is determined as the location of the terminal. | 03-15-2012 |
20120075139 | Method and Apparatus For Tracking or Tracing The Movement of Shipping Containers - A covert device for tracing or tracking the movement of a shipping container has a primary satellite receiver responsive to external satellite signals to obtain positional information, a secondary receiver for obtaining coarse positional information from terrestrial radio signals, and a memory. A processor processes the available positional information to obtain a fix in response to an event and stores the fix in association with the event in memory. The receivers preferably use the shipping container at least in part as an antenna. When the secondary receiver is an FM broadcast antenna, the gap between the doors of the shipping container can serve as a slotted antenna. | 03-29-2012 |
20120119948 | POSITION INFORMATION DETECTION DEVICE, COMMUNICATION APPARATUS, AND COMMUNICATION SYSTEM - A position detection device includes a first position obtaining unit obtaining position information by receiving a GPS signal, a second position obtaining unit obtaining position information based on information obtained from a plurality of peripheral base stations, a position information obtainment determining unit determining whether or not the first position obtaining unit obtains position information, a movement detection unit detecting a movement of the first position obtaining unit, a first ON and OFF state control unit controlling ON and OFF states of the first position obtaining unit, a second ON and OFF state control unit controlling ON and OFF states of the second position obtaining unit, a monitor cycle control unit controlling a monitor cycle that the first position obtaining unit obtains position information, and an output unit selecting and outputting one piece of position information obtained by the first position obtaining unit and the second position obtaining unit. | 05-17-2012 |
20120119949 | METHOD AND DEVICE FOR DISCRIMINATING AMONG LOCATIONS OF A MOBILE TERMINAL - A location-information discrimination method and device are provided that can accurately discriminate between locations of a mobile terminal in keeping with an actual environment. A discrimination value calculator calculates a discrimination value that is dependent on the amount of a change, from a predetermined value, in the received power of a radio signal received by a mobile terminal from a base station and on the duration of that change in the received power. The determination section compares the discrimination value with a predetermined value, thereby determining whether the mobile terminal is located indoors or outdoors. | 05-17-2012 |
20120146849 | METHOD AND SYSTEM FOR ACQUIRING EPHEMERIS INFORMATION - An approach provides for conversion of global positioning system (GPS) data. A user terminal receives positioning data from a base station, wherein the positioning data is received in a second format, and wherein the second format was derived from ephemeris data broadcast via a global positioning system (GPS) in a first format. The user terminal converts the positioning data from the second format into a third format that is compatible with a protocol of the GPS system, and determines a first fix using the third format of the positioning data. | 06-14-2012 |
20120169533 | SYSTEM AND METHOD FOR LOCATING MOBILE DEVICE IN WIRELESS COMMUNICATION NETWORK - A method is provided for determining a location of a mobile device in a wireless network. The method includes receiving global navigation satellite system (GNSS) measurements from the mobile device, and receiving terrestrial measurements from corresponding transceivers in the wireless network, each terrestrial measurement indicating a distance between the corresponding transceivers and the mobile device. The method further includes selecting at least one terrestrial measurement having an uncertainty value within a predetermined accuracy threshold. The location of the mobile device is determined as a function of the GNSS measurements and the selected terrestrial measurement. | 07-05-2012 |
20120182180 | WIDE AREA POSITIONING SYSTEM - Positioning systems and methods comprise a network of transmitters that broadcast positioning signals comprising ranging signals and positioning system information. A ranging signal comprises information used to measure a distance to a transmitter broadcasting the ranging signal. A reference sensor array comprising at least one reference sensor unit is positioned at a known location. A remote receiver includes an atmospheric sensor collecting atmospheric data at a position of the remote receiver. A positioning application is coupled to the remote receiver and generates a reference pressure estimate at the position of the remote receiver using the atmospheric and reference data from the reference sensor array. The positioning application computes the position of the remote receiver using the reference pressure estimate and information derived from at least one of the positioning signals and satellite signals that are signals of a satellite-based positioning system. The position includes an elevation. | 07-19-2012 |
20120194382 | Satellite Positioning Receiver and Proxy Location System - To reduce power consumption in a user terminal, especially mobile devices, a system and method are introduced that use terrestrial beacons as a location proxy when satellite positioning signals are not available. The geographic locations of the terrestrial beacons need not be known to use the beacons as a proxy for a satellite positioning signals derived location. | 08-02-2012 |
20120200457 | System framework for mobile device location - A method for estimating the location of a mobile Wi-Fi signal receiver from a database of independently obtained survey data, each survey datum consisting of a surface of location derived from a composite GPS signal, together with a Wi-Fi signature measured concurrently with the GPS signal measurement, is disclosed. The method comprises receiving a Wi-Fi signature, measured and recorded by said mobile. Wi-Fi signal receiver, at the location to be estimated; extracting from the database, an algorithmically-determined subset of surfaces of location, utilizing the Wi-Fi signature recorded by said mobile Wi-Fi signal receiver, and estimating the location of said mobile Wi-Fi signal receiver from said algorithmically-determined subset of surfaces of location. In one embodiment, the algorithmically-determined subset consists of those surfaces of location with Wi-Fi signatures identical to the mobile Wi-Fi signature; and the estimate of the location of said mobile Wi-Fi signal receiver is determined as the point for which the sum of the squares of the distances to each of the surfaces of location included in said algorithmically-determined subset is minimized. | 08-09-2012 |
20120229333 | BAND-SPECTRUM INTERFERENCE VISUALIZER IN A GLOBAL NAVIGATION SATELLITE SYSTEM RECEIVER - An apparatus for determining signal strength data within at least one allocated GNSS frequency band is provided. The apparatus includes a GNSS antenna. The GNSS antenna receives signals within the allocated GNSS frequency band. The apparatus further includes receiving circuitry. The receiving circuitry is for demodulating the received signals. The apparatus further includes a processor and memory for storing instructions, executable by the processor. The instructions include instructions for generating signal strength data for the received signals within the GNSS allocated frequency based on the demodulated signals, and for determining a position for a point of interest based upon the demodulated signals. Included in the apparatus is a display screen for displaying a graphical representation of the signal strength data of at least a portion of the at least one GNSS allocated frequency band. The graphical representation identifies interference within at least the portion of the at least one GNSS allocated frequency band. | 09-13-2012 |
20120262334 | Integrated Reference Source and Target Designator System For High-Precision Guidance of Guided Munitions - A method for determining a position of a device in a reference coordinate system. The method including: receiving, at the device, less than all of GPS signals necessary to determine the position of the device in the reference coordinate system; transmitting a signal from aυ illuminating source defined in the reference coordinate system; receiving the signal at a cavity waveguide disposed on the device; and determining the position of the device in the reference coordinate system based on the GPS signals and the signal received in the cavity waveguide. The signal received in the cavity waveguide can also be used to confirm a position determined by the GPS signals. | 10-18-2012 |
20120268321 | Global Positioning System Signal Reception with Increased Resistance to Interference - A method and apparatus for identifying a position of a receiver. A number of first radio frequency signals including navigation information at the receiver is received. The number of first radio frequency signals is sent from a number of platforms configured to receive second radio frequency signals from a plurality of satellites in a global positioning system. The position of the receiver is identified using a number of distances and a number of angles identified from the number of first radio frequency signals and a number of positions for the number of platforms. | 10-25-2012 |
20120280858 | Method and System for Enhancing a Location Server Reference Database Through Round-Trip Time (RTT) Measurements - A mobile device in a cellular communication network collects round-trip time (RTT) measurements for a single active cell. The collected RTT measurements are transmitted to a location server. The location server uses the transmitted RTT measurements to calculate a GNSS position of the single active cell. One or more of the transmitted RTT measurements are taken by the mobile device, and/or are collected from other mobile devices in the single active cell. The transmitted RTT measurements are collected at different GNSS fixes in the same single active cell. The mobile device location stamps the collected RTT measurements using corresponding GNSS fixes, and transmits to the location server using a NML. The location server calculates the GNSS position of the single active cell using location stamped RTT measurements in the received NMLR to refine an associated reference database periodically or aperiodically. | 11-08-2012 |
20120306691 | HYBRID POSITIONING USING TIMING REFERENCE INFORMATION - Methods and apparatuses for a mobile station to obtain a position fix using synchronous hybrid positioning and asynchronous hybrid positioning techniques are described. In one embodiment, a wireless communication apparatus may transmit a request to a mobile station for timing reference information. The apparatus may be configured to receive the timing reference information, first timing measurements from a first positioning technology, and second timing measurements from a second positioning technology. The apparatus may identify whether the mobile station is capable of supporting synchronous hybrid positioning based on the timing reference information. If it is synchronous hybrid capable, then the apparatus may then establish a position fix for the mobile station using a synchronous hybrid positioning technique that involves relating the first and second timing measurements to a common time scale based on the timing reference information. If it is not synchronous hybrid capable, then the apparatus may establish a position fix for the mobile station using an asynchronous hybrid positioning technique wherein the time scales of the first and second timing measurements are not interrelated. | 12-06-2012 |
20120306692 | HYBRID POSITIONING USING SYNCHRONOUS AND ASYNCHRONOUS TECHNIQUES - Methods and apparatuses for a mobile station to obtain a position fix using synchronous hybrid positioning and asynchronous hybrid positioning techniques are described. In one embodiment, a wireless communication apparatus may transmit a request to a mobile station for fine time assistance (FTA) corresponding to a global navigation satellite system (GNSS). The apparatus may be configured to receive the FTA, first timing measurements from one or more base stations, and second timing measurements from the GNSS. The apparatus may identify whether the FTA was received from the mobile station. If it is determined that the FTA was received, then the apparatus may establish a position fix for the mobile station using a synchronous hybrid positioning technique relating the timing measurements to a time scale associated with a system frame number (SFN). If not, then the apparatus may establish the position fix using an asynchronous hybrid positioning technique. | 12-06-2012 |
20120306693 | Distributed A-GNSS Positioning of Static Devices - Method and apparatus for determining locations of static devices are disclosed. The method includes identifying a plurality of static devices, obtaining location measurements by the plurality of static devices at different times, and determining locations of the plurality of static devices using the location measurements obtained at the different times. The method of determining locations of the plurality of static devices includes determining a group location of the plurality of static devices based on GNSS pseudo range measurements contributed by the one or more static devices, where the group location is near a centroid of the plurality of static devices weighted by the number of GNSS pseudo range measurements contributed by each of the plurality of static devices. The method of determining locations of the plurality of static devices further includes sharing a common time reference among the plurality of static devices. | 12-06-2012 |
20120326923 | Near Field Navigation System - A near field navigation system is equipped with a base segment provided on a base structure. The base segment includes at least four transmitters. Each transmitter is provided with a base antenna and the base antennas are positioned relative to each other at known distances. A user segment is provided on a user structure, the user segment including at least one receiver, at least one user antenna connected to the receiver, and a processing unit connected to the receiver. The receiver and each of the transmitters together form distance measuring units and the processing unit is adapted to calculate the relative three-dimensional position data of the user structure with respect to the base structure on the basis of distance data obtained from the distance measuring units. | 12-27-2012 |
20130002483 | METHODS AND SYSTEMS FOR DERIVING SEED POSITION OF A SUBSCRIBER STATION IN SUPPORT OF UNASSISTED GPS-TYPE POSITION DETERMINATION IN A WIRELESS COMMUNICATION SYSTEM - In a method and system for deriving a seed position of a subscriber station in a wireless communications system in supporting unassisted GPS-type position determination is provided, the subscriber station receives overhead messages from the wireless communications system, and derives the seed position from the parameter values. The subscriber station may use a data structure in its memory and map possible parameter values to corresponding positions that may serve as the seed positions. | 01-03-2013 |
20130016008 | Method and System for a Full GNSS Signals That Indicate - A multi-standard single chip integrated within a multi-standard mobile device concurrently receives multi-standard radio frequency signals by corresponding two or more integrated radios. The multi-standard single chip generates full GNSS measurement comprising pseudo-range information using the received radio frequency signals. The multi-standard single chip comprises a GNSS radio and multiple non-GNSS radios such as Bluetooth. The full GNSS measurement is generated using GNSS radio frequency signals received by the integrated GNSS radio and communicated over, for example, Bluetooth radio. GNSS satellite reference information embedded in radio frequency signals received by the integrated non-GNSS radios is extracted to assist the full GNSS measurement. A full GNSS navigation solution for the multi-standard mobile device is generated internally to and/or externally to the multi-standard single chip depending on the location of a navigation engine. The generation of the full GNSS measurement is independent of a host processor within the multi-standard mobile device. | 01-17-2013 |
20130027247 | Coverage Extension of Position Services - The present solution relates to a method in a user equipment ( | 01-31-2013 |
20130063301 | Wide Area Positioning System - Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals. | 03-14-2013 |
20130063302 | CODING IN A WIDE AREA POSITIONING SYSTEM (WAPS) - Embodiments describe determining position by selecting a set of digital pseudorandom sequences. The magnitudes of the cross-correlation between any two sequences of the chosen set are below a specified threshold. A subset of digital pseudorandom sequences are selected from the set such that the magnitudes of the autocorrelation function of each member of the subset, within a specified region adjacent to the peak of the autocorrelation function, are equal to or less than a prescribed value. Each transmitter transmits a positioning signal, and at least a portion of the positioning signal is modulated with at least one member of the subset. At least two transmitters of the plurality of transmitters modulate respective positioning signals with different members of the subset of digital pseudorandom sequences. | 03-14-2013 |
20130063303 | System And Method For Effectively Performing Enhanced Mobile-Device Location Procedures - A system and method for effectively performing enhanced device location procedures to determine the current physical location of a mobile device includes a plurality of satellites that wirelessly transmit satellite beacon signals, a plurality of base stations that wirelessly transmit pilot signals, and a plurality of access points that wirelessly transmit access-point beacon signals. A location detector of the mobile device coordinates a device location procedure by measuring the satellite beacon signals, the pilot signals, and the access-point beacon signals to generate corresponding satellite information, base station information, and access point information. The location detector analyzes the satellite information, the base station information, and the access point information to select an optimal system configuration from the most effective satellites, base stations, and access points. The location detector then utilizes the optimal system configuration to accurately calculate the current physical location of the mobile device. | 03-14-2013 |
20130099963 | TECHNIQUES FOR AFFECTING A WIRELESS SIGNAL-BASED POSITIONING CAPABILITY OF A MOBILE DEVICE BASED ON ONE OR MORE ONBOARD SENSORS - Various methods, apparatuses and/or articles of manufacture are provided which may, for example, be implemented to compute one or more inferences from signals generated by one or more inertial sensors or environmental sensors, detect an erroneous condition responsive to a comparison of the computed inference(s) with an initial position or a position fix, and, in response to the detection of the erroneous condition, affect at least one process at the mobile device that is used, at least in part, to obtain a position fix. | 04-25-2013 |
20130120188 | Wide Area Positioning System - Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals. | 05-16-2013 |
20130127660 | NAVIGATION SIGNAL TRANSMITTING APPARATUS, NAVIGATION SIGNAL TRANSMISSION METHOD AND POSITIONAL INFORMATION PROVIDING APPARATUS - A navigation signal transmitting apparatus, provided on ground, for transmitting a navigation signal to a receiver capable of positioning by receiving a spread spectrum satellite positioning signal from a satellite has first and second transmission antennas; a message generating unit that generates a message signal of positional information included in the navigation signal, and a modulating unit that modulates the message signal by a modulation process including spectrum spreading, based on spread codes of the same sequence as the satellite positioning signal allotted in advance to the navigation signal transmitting apparatus, for generating first and second navigation signals. The modulating unit executes the modulating process using either one of the first and second navigation signals as an object of demodulation at each time of reception by the receiver. | 05-23-2013 |
20130147662 | APPARATUS AND METHOD FOR PROCESSING POSITION INFORMATION - A position information processing device according to an exemplary embodiment of the present invention can include a GPS receiver adapted and configured to receive a first satellite signal, an interdevice receiver adapted and configured to receive a second satellite signal from a mobile phone, a GPS information processor adapted and configured to compare the first satellite signal with the second satellite signal and generate a third satellite signal for calculating a current position, and a controller adapted and configured to use the third satellite signal to calculate coordinates of the current position. The proposed position information processing device uses the satellite signal that is received from the mobile phone, and therefore the accuracy of the position measurement can be improved. | 06-13-2013 |
20130147663 | On Demand Positioning - The subject matter disclosed herein relates to determining a location of a mobile device using more than one location-determining technology. | 06-13-2013 |
20130181865 | Autonomous Transmit Chain Delay Measurements - A system and method for determining transmission delay in a communications system. In some embodiments, satellite positioning information may be received for a mobile device and enhanced cell identification (E-CID) positioning information received for the mobile device. A location of the mobile device may be determined as a function of the received satellite positioning information, and transmission delay between a node serving the mobile device and an antenna serving the mobile device determined as a function of the received E-CID positioning information and the determined location of the mobile device. | 07-18-2013 |
20130187810 | Method And System For An Embedded And Hosted Architecture For A Medium Earth Orbit Satellite And Low Earth Orbit Satellite Positioning Engine - Methods and systems for an embedded and hosted architecture for a medium Earth orbit satellite and low Earth orbit satellite positioning engine may comprise receiving LEO RF satellite signals and MEO satellite signals in a wireless communication device (WCD) comprising a low Earth orbit (LEO) satellite signal receiver path, a medium Earth orbit (MEO) satellite signal receiver path, and a dual-mode position engine comprising a coarse location module and a fine location module. The received LEO and MEO signals may be demodulated and coarse and fine positions may be determined from the demodulated signals utilizing the dual-mode position engine. A configuration input may be communicated to the position engine, wherein the configuration input comprises an initial position estimate for the WCD. The coarse position may be determined utilizing demodulated LEO signals and/or demodulated MEO signals. The fine position may be determined utilizing demodulated LEO signals and/or demodulated MEO signals. | 07-25-2013 |
20130229303 | POSITIONING USING A LOCAL WAVE-PROPAGATION MODEL - A method and apparatus for assisting the calculation of the position of a receiver device ( | 09-05-2013 |
20130265193 | PERFORMANCE IMPROVEMENTS FOR MEASUREMENT OF OPPORTUNITY GEOLOCATION/NAVIGATION SYSTEMS - A system and method of determining the location of a mobile device using signals of opportunity, derived time stamps and sharing of signal information with other mobile devices. | 10-10-2013 |
20130278459 | WIRELESS COMMUNICATION DEVICE AND ASSOCIATED METHOD INCLUDING CONTROL OF POSITIONING-SYSTEM RECEIVER AND SHARED OSCILLATOR - The wireless communication device includes a wireless communication transceiver to generate an oscillator control signal and an activation signal, a positioning-system receiver (e.g. a GPS receiver) to process received positioning signals, and a shared oscillator (e.g. a temperature compensated and voltage controlled crystal oscillator TCVCXO) responsive to the oscillator control signal and to generate a reference frequency signal for the wireless communication transceiver and the positioning-system receiver. The positioning-system receiver may control processing of the received positioning signals based upon the activation signal to reduce a noise contribution (e.g. phase noise) due to frequency control of the shared oscillator based upon the oscillator control signal. The activation signal may indicate that the oscillator control signal is being varied to provide frequency control or adjustment of the shared oscillator. | 10-24-2013 |
20130307723 | METHOD AND APPARATUS FOR DETERMINING LOCATIONS OF ACCESS POINTS - Methods, systems, computer-readable media, and apparatuses for determining locations of access points (AP) are presented. Techniques are described for determining relative and absolute locations of APs. In one embodiment, a device may send and receive messages to one or more APs for from various locations for determining the distance between the device and the AP. The device may additionally keep track of its own displacement for the purposes of determining the location of the one or more APs. In one embodiment, the device also determines the turnaround calibration factor (TCF) for the AP that compensates for the processing time at the AP may also be used for increasing the accuracy of the determination of the location of the AP. | 11-21-2013 |
20140055300 | WIDE AREA POSITIONING SYSTEM - Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals. | 02-27-2014 |
20140218233 | RFID FOR LOCATION OF THE LOAD ON A TOWER CRANE - A radio frequency identification (RFID) tower crane load locator and sway indicator is disclosed and includes: a plurality of RFID tags at different locations on or around the tower crane; at least two RFID readers at different locations on the tower crane; a navigation satellite system (NSS) position receiver; and a load information interface. The RFID readers comprising a range determiner to provide range measurements between each of the RFID readers and each of the plurality of RFID tags. The sway determiner is coupled with a hook block of the tower crane. The NSS position receiver is coupled with the tower crane. The load information interface to combine information from range measurements, the sway determiner and the NSS position receiver to generate location and sway information of the load with respect to the tower crane and provide the location and sway information in a user accessible format. | 08-07-2014 |
20140253371 | METHOD AND APPARATUS FOR ENABLING THE USE OF GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) SIGNALS INDOORS - Disclosed are apparatuses and methods for enabling the use of global navigation satellite system (GNSS) signals indoors. The method may include determining a first indoor position of the mobile device based on indoor transceiver signals. The method may also include determining, based at least in part on the determined first indoor position, that global navigation satellite system (GNSS) positioning signals are available. The method may also include determining a second indoor position of the mobile device based, at least in part, on GNSS positioning signals. | 09-11-2014 |
20140368380 | SATELLITE RADIO NAVIGATION SYSTEM WITH REMOTE ARCHITECTURE - Station for receiving satellite radio navigation signals having first wideband transmission means that are suited to receiving a specific signal transmitted by a transmitter/receiver and extracting therefrom at least one user radio navigation signal, first centralized signal processing means that are suited to determining a measurement of pseudo distance and centralized calculation means for calculating navigation information (PVT), the reception station having a first reference channel for receiving radio navigation signals having a directional antenna for forming a channel, second means for processing the radio navigation signal received by said directional antenna for forming a channel and a calculation unit that is suited to performing an improvement in reliability, an integrity check and authentication of said navigation information (PVT). | 12-18-2014 |
20140368381 | WIDE AREA POSITIONING SYSTEM - Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals. | 12-18-2014 |
20140375494 | PEDESTRIAN POSITIONING IN HIGH-REFLECTION ENVIRONMENTS - A positioning system operates by first determining that a user is pedestrian, and then estimating a speed of the user. Having tracked a first signal from one radio transmitter whose position is known, the system attempts to detect additional signals from the one transmitter, in a search space such that the first signal and the or each additional signal are consistent with the estimated speed of the user and with one or more of the signals having been reflected off a reflector in the vicinity of the user. One or more detected additional signals from the one transmitter are then tracked, and candidate measurements, derived from the first signal and the one or more detected additional signals, are provided for use when estimating the position and/or velocity of the user. | 12-25-2014 |
20150035699 | DETECTING AND LOCALIZATION METHOD OF UNKNOWN SIGNAL USING AIRCRAFT WITH ADS-B SYSTEM - A method of detecting an unknown signal and estimating a source location of the unknown signal using aircraft based on an automatic dependent surveillance-broadcast (ADS-B) system is provided. The method includes a first step (S | 02-05-2015 |
20150048972 | SYSTEM AND METHOD OF USING MEASUREMENTS OF OPPORTUNITY WITH VECTOR TRACKING FILTERS FOR IMPROVED NAVIGATION - A system and method to opportunistically use measurements on a priori unknown radio signals, not intended for radio navigation or geolocation, to improve navigation/geolocation position estimation yield accuracy and efficiency. | 02-19-2015 |
20150061931 | METHODS AND SYSTEMS FOR PSEUDO-RANDOM CODING IN A WIDE AREA POSITIONING SYSTEM - Devices, systems, and methods for improving performance in positioning systems are disclosed. Signal processing methods are described for selecting certain spreading codes having desired auto and/or cross-correlation properties and generating, transmitting, and receiving signals generated using the selected codes. | 03-05-2015 |
20160003949 | SYSTEMS AND METHODS FOR ESTIMATING WHETHER A RECEIVER IS INSIDE OR OUTSIDE A BUILDING - Systems and methods for estimating whether a receiver is indoors or outdoors. Certain approaches evaluate data associated with a network of beacons to determine whether the receiver is indoors or outdoors. Such evaluation may include any of determining whether azimuthal angles corresponding to the beacons meet an azimuthal angle condition, determining whether elevation angles corresponding to the beacons meet an elevation angle condition, determining whether signal strengths corresponding to the beacons meet a signal strength condition, and determining whether other measurements associated with the beacons meet other measurement conditions. | 01-07-2016 |
20160033652 | SURVEYING SYSTEM - A surveying system for a construction site has a restricted antenna system with a plurality of fixed location antennas each defined by a set of location data associated with a specific deployment position. The surveying system also has a computing device with a data processor and a display screen. A communications module establishes a data transfer link with the restricted antenna system over which spatial data for distances between current positions of the computing device and one or more of the plurality of fixed location antennas are received. The computing device is loadable with project drawings corresponding to the construction site and displayable on the display screen. A position marker is overlaid on the display of the project drawing at a position thereon corresponding to a computing device location value derived from the spatial data and the location data of one or more of the fixed location antennas. | 02-04-2016 |
20160077215 | ON DEMAND POSITIONING - The subject matter disclosed herein relates to determining a background location of a mobile device using one or more signal metrics. | 03-17-2016 |
20160377733 | GEOLOCATION ANTENNA SYSTEM - Systems and methods for improved Global Positioning System (“GPS”) function employ two multiband, multiport antennas to receive GPS signals. The antennas also serve WiFi frequencies, and the system utilizes the received WiFi signal strength to correct the GPS reception pattern for detuning due to user contact or other factors. The correction is made via selective combination of the GPS signals from the antennas. In addition, a phase shifter in one of the signal paths is used to account for changes in device orientation and to maximize the upper hemisphere component of the GPS reception pattern. | 12-29-2016 |
20180024251 | SURVEYING SYSTEM | 01-25-2018 |