Class / Patent application number | Description | Number of patent applications / Date published |
148603000 | With working at or below 120C or unspecified cold working | 41 |
20080196799 | Steel Sheet for Deep Drawing Having Excellent Secondary Work Embrittlement Resistance, Fatigue Properties and Plating Properties, and Method for Manufacturing the Same - A steel sheet for deep drawing used for automobiles, and a method for manufacturing the same are disclosed. The steel sheet comprises, by weight %, C: 0.010% or less, Si: 0.02% or less, Mn: 0.06˜1.5%, P: 0.15% or less, S: 0.020% or less, Sol. Al: 0.10˜0.40%, N: 0.010% or less, Ti: 0.003˜0.010%, Nb: 0.003˜0.040%, B: 0.0002˜0.0020%, and the balance of Fe and other unavoidable impurities, wherein the composition of Ti, Al, B, and N satisfies the relationship: 1.0<(Ti[%]+Al[%]/16+6B[%])/3.43N[%]<4.1, and wherein the composition of Nb, Al, and C satisfies the relationship; 0.7<(Nb[%]+Al[%]/20)/7.75C[%]<3.5. The steel sheet exhibits excellent secondary work embrittlement, fatigue properties of welded joints, and an appealing plated surface as well as excellent formability. | 08-21-2008 |
20090095382 | Method of Manufacturing High Carbon Cold-Rolled Steel Sheet - A high carbon cold-rolled steel sheet having both excellent stretch-flange formability and excellent homogeneity of hardness in the sheet thickness direction is provided by a manufacturing method having the steps of: hot-rolling a steel containing 0.2 to 0.7% C by mass at finishing temperatures of (A | 04-16-2009 |
20090126837 | COLD ROLLED STEEL SHEET HAVING SUPERIOR FORMABILITY AND HIGH YIELD RATIO, PROCESS FOR PRODUCING THE SAME - Disclosed herein is a Nb—Ti composite IF steel in which fine precipitates, such as CuS precipitates, having a size of 0.2 μm or less are distributed. The distribution of fine precipitates in the Nb—Ti composite IF steel enhances the yield strength and lowers the in-plane anisotropy index. The nanometer-sized precipitates allow the formation of minute crystal grains. As a result, dissolved carbon is present in a larger amount in the crystal grain boundaries than within the crystal grains, which is advantageous in terms of room-temperature non-aging properties and bake handenability. | 05-21-2009 |
20090277546 | Method for manufacturing flat steel products from a steel forming a complex phase microstructure - A method, which allows high-tensile flat steel products to be manufactured with less effort, includes a steel that forms a complex phase microstructure and contains (in wt. %) C: 0.08-0.11%, Mn: 1.00-1.30%, P: ≦0.030%, S: ≦0.004%, Si: 0.60-0.80%, Al: ≦0.05%, N: ≦0.0060%, Cr: 0.30-0.80%, Ti: 0.060-0.120%, remainder iron and unavoidable impurities, being cast into a cast strip having a thickness of 1-4 mm. The cast strip is hot-rolled in-line into a hot-rolled strip having a thickness of 0.5-3.2 mm in a continuous process at a final hot-rolling temperature ranging from 900 to 1100° C., the deformation degree being greater than 20%. The hot-rolled strip is coiled at a coiling temperature ranging from 550 to 620° C., so as to obtain a hot-rolled strip, which has a minimum tensile strength R | 11-12-2009 |
20100084057 | COLD-ROLLED STEEL SHEET, GALVANNEALED STEEL SHEET, AND A PROCESS FOR THEIR MANUFACTURE - A high strength cold-rolled steel sheet and a high strength plated steel sheet which have an excellent surface appearance required for outer panels of automobiles and which have an extremely high r value in a direction at 45° with respect to the rolling direction and which have excellent press formability and a tensile strength of at least 340 MPa and a process for their manufacture are provided. The steel sheets have a chemical composition consisting essentially of, in mass %, C: 0.0005-0.025%, Si: at most 0.2%, Mn: 0.3-2.5%, P: at most 0.15%, S: at most 0.02%, N: at most 0.006%, sol. Al: less than 0.005%, Ti: 0.005-0.05%, and Nb: 0.020-0.200% with the mass ratio (Nb/Ti) of the contents of Nb and Ti being at least 2, and a remainder of Fe and impurities, and they have an r value in a direction at 45° with respect to the rolling direction (r | 04-08-2010 |
20100139818 | FERRITIC STAINLESS STEEL SHEET HAVING SUPERIOR SULFURIC ACID CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME - Disclosed is a ferritic stainless steel sheet which has excellent corrosion resistance against sulfuric acid in the high-temperature environment and shows less surface roughness at a bent part which is bent at 90° or more. Specifically disclosed is a ferritic stainless steel sheet which has the following chemical composition: C: 0.02 mass % or less, Si: 0.05 to 0.8 mass %, Mn: 0.5 mass % or less, P: 0.04 mass % or less, S: 0.010 mass % or less, Al: 0.10 mass % or less, Cr: 20 to 24 mass % Cu: 0.3 to 0.8 mass %, Ni: 0.5 mass % or less, Nb: 0.20 to 0.55 mass %, and N: 0.02 mass % or less, with the remainder being Fe and unavoidable impurities; and which has such a structure that the maximum particle diameter of an S-containing precipitate is 5 μm or smaller. | 06-10-2010 |
20110048588 | COLD-ROLLED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME - A cold-rolled steel sheet has a partially recrystallized grain structure with a degree of unrecrystallization of 25% to 90% and a Rockwell hardness HRB of 83 or more, the cold-rolled steel sheet containing 0.01% to 0.15% C, 0.03% or less Si, 0.10% to 0.70% Mn, 0.025% or less P, 0.025% or less S, 0.01% to 0.05% Al, and 0.008% or less N on a mass basis, the remainder being Fe and unavoidable impurities, wherein the mean diameter of ferrite is 2 to 10 μm and these components satisfy Formula (1): (C %)+0.15×(Mn %)+0.85×(P %)≧0.21, wherein (M %) represents the content (mass percent) of an element M. | 03-03-2011 |
20110073223 | STEEL SHEET FOR GALVANIZING WITH EXCELLENT WORKABILITY, AND METHOD FOR MANUFACTURING THE SAME - A high strength ductile steel sheet for extra deep drawing mainly used for interior or exterior plates of automobile bodies, and a method for manufacturing the same are disclosed. The steel sheet comprises, by weight %, C: 0.010% or less, Si: 0.1% or less, Mn: 0.06˜1.5%, P: 0.15% or less, S: 0.020% or less, Sol. Al: 0.10˜0.40%, N: 0.010% or less, Ti: 0.003˜0.010%, Nb: 0.003˜0.040%, B: 0.0002˜0.0020%, Mo: 0.05% or less, one or both of Sb: 0.005˜0.05% and Sn: 0.005˜0.05%, a total amount of Sb and Sn being in the range of 0.005˜0.1% when both of Sb and Sn are added to the steel sheet, and the balance of Fe and other unavoidable impurities. The steel sheet has surface agglomerates having an average diameter of 1 μm or less, and a tensile strength of 28˜50 kgf/mm | 03-31-2011 |
20110168303 | HIGH TENSILE STRENGTH STEEL FOR CONTAINER AND PRODUCING METHOD OF THE SAME - A steel sheet for containers that has a hardness of 500 MPa or more and superior workability and a method for producing the steel sheet are provided. A steel containing, in percent by mass, 0.01% to 0.05% carbon, 0.04% or less silicon, 0.1% to 1.2% manganese, 0.10% or less sulfur, 0.001% to 0.100% aluminum, 0.10% or less nitrogen, and 0.0020% to 0.100% phosphorus, the balance being iron and incidental impurities, is subjected to hot rolling at a finishing temperature of (Ar | 07-14-2011 |
20110290383 | HIGH STRENGTH COLD ROLLED STEEL SHEET EXCELLENT IN WELDABILITY AND METHOD FOR MANUFACTURING THE SAME - A high strength cold rolled steel sheet excellent in weldability and has a TS of 440 MPa or more includes a composition including C: 0.0005 to 0.005%, Si: 0.1 to 1.0%, Mn: 1 to 2.5%, P: 0.01 to 0.2%, S: 0.015% or less, sol. Al: 0.05% or less, N: 0.007% or less, Ti: 0.01 to 0.1%, B: 0.0005 to 0.0020%, Cu: 0.05 to 0.5%, and Ni: 0.03 to 0.5% by mass with the balance Fe and incidental impurities; and a microstructure constituted by a ferrite single phase. | 12-01-2011 |
20120006451 | CARBON STEEL SHEET HAVING EXCELLENT CARBURIZATION PROPERTIES, AND METHOD FOR PRODUCING SAME - The invention provides a carbon steel sheet including C: 0.20% to 0.45% by mass, Si: 0.05% to 0.8% by mass, Mn: 0.85% to 2.0% by mass, P: 0.001% to 0.04% by mass, S: 0.0001% to 0.006% by mass, Al: 0.01% to 0.1% by mass, Ti: 0.005% to 0.3% by mass, B: 0.0005% to 0.01% by mass and N: 0.001% to 0.01% by mass, in which a K value that can be obtained from 3C+Mn+0.5Si is greater than or equal to 2.0; surface hardness is less than or equal to 77 on the Rockwell B Scale; and the average content of N in a zone from the surface to a depth of 100 μm is less than or equal to 100 ppm. This carbon steel sheet is configured to be carburized in a carburization atmosphere with a carbon potential of 0.6 or less. | 01-12-2012 |
20120255656 | STEEL SHEET FOR CAN HAVING EXCELLENT SURFACE ROUGHENING RESISTANCE AND MANUFACTURING METHOD THEREOF - Provided is a steel sheet having excellent surface roughening resistance and a manufacturing method thereof. The steel sheet for cans contains 0.0040 to 0.01% C and 0.02 to 0.12% Nb. An average ferrite grain size in a cross section in the rolling direction in a region ranging from a surface layer of the steel sheet to a position ¼ of a sheet thickness away from the surface layer of the steel sheet is set to 7 μm or more and 10 μm or less, and the average ferrite grain size in a cross section in the rolling direction in a region ranging from the position ¼ of a sheet thickness away from the surface layer of the steel sheet to a sheet thickness center portion of the steel sheet is set to 15 μm or less. The average ferrite grain size in the cross section in the rolling direction in the region ranging from the surface layer of the steel sheet to the position ¼ of a sheet thickness away from the surface layer of the steel sheet is set smaller than the average ferrite grain size in the cross section in the rolling direction in a region ranging from the position ¼ sheet thickness away from the surface layer of the steel sheet to the sheet thickness center portion of the steel sheet. The steel sheet for cans is obtained by cooling a steel sheet at 50 to 100° C./s within 1 second after final finish rolling, is wound at 500° C. to 600° C., is subsequently subjected to pickling treatment, is subjected to cold rolling at a reduction rate of 90% or more, and is subjected to continuous annealing at a temperature of equal to more than a recrystallization temperature to 800° C. or below. | 10-11-2012 |
20130037180 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET AND METHOD OF MANUFACTURING THEREOF - A high-strength cold-rolled steel sheet includes, by mass %, C: 0.10% to 0.40%, Mn: 0.5% to 4.0%, Si: 0.005% to 2.5%, Al: 0.005% to 2.5%, Cr: 0% to 1.0%, and a balance of iron and inevitable impurities, in which an amount of P is limited to 0.05% or less, an amount of S is limited to 0.02% or less, an amount of N is limited to 0.006% or less, the microstructure includes 2% to 30% of retained austenite by area percentage, martensite is limited to 20% or less by area percentage in the microstructure, an average particle size of cementite is 0.01 μm to 1 μm, and 30% to 100% of the cementite has an aspect ratio of 1 to 3. | 02-14-2013 |
20130180631 | High-Carbon Hot-Rolled Steel Sheet, High-Carbon Cold-Rolled Steel Sheet, and Method of Manufacturing the Same - Provided is a method of manufacturing a high-carbon hot-rolled steel sheet, including the steps of i) preparing high-carbon steel materials comprising C: 0.7 to 0.9%, Si: 0.5% or less, Mn: 0.1 to 1.5%, Cr: 0.5% or less, P: 0.05% or less, and S: 0.03% or less in wt % and remaining Fe and other inevitable impurities; ii) heating the high-carbon steel materials again and manufacturing a steel sheet by performing hot rolling in an austenite region in which a finishing temperature for the hot rolling is an Ar3 transformation temperature or higher; iii) rapidly cooling the steel sheet at 520 to 620° C. before phase transformation is started in a Run-Out Table (ROT); iv) uniformly maintaining a cooling retention temperature so that the cooled steel sheet is subject to phase transformation in any one temperature between 520 to 620° C.; and v) winding the steel sheet in the cooling retention temperature. Also provided is the high-carbon steel sheet made by the above-described method. | 07-18-2013 |
20130180632 | Steel Sheet for Enamel Having No Surface Defects and Method of Manufacturing the Same - A steel sheet for enameling for eliminating surface defects such as fish scale defects and having excellent formability, and provides a steel sheet for enamel having no surface defects, including: more than 0 wt % and 0.005 wt % or less of C, 0.1 to 0.5 wt % of Mn, more than 0 wt % and 0.03 wt % or less of Si, 0.05 to 0.3 wt % of Cr, more than 0 wt % and 0.03 wt % or less of Al, 0.03 to 0.1 wt % of O, more than 0 wt % and 0.03 wt % or less of P, more than 0 wt % and 0.02 wt % or less of S, more than 0 wt % and 0.015 wt % or less of Cu, more than 0 wt % and 0.005 wt % or less of N, Fe in a remaining content, and other inevitable impurities. | 07-18-2013 |
20130248059 | METHOD FOR MANUFACTURING A PRECIPITATION-HARDENING COLD-ROLLED STEEL SHEET HAVING EXCELLENT YIELD RATIOS - A method for manufacturing a precipitation hardening cold-rolled steel sheet with an excellent yield ratio. The method may include the steps of hot rolling a steel slab with finish rolling at a temperature of Ar3 transformation point or more to form a hot-rolled steel sheet, coiling the hot-rolled steel sheet at a temperature of 550-600 ° C., cold rolling the hot-rolled steel sheet at a reduction ratio of 50% or more; and recovery-recrystallization annealing the cold-rolled steel sheet at a line speed of 150-200 mpm and at a temperature of 780-820° C. in a continuous annealing furnace. The recovery-recrystallization annealing may provide a recrystallization ratio of 65-75%. The steel slab includes, by weight %: C: 0.07-0.10%, Mn: 1.41-1.70%, P: 0.05-0.07%, S: 0.005% or less, N: 0.005% or less, acid-soluble Al: 0.10-0.15%, Nb: 0.06-0.09%, B: 0.0008-0.0012%, Sb: 0.02-0.06%, and the balance comprising Fe and other unavoidable impurities. | 09-26-2013 |
20130306204 | HOT ROLLED FERRITIC STAINLESS STEEL SHEET, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING FERRITIC STAINLESS STEEL SHEET - This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv. | 11-21-2013 |
20130340898 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET WITH HIGH YIELD RATIO HAVING EXCELLENT FORMABILITY AND METHOD FOR PRODUCING THE SAME - Provided are a high-strength cold-rolled steel sheet having excellent formability, excellent ductility, excellent hole expansibility, and high yield ratio and a method for producing the same. The high-strength cold-rolled steel sheet contains 0.05% to 0.15% C, 0.10% to 0.90% Si, 1.0% to 2.0% Mn, 0.005% to 0.05% P, 0.0050% or less S, 0.01% to 0.10% Al, 0.0050% or less N, and 0.010% to 0.100% Nb, which are chemical components, on a mass basis, the balance being Fe and unavoidable impurities; has a microstructure which is a multi-phase structure containing 90% or more of a ferrite phase and 0.5% to less than 5.0% of a martensite phase on a volume fraction basis, the remainder being low-temperature transformation phases; and has a yield ratio of 70% or more. | 12-26-2013 |
20140041769 | NON-ORIENTED ELECTRICAL STEEL SHEET - A non-oriented electrical steel sheet contains 2.8 mass % or more and 4.0 mass % or less of Si, 0.2 mass % or more and 3.0 mass % or less of Al, and 0.02 mass % or more and 0.2 mass % or less of P. The non-oriented electrical steel sheet contains further contains 0.5 mass % or more in total of at least one kinds selected from a group consisting of 4.0 mass % or less of Ni and 2.0 mass % or less of Mn. A C content is 0.05 mass % or less, a N content is 0.01 mass % or less, an average grain diameter is 15 μm or less, and a <111> axial density is 6 or larger. | 02-13-2014 |
20140076469 | HIGH CARBON THIN STEEL SHEET AND METHOD FOR PRODUCING SAME - A steel sheet having a composition containing C: 0.20% to 0.50%, Si: 1.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.02% or less, sol.Al: 0.08% or less, N: 0.02% or less, and Fe and incidental impurities, and a microstructure composed of ferrite and cementite, wherein each of the average grain size ds of the ferrite in the region from the surface of the steel sheet to the position at one-quarter of the sheet thickness and the average grain size dc of the ferrite in the region from the position at one-quarter of the sheet thickness of the steel sheet to the sheet thickness center is 20 to 40 μm, 0.80≦ds/dc≦1.20 is satisfied, the average grain size of the cementite is 1.0 μm or more, the spheroidizing ratio is 90% or more, and 90% or more of cementite is present inside ferrite grains. | 03-20-2014 |
20140102604 | COLD ROLLED RECOVERY ANNEALED MILD STEEL AND PROCESS FOR MANUFACTURE THEREOF - A high strength mild steel alloy is provided. In addition, a process for making the high strength steel alloy is also provided. The process includes providing a mild steel alloy with a chemical composition in weight percent within a range of 0.12-0.25 carbon, 0.30-1.70 manganese, 0.50 max silicon, 0.10 max chromium, 0.01 max niobium, 0.035 max titanium, 0.01 vanadium, 0.10 max molybdenum, 0.10 max nickel, 0.015 max sulfur, 0.025 max phosphorus, 0.012 max nitrogen, 0.003 max boron, and 0.015-0.065 aluminum. Hot rolled steel strip with a thickness of less than 10 millimeters is cold rolled to produce a cold rolled steel sheet that has a thickness that is less than 50% of the hot rolled steel strip thickness which is subsequently recovery annealed to provide sheet material having a yield strength greater than 550 megapascals (MPa) and a percent elongation to failure greater than 3.5%. | 04-17-2014 |
20140137993 | PROCESS FOR MAKING COLD-ROLLED DUAL PHASE STEEL SHEET - Dual-phase steels and a process for producing a family of dual-phase steels that have a low YS/TS ratio and tensile strength above 590 MPa. The process includes employing low annealing temperatures combined with specific cooling strategies using gas jet rapid cooling equipped with “Ultra Rapid Cooling” (URC) capacity in the cooling tower. The process can also include the production of dual-phase steels with tensile strengths of at least 690 MPa by processing steels with specific cooling strategies using the URC having a refined Mo content towards the higher end of the chemical composition range mentioned in the current stated invention. | 05-22-2014 |
20140166163 | PROCESS FOR MAKING COLD-ROLLED DUAL PHASE STEEL SHEET - A process for manufacturing a cold rolled high strength dual phase steel. The process includes soaking a steel slab within a temperature range of 1200-1300° C., hot rolling the soaked steel slab in a roughing treatment and producing a transfer bar, and hot rolling the transfer bar in a finishing treatment and producing hot rolled strip. The hot rolled strip is cold rolled with at least a 55% reduction in thickness. The cold rolled sheet is intercritically annealed at a temperature between 790-840 ° C. and rapidly cooled to a temperature between 450-500 ° C. The rapidly cooled sheet has a ferrite plus martensite microstructure, a 0.2% yield strength of at least 550 MPa, a tensile strength of at least 980 MPa and a total elongation to failure of at least 10%. | 06-19-2014 |
20140238557 | METHOD FOR PRODUCING COLD-ROLLED STEEL SHEET - A method for producing a high-tensile cold-rolled steel sheet includes subjecting a slab having a composition containing C: more than 0.020% and less than 0.30%, Si: more than 0.10% and 3.00% or less, and Mn: more than 1.00% and 3.50% or less to hot rolling wherein the roll draft of the final one pass is higher than 15%, and rolling is finished in the temperature region of Ar | 08-28-2014 |
20140238558 | NON-ORIENTED ELECTRICAL STEEL SHEET AND MANUFACTURING METHOD THEREOF - A non-oriented electrical steel sheet containing: in mass %, C: 0.005% or less; Si: 0.1% to 2.0%; Mn: 0.05% to 0.6%; P: 0.100% or less; and Al: 0.5% or less, in which 10 pieces/μm | 08-28-2014 |
20140261916 | HIGH STRENGTH - HIGH DUCTILITY COLD ROLLED RECOVERY ANNEALED STEEL AND PROCESS FOR MANUFACTURE THEREOF - A high strength-high ductility cold rolled steel sheet is provided. The steel sheet has a recovery annealed microstructure, a yield strength greater than 820 megapascals (MPa) and a percent elongation to failure greater than 3.5%. In some instances, the steel alloy sheet has a Rockwell B hardness greater than 100 and may or may not exhibit a yield strength-to-tensile strength ratio between 0.25 and 1.00. | 09-18-2014 |
20140290810 | HIGH STRENGTH COLD ROLLED STEEL SHEET WITH EXCELLENT DEEP DRAWABILITY AND MATERIAL UNIFORMITY IN COIL AND METHOD FOR MANUFACTURING THE SAME - A high strength cold rolled steel sheet includes a chemical composition containing, by mass %, C: 0.010% or more and 0.060% or less, Si: more than 0.5% and 1.5% or less, Mn: 1.0% or more and 3.0% or less, P: 0.005% or more and 0.100% or less, S: 0.010% or less, sol.Al: 0.005% or more and 0.500% or less, N: 0.0100% or less, Nb: 0.010% or more and 0.100% or less, Ti: 0.015% or more and 0.150% or less and the balance comprising Fe and inevitable impurities. The microstructure includes, in area fraction, 70% or more of a ferrite phase and 3% or more of a martensite phase. The tensile strength is 440 MPa or more and an average r value is 1.20 or more. | 10-02-2014 |
20140305553 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING SMALL VARIATIONS IN STRENGTH AND DUCTILITY AND MANUFACTURING METHOD FOR THE SAME - A high-strength cold-rolled steel sheet has a chemical composition including C of 0.05% to 0.30%, Si of greater than 0% to 3.0%, Mn of 0.1% to 5.0%, P of greater than 0% to 0.1%, S of greater than 0% to 0.02%, Al of 0.01% to 1.0%, and N of greater than 0% to 0.01%, in mass percent, with the remainder including iron and inevitable impurities. The steel sheet has a microstructure containing ferrite as a soft primary phase in an area percentage of 20% to 50% with the remainder including tempered martensite and/or tempered bainite as a hard secondary phase. The ferrite grains are adapted to contain cementite particles having an appropriate size in an appropriate number density. | 10-16-2014 |
20150020933 | HEAT-RESISTANT COLD ROLLED FERRITIC STAINLESS STEEL SHEET, HOT ROLLED FERRITIC STAINLESS STEEL SHEET FOR COLD ROLLING RAW MATERIAL, AND METHODS FOR PRODUCING SAME - Provided is a heat-resistant cold rolled ferritic stainless steel sheet containing, in terms of mass %, 0.02% or less of C, 0.1% to 1.0% of Si, greater than 0.6% to 1.5% of Mn, 0.01% to 0.05% of P, 0.0001% to 0.0100% of S, 13.0% to 20.0% of Cr, 0.1% to 3.0% of Mo, 0.005% to 0.20% of Ti, 0.3% to 1.0% of Nb, 0.0002% to 0.0050% of B, 0.005% to 0.50% of Al, and 0.02% or less of N, with the balance being Fe and inevitable impurities, in which {111}-oriented grains are present at an area ratio of 20% or greater in a region from a surface layer to t/4 (t is a sheet thickness), {111}-oriented grains are present at an area ratio of 40% or greater in a region from t/4 to t/2, and {011}-oriented grains are present at an area ratio of 15% or less in the entire region in a thickness direction. | 01-22-2015 |
20150075680 | STEEL SHEET SUITABLE FOR IMPACT ABSORBING MEMBER AND METHOD FOR ITS MANUFACTURE - A steel sheet suitable as a starting material for a vehicle impact absorbing member with high absorption of impact energy and resistance to cracking contains, by mass %, C: 0.08-0.30%, Mn: 1.5-3.5%; Si+Al: 0.50-3.0%, P: 0.10% or less, S: at most 0.010%, and N: at most 0.010%, and optionally, one or more types selected from Cr: at most 0.5%, Mo: at most 0.5%, B: at most 0.010%, Ti: less than 0.04%, Nb: less than 0.030%, V: less than 0.5%, Ca: at most 0.010%, Mg: at most 0.010%, REM: at most 0.050%, and Bi: at most 0.050%. The microstructure contains, by area %, bainite: more than 50%, martensite: 3-30%, and retained austenite: 3-15%, the remainder comprising ferrite having an average grain diameter of less than 5 mm. The product of uniform elongation and hole expansion ratio is at least 300% | 03-19-2015 |
20150114524 | HIGH STRENGTH COLD-ROLLED STEEL SHEET EXHIBITING LITTLE VARIATION IN STRENGTH AND DUCTILITY, AND MANUFACTURING METHOD FOR SAME - In a high strength cold-rolled steel plate having a specific chemical composition, a soft first phase (ferrite) has an area ratio of 20-50%, the remainder being a hard second phase (tempered martensite and/or tempered bainite), among all the ferrite grains, ferrite grains that have an average grain diameter of 10-25 μm account for a total area ratio of 80% or more, the number of the cementite grains that have an equivalent circle diameter of 0.3 μm or more is more than 0.15 piece and 1.0 piece or less per 1 μm | 04-30-2015 |
20150144231 | HIGH STRENGTH COLD-ROLLED STEEL SHEET AND MANUFACTURING METHOD THEREFOR - In a steel sheet having a specific chemical composition and having a microstructure including ferrite that is a soft first phase by 20-50% in terms of the area ratio, the remainder being tempered martensite and/or tempered bainite that is a hard second phase, the microstructure of steel of a surface layer section of the steel sheet from the surface to the depth of 100 μm and a center section of t/4-3t/4 (t is the sheet thickness) is controlled. | 05-28-2015 |
20150322552 | HIGH STRENGTH COLD ROLLED STEEL SHEET WITH LOW YIELD RATIO AND METHOD OF MANUFACTURING THE SAME - A high strength cold rolled steel sheet with a low yield ratio has a chemical composition containing C: 0.05% to 0.10%, Si: 0.6% to 1.3%, Mn: 1.4% to 2.2%, P: 0.08% or less, S: 0.010% or less, Al: 0.01% to 0.08%, N: 0.010% or less, and the remainder being Fe and incidental impurities, on a percent by mass basis, and a microstructure in which the average grain size of ferrite is 15 μm or less, the volume fraction of ferrite is 70% or more, the volume fraction of bainite is 3% or more, the volume fraction of retained austenite is 4% to 7%, the average grain size of martensite is 5 μm or less, and the volume fraction of martensite is 1% to 6%, wherein the average C concentration (percent by mass) in the retained austenite is 0.30% to 0.70%, yield ratio is 64% or less, and the tensile strength is 590 MPa or more. | 11-12-2015 |
20160024627 | HOT ROLLED FERRITIC STAINLESS STEEL SHEET, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING FERRITIC STAINLESS STEEL SHEET - This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv. | 01-28-2016 |
20160060724 | STEEL SHEET AND METHOD FOR PRODUCING SAME - Disclosed herein are a steel sheet having excellent aging resistance and low yield ratio properties, and a method for producing the same. The disclosed sheet comprises, by weight, 0.005-0.06% carbon (C), 0.2% or less silicon (Si), 1.0-2.0% manganese (Mn), 0.08% or less phosphorus (P), 0.01% or less sulfur (S), 0.2-2.0% aluminum (Al), one or more of chromium (Cr) and molybdenum (Mo) in an amount satisfying 0.3≦[Cr wt %]+0.3[Mo wt %]≦2.0, and 0.008% or less nitrogen (N), with the remainder being iron (Fe) and inevitable impurities, and has a single-phase structure of ferrite in a hot-rolled state, and a two-phase structure of ferrite and martensite in a cold-rolled state. | 03-03-2016 |
20160131222 | STEEL SHEET FOR STEEL BELT AND PROCESS FOR MANUFACTURING SAME, AND STEEL BELT - Manufacturing a steel sheet for a steel belt includes hot rolling a steel slab containing, in mass %, 0.60 to 0.80% of C, 1.0% or less of Si, 0.10 to 1.0% of Mn, 0.020% or less P, 0.010% or less S, 0.1 to 1.0% of Cr, 0 to 0.5% of V, 0 to 0.1% of Ti, 0 to 0.1% of Nb, and 0 to 0.01% of B, the balance Fe and unavoidable impurities, under a finish hot rolling temperature of 800 to 900° C. An average cooling rate from finish rolling to coiling is 20° C. per second or more. A coiling temperature is 450 to 650° C. The hot-rolled slab is cold rolled with a total rolling reduction ratio of 40% or more and a reduction ratio per one pass of less than 12%, without performing a heat treatment. The cold-rolled slab is aged at 200 to 500° C. for 0.5 to 30 hours. | 05-12-2016 |
20160145706 | HIGH-STRENGTH STEEL SHEET AND MANUFACTURING METHOD THEREFOR - A high-strength steel sheet according to the present invention comprises, by weight, 10.0-15.0% Mn, 6.0-9.0% Al, 0.5-2.0% Cr, 0.8-1.6% C, and 0.001-0.01% N, and further comprises, by weight, 0.02-0.1% V, 0.005-0.015% Nb, and 0.005-0.02% Mo, or further comprises 0.1-0.5 wt % TiAl particles. The high-strength steel sheet has a mixed structure comprising austenite and a fine k-carbide having a mean particle diameter of 10-500 nm. | 05-26-2016 |
20160153064 | HOT-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND ANTI-AGING PROPERTIES AND METHOD FOR MANUFACTURING SAME | 06-02-2016 |
20160160308 | STEEL SHEET FOR CAN AND METHOD FOR MANUFACTURING THE SAME - A steel sheet exhibiting good drawability and excellent buckling strength of a can body portion against an external pressure, and a method for manufacturing the same. The steel sheet includes C: 0.0030% or more and 0.0100% or less, Si: 0.05% or less, Mn: 0.10% or more and 1.0% or less, P: 0.030% or less, S: 0.020% or less, Al: 0.010% or more and 0.100% or less, N: 0.0050% or less, Nb: 0.010% or more and 0.050% or less, and incidental impurities. Contents of C and Nb satisfy 0.10 ([Nb]/92.9)/([C]/12)<0.60, the HR30T hardness of the steel sheet is 56 or more, and the average Young's modulus of the steel sheet is 210 GPa or more. | 06-09-2016 |
20160177427 | HIGH-YIELD-RATIO, HIGH-STRENGTH COLD ROLLED STEEL SHEET AND PRODUCTION METHOD THEREFOR | 06-23-2016 |
20160186285 | ULTRAHIGH-STRENGTH STEEL SHEET AND MANUFACTURING METHOD THEREFOR - The present invention relates to an ultrahigh-strength steel sheet and a manufacturing method therefor. More specifically, the present invention can provide an ultra-high strength steel sheet which can ensure weldability and a delayed fracture resistance property by controlling the contents of elements affecting platability along with the contents of austenite-stabilizing elements and increasing twin formation through re-rolling, and simultaneously improve impact characteristics and workability by ensuring excellent yield strength and ductility. | 06-30-2016 |
20080196799 | Steel Sheet for Deep Drawing Having Excellent Secondary Work Embrittlement Resistance, Fatigue Properties and Plating Properties, and Method for Manufacturing the Same - A steel sheet for deep drawing used for automobiles, and a method for manufacturing the same are disclosed. The steel sheet comprises, by weight %, C: 0.010% or less, Si: 0.02% or less, Mn: 0.06˜1.5%, P: 0.15% or less, S: 0.020% or less, Sol. Al: 0.10˜0.40%, N: 0.010% or less, Ti: 0.003˜0.010%, Nb: 0.003˜0.040%, B: 0.0002˜0.0020%, and the balance of Fe and other unavoidable impurities, wherein the composition of Ti, Al, B, and N satisfies the relationship: 1.0<(Ti[%]+Al[%]/16+6B[%])/3.43N[%]<4.1, and wherein the composition of Nb, Al, and C satisfies the relationship; 0.7<(Nb[%]+Al[%]/20)/7.75C[%]<3.5. The steel sheet exhibits excellent secondary work embrittlement, fatigue properties of welded joints, and an appealing plated surface as well as excellent formability. | 08-21-2008 |
20090095382 | Method of Manufacturing High Carbon Cold-Rolled Steel Sheet - A high carbon cold-rolled steel sheet having both excellent stretch-flange formability and excellent homogeneity of hardness in the sheet thickness direction is provided by a manufacturing method having the steps of: hot-rolling a steel containing 0.2 to 0.7% C by mass at finishing temperatures of (A | 04-16-2009 |
20090126837 | COLD ROLLED STEEL SHEET HAVING SUPERIOR FORMABILITY AND HIGH YIELD RATIO, PROCESS FOR PRODUCING THE SAME - Disclosed herein is a Nb—Ti composite IF steel in which fine precipitates, such as CuS precipitates, having a size of 0.2 μm or less are distributed. The distribution of fine precipitates in the Nb—Ti composite IF steel enhances the yield strength and lowers the in-plane anisotropy index. The nanometer-sized precipitates allow the formation of minute crystal grains. As a result, dissolved carbon is present in a larger amount in the crystal grain boundaries than within the crystal grains, which is advantageous in terms of room-temperature non-aging properties and bake handenability. | 05-21-2009 |
20090277546 | Method for manufacturing flat steel products from a steel forming a complex phase microstructure - A method, which allows high-tensile flat steel products to be manufactured with less effort, includes a steel that forms a complex phase microstructure and contains (in wt. %) C: 0.08-0.11%, Mn: 1.00-1.30%, P: ≦0.030%, S: ≦0.004%, Si: 0.60-0.80%, Al: ≦0.05%, N: ≦0.0060%, Cr: 0.30-0.80%, Ti: 0.060-0.120%, remainder iron and unavoidable impurities, being cast into a cast strip having a thickness of 1-4 mm. The cast strip is hot-rolled in-line into a hot-rolled strip having a thickness of 0.5-3.2 mm in a continuous process at a final hot-rolling temperature ranging from 900 to 1100° C., the deformation degree being greater than 20%. The hot-rolled strip is coiled at a coiling temperature ranging from 550 to 620° C., so as to obtain a hot-rolled strip, which has a minimum tensile strength R | 11-12-2009 |
20100084057 | COLD-ROLLED STEEL SHEET, GALVANNEALED STEEL SHEET, AND A PROCESS FOR THEIR MANUFACTURE - A high strength cold-rolled steel sheet and a high strength plated steel sheet which have an excellent surface appearance required for outer panels of automobiles and which have an extremely high r value in a direction at 45° with respect to the rolling direction and which have excellent press formability and a tensile strength of at least 340 MPa and a process for their manufacture are provided. The steel sheets have a chemical composition consisting essentially of, in mass %, C: 0.0005-0.025%, Si: at most 0.2%, Mn: 0.3-2.5%, P: at most 0.15%, S: at most 0.02%, N: at most 0.006%, sol. Al: less than 0.005%, Ti: 0.005-0.05%, and Nb: 0.020-0.200% with the mass ratio (Nb/Ti) of the contents of Nb and Ti being at least 2, and a remainder of Fe and impurities, and they have an r value in a direction at 45° with respect to the rolling direction (r | 04-08-2010 |
20100139818 | FERRITIC STAINLESS STEEL SHEET HAVING SUPERIOR SULFURIC ACID CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME - Disclosed is a ferritic stainless steel sheet which has excellent corrosion resistance against sulfuric acid in the high-temperature environment and shows less surface roughness at a bent part which is bent at 90° or more. Specifically disclosed is a ferritic stainless steel sheet which has the following chemical composition: C: 0.02 mass % or less, Si: 0.05 to 0.8 mass %, Mn: 0.5 mass % or less, P: 0.04 mass % or less, S: 0.010 mass % or less, Al: 0.10 mass % or less, Cr: 20 to 24 mass % Cu: 0.3 to 0.8 mass %, Ni: 0.5 mass % or less, Nb: 0.20 to 0.55 mass %, and N: 0.02 mass % or less, with the remainder being Fe and unavoidable impurities; and which has such a structure that the maximum particle diameter of an S-containing precipitate is 5 μm or smaller. | 06-10-2010 |
20110048588 | COLD-ROLLED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME - A cold-rolled steel sheet has a partially recrystallized grain structure with a degree of unrecrystallization of 25% to 90% and a Rockwell hardness HRB of 83 or more, the cold-rolled steel sheet containing 0.01% to 0.15% C, 0.03% or less Si, 0.10% to 0.70% Mn, 0.025% or less P, 0.025% or less S, 0.01% to 0.05% Al, and 0.008% or less N on a mass basis, the remainder being Fe and unavoidable impurities, wherein the mean diameter of ferrite is 2 to 10 μm and these components satisfy Formula (1): (C %)+0.15×(Mn %)+0.85×(P %)≧0.21, wherein (M %) represents the content (mass percent) of an element M. | 03-03-2011 |
20110073223 | STEEL SHEET FOR GALVANIZING WITH EXCELLENT WORKABILITY, AND METHOD FOR MANUFACTURING THE SAME - A high strength ductile steel sheet for extra deep drawing mainly used for interior or exterior plates of automobile bodies, and a method for manufacturing the same are disclosed. The steel sheet comprises, by weight %, C: 0.010% or less, Si: 0.1% or less, Mn: 0.06˜1.5%, P: 0.15% or less, S: 0.020% or less, Sol. Al: 0.10˜0.40%, N: 0.010% or less, Ti: 0.003˜0.010%, Nb: 0.003˜0.040%, B: 0.0002˜0.0020%, Mo: 0.05% or less, one or both of Sb: 0.005˜0.05% and Sn: 0.005˜0.05%, a total amount of Sb and Sn being in the range of 0.005˜0.1% when both of Sb and Sn are added to the steel sheet, and the balance of Fe and other unavoidable impurities. The steel sheet has surface agglomerates having an average diameter of 1 μm or less, and a tensile strength of 28˜50 kgf/mm | 03-31-2011 |
20110168303 | HIGH TENSILE STRENGTH STEEL FOR CONTAINER AND PRODUCING METHOD OF THE SAME - A steel sheet for containers that has a hardness of 500 MPa or more and superior workability and a method for producing the steel sheet are provided. A steel containing, in percent by mass, 0.01% to 0.05% carbon, 0.04% or less silicon, 0.1% to 1.2% manganese, 0.10% or less sulfur, 0.001% to 0.100% aluminum, 0.10% or less nitrogen, and 0.0020% to 0.100% phosphorus, the balance being iron and incidental impurities, is subjected to hot rolling at a finishing temperature of (Ar | 07-14-2011 |
20110290383 | HIGH STRENGTH COLD ROLLED STEEL SHEET EXCELLENT IN WELDABILITY AND METHOD FOR MANUFACTURING THE SAME - A high strength cold rolled steel sheet excellent in weldability and has a TS of 440 MPa or more includes a composition including C: 0.0005 to 0.005%, Si: 0.1 to 1.0%, Mn: 1 to 2.5%, P: 0.01 to 0.2%, S: 0.015% or less, sol. Al: 0.05% or less, N: 0.007% or less, Ti: 0.01 to 0.1%, B: 0.0005 to 0.0020%, Cu: 0.05 to 0.5%, and Ni: 0.03 to 0.5% by mass with the balance Fe and incidental impurities; and a microstructure constituted by a ferrite single phase. | 12-01-2011 |
20120006451 | CARBON STEEL SHEET HAVING EXCELLENT CARBURIZATION PROPERTIES, AND METHOD FOR PRODUCING SAME - The invention provides a carbon steel sheet including C: 0.20% to 0.45% by mass, Si: 0.05% to 0.8% by mass, Mn: 0.85% to 2.0% by mass, P: 0.001% to 0.04% by mass, S: 0.0001% to 0.006% by mass, Al: 0.01% to 0.1% by mass, Ti: 0.005% to 0.3% by mass, B: 0.0005% to 0.01% by mass and N: 0.001% to 0.01% by mass, in which a K value that can be obtained from 3C+Mn+0.5Si is greater than or equal to 2.0; surface hardness is less than or equal to 77 on the Rockwell B Scale; and the average content of N in a zone from the surface to a depth of 100 μm is less than or equal to 100 ppm. This carbon steel sheet is configured to be carburized in a carburization atmosphere with a carbon potential of 0.6 or less. | 01-12-2012 |
20120255656 | STEEL SHEET FOR CAN HAVING EXCELLENT SURFACE ROUGHENING RESISTANCE AND MANUFACTURING METHOD THEREOF - Provided is a steel sheet having excellent surface roughening resistance and a manufacturing method thereof. The steel sheet for cans contains 0.0040 to 0.01% C and 0.02 to 0.12% Nb. An average ferrite grain size in a cross section in the rolling direction in a region ranging from a surface layer of the steel sheet to a position ¼ of a sheet thickness away from the surface layer of the steel sheet is set to 7 μm or more and 10 μm or less, and the average ferrite grain size in a cross section in the rolling direction in a region ranging from the position ¼ of a sheet thickness away from the surface layer of the steel sheet to a sheet thickness center portion of the steel sheet is set to 15 μm or less. The average ferrite grain size in the cross section in the rolling direction in the region ranging from the surface layer of the steel sheet to the position ¼ of a sheet thickness away from the surface layer of the steel sheet is set smaller than the average ferrite grain size in the cross section in the rolling direction in a region ranging from the position ¼ sheet thickness away from the surface layer of the steel sheet to the sheet thickness center portion of the steel sheet. The steel sheet for cans is obtained by cooling a steel sheet at 50 to 100° C./s within 1 second after final finish rolling, is wound at 500° C. to 600° C., is subsequently subjected to pickling treatment, is subjected to cold rolling at a reduction rate of 90% or more, and is subjected to continuous annealing at a temperature of equal to more than a recrystallization temperature to 800° C. or below. | 10-11-2012 |
20130037180 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET AND METHOD OF MANUFACTURING THEREOF - A high-strength cold-rolled steel sheet includes, by mass %, C: 0.10% to 0.40%, Mn: 0.5% to 4.0%, Si: 0.005% to 2.5%, Al: 0.005% to 2.5%, Cr: 0% to 1.0%, and a balance of iron and inevitable impurities, in which an amount of P is limited to 0.05% or less, an amount of S is limited to 0.02% or less, an amount of N is limited to 0.006% or less, the microstructure includes 2% to 30% of retained austenite by area percentage, martensite is limited to 20% or less by area percentage in the microstructure, an average particle size of cementite is 0.01 μm to 1 μm, and 30% to 100% of the cementite has an aspect ratio of 1 to 3. | 02-14-2013 |
20130180631 | High-Carbon Hot-Rolled Steel Sheet, High-Carbon Cold-Rolled Steel Sheet, and Method of Manufacturing the Same - Provided is a method of manufacturing a high-carbon hot-rolled steel sheet, including the steps of i) preparing high-carbon steel materials comprising C: 0.7 to 0.9%, Si: 0.5% or less, Mn: 0.1 to 1.5%, Cr: 0.5% or less, P: 0.05% or less, and S: 0.03% or less in wt % and remaining Fe and other inevitable impurities; ii) heating the high-carbon steel materials again and manufacturing a steel sheet by performing hot rolling in an austenite region in which a finishing temperature for the hot rolling is an Ar3 transformation temperature or higher; iii) rapidly cooling the steel sheet at 520 to 620° C. before phase transformation is started in a Run-Out Table (ROT); iv) uniformly maintaining a cooling retention temperature so that the cooled steel sheet is subject to phase transformation in any one temperature between 520 to 620° C.; and v) winding the steel sheet in the cooling retention temperature. Also provided is the high-carbon steel sheet made by the above-described method. | 07-18-2013 |
20130180632 | Steel Sheet for Enamel Having No Surface Defects and Method of Manufacturing the Same - A steel sheet for enameling for eliminating surface defects such as fish scale defects and having excellent formability, and provides a steel sheet for enamel having no surface defects, including: more than 0 wt % and 0.005 wt % or less of C, 0.1 to 0.5 wt % of Mn, more than 0 wt % and 0.03 wt % or less of Si, 0.05 to 0.3 wt % of Cr, more than 0 wt % and 0.03 wt % or less of Al, 0.03 to 0.1 wt % of O, more than 0 wt % and 0.03 wt % or less of P, more than 0 wt % and 0.02 wt % or less of S, more than 0 wt % and 0.015 wt % or less of Cu, more than 0 wt % and 0.005 wt % or less of N, Fe in a remaining content, and other inevitable impurities. | 07-18-2013 |
20130248059 | METHOD FOR MANUFACTURING A PRECIPITATION-HARDENING COLD-ROLLED STEEL SHEET HAVING EXCELLENT YIELD RATIOS - A method for manufacturing a precipitation hardening cold-rolled steel sheet with an excellent yield ratio. The method may include the steps of hot rolling a steel slab with finish rolling at a temperature of Ar3 transformation point or more to form a hot-rolled steel sheet, coiling the hot-rolled steel sheet at a temperature of 550-600 ° C., cold rolling the hot-rolled steel sheet at a reduction ratio of 50% or more; and recovery-recrystallization annealing the cold-rolled steel sheet at a line speed of 150-200 mpm and at a temperature of 780-820° C. in a continuous annealing furnace. The recovery-recrystallization annealing may provide a recrystallization ratio of 65-75%. The steel slab includes, by weight %: C: 0.07-0.10%, Mn: 1.41-1.70%, P: 0.05-0.07%, S: 0.005% or less, N: 0.005% or less, acid-soluble Al: 0.10-0.15%, Nb: 0.06-0.09%, B: 0.0008-0.0012%, Sb: 0.02-0.06%, and the balance comprising Fe and other unavoidable impurities. | 09-26-2013 |
20130306204 | HOT ROLLED FERRITIC STAINLESS STEEL SHEET, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING FERRITIC STAINLESS STEEL SHEET - This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv. | 11-21-2013 |
20130340898 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET WITH HIGH YIELD RATIO HAVING EXCELLENT FORMABILITY AND METHOD FOR PRODUCING THE SAME - Provided are a high-strength cold-rolled steel sheet having excellent formability, excellent ductility, excellent hole expansibility, and high yield ratio and a method for producing the same. The high-strength cold-rolled steel sheet contains 0.05% to 0.15% C, 0.10% to 0.90% Si, 1.0% to 2.0% Mn, 0.005% to 0.05% P, 0.0050% or less S, 0.01% to 0.10% Al, 0.0050% or less N, and 0.010% to 0.100% Nb, which are chemical components, on a mass basis, the balance being Fe and unavoidable impurities; has a microstructure which is a multi-phase structure containing 90% or more of a ferrite phase and 0.5% to less than 5.0% of a martensite phase on a volume fraction basis, the remainder being low-temperature transformation phases; and has a yield ratio of 70% or more. | 12-26-2013 |
20140041769 | NON-ORIENTED ELECTRICAL STEEL SHEET - A non-oriented electrical steel sheet contains 2.8 mass % or more and 4.0 mass % or less of Si, 0.2 mass % or more and 3.0 mass % or less of Al, and 0.02 mass % or more and 0.2 mass % or less of P. The non-oriented electrical steel sheet contains further contains 0.5 mass % or more in total of at least one kinds selected from a group consisting of 4.0 mass % or less of Ni and 2.0 mass % or less of Mn. A C content is 0.05 mass % or less, a N content is 0.01 mass % or less, an average grain diameter is 15 μm or less, and a <111> axial density is 6 or larger. | 02-13-2014 |
20140076469 | HIGH CARBON THIN STEEL SHEET AND METHOD FOR PRODUCING SAME - A steel sheet having a composition containing C: 0.20% to 0.50%, Si: 1.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.02% or less, sol.Al: 0.08% or less, N: 0.02% or less, and Fe and incidental impurities, and a microstructure composed of ferrite and cementite, wherein each of the average grain size ds of the ferrite in the region from the surface of the steel sheet to the position at one-quarter of the sheet thickness and the average grain size dc of the ferrite in the region from the position at one-quarter of the sheet thickness of the steel sheet to the sheet thickness center is 20 to 40 μm, 0.80≦ds/dc≦1.20 is satisfied, the average grain size of the cementite is 1.0 μm or more, the spheroidizing ratio is 90% or more, and 90% or more of cementite is present inside ferrite grains. | 03-20-2014 |
20140102604 | COLD ROLLED RECOVERY ANNEALED MILD STEEL AND PROCESS FOR MANUFACTURE THEREOF - A high strength mild steel alloy is provided. In addition, a process for making the high strength steel alloy is also provided. The process includes providing a mild steel alloy with a chemical composition in weight percent within a range of 0.12-0.25 carbon, 0.30-1.70 manganese, 0.50 max silicon, 0.10 max chromium, 0.01 max niobium, 0.035 max titanium, 0.01 vanadium, 0.10 max molybdenum, 0.10 max nickel, 0.015 max sulfur, 0.025 max phosphorus, 0.012 max nitrogen, 0.003 max boron, and 0.015-0.065 aluminum. Hot rolled steel strip with a thickness of less than 10 millimeters is cold rolled to produce a cold rolled steel sheet that has a thickness that is less than 50% of the hot rolled steel strip thickness which is subsequently recovery annealed to provide sheet material having a yield strength greater than 550 megapascals (MPa) and a percent elongation to failure greater than 3.5%. | 04-17-2014 |
20140137993 | PROCESS FOR MAKING COLD-ROLLED DUAL PHASE STEEL SHEET - Dual-phase steels and a process for producing a family of dual-phase steels that have a low YS/TS ratio and tensile strength above 590 MPa. The process includes employing low annealing temperatures combined with specific cooling strategies using gas jet rapid cooling equipped with “Ultra Rapid Cooling” (URC) capacity in the cooling tower. The process can also include the production of dual-phase steels with tensile strengths of at least 690 MPa by processing steels with specific cooling strategies using the URC having a refined Mo content towards the higher end of the chemical composition range mentioned in the current stated invention. | 05-22-2014 |
20140166163 | PROCESS FOR MAKING COLD-ROLLED DUAL PHASE STEEL SHEET - A process for manufacturing a cold rolled high strength dual phase steel. The process includes soaking a steel slab within a temperature range of 1200-1300° C., hot rolling the soaked steel slab in a roughing treatment and producing a transfer bar, and hot rolling the transfer bar in a finishing treatment and producing hot rolled strip. The hot rolled strip is cold rolled with at least a 55% reduction in thickness. The cold rolled sheet is intercritically annealed at a temperature between 790-840 ° C. and rapidly cooled to a temperature between 450-500 ° C. The rapidly cooled sheet has a ferrite plus martensite microstructure, a 0.2% yield strength of at least 550 MPa, a tensile strength of at least 980 MPa and a total elongation to failure of at least 10%. | 06-19-2014 |
20140238557 | METHOD FOR PRODUCING COLD-ROLLED STEEL SHEET - A method for producing a high-tensile cold-rolled steel sheet includes subjecting a slab having a composition containing C: more than 0.020% and less than 0.30%, Si: more than 0.10% and 3.00% or less, and Mn: more than 1.00% and 3.50% or less to hot rolling wherein the roll draft of the final one pass is higher than 15%, and rolling is finished in the temperature region of Ar | 08-28-2014 |
20140238558 | NON-ORIENTED ELECTRICAL STEEL SHEET AND MANUFACTURING METHOD THEREOF - A non-oriented electrical steel sheet containing: in mass %, C: 0.005% or less; Si: 0.1% to 2.0%; Mn: 0.05% to 0.6%; P: 0.100% or less; and Al: 0.5% or less, in which 10 pieces/μm | 08-28-2014 |
20140261916 | HIGH STRENGTH - HIGH DUCTILITY COLD ROLLED RECOVERY ANNEALED STEEL AND PROCESS FOR MANUFACTURE THEREOF - A high strength-high ductility cold rolled steel sheet is provided. The steel sheet has a recovery annealed microstructure, a yield strength greater than 820 megapascals (MPa) and a percent elongation to failure greater than 3.5%. In some instances, the steel alloy sheet has a Rockwell B hardness greater than 100 and may or may not exhibit a yield strength-to-tensile strength ratio between 0.25 and 1.00. | 09-18-2014 |
20140290810 | HIGH STRENGTH COLD ROLLED STEEL SHEET WITH EXCELLENT DEEP DRAWABILITY AND MATERIAL UNIFORMITY IN COIL AND METHOD FOR MANUFACTURING THE SAME - A high strength cold rolled steel sheet includes a chemical composition containing, by mass %, C: 0.010% or more and 0.060% or less, Si: more than 0.5% and 1.5% or less, Mn: 1.0% or more and 3.0% or less, P: 0.005% or more and 0.100% or less, S: 0.010% or less, sol.Al: 0.005% or more and 0.500% or less, N: 0.0100% or less, Nb: 0.010% or more and 0.100% or less, Ti: 0.015% or more and 0.150% or less and the balance comprising Fe and inevitable impurities. The microstructure includes, in area fraction, 70% or more of a ferrite phase and 3% or more of a martensite phase. The tensile strength is 440 MPa or more and an average r value is 1.20 or more. | 10-02-2014 |
20140305553 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING SMALL VARIATIONS IN STRENGTH AND DUCTILITY AND MANUFACTURING METHOD FOR THE SAME - A high-strength cold-rolled steel sheet has a chemical composition including C of 0.05% to 0.30%, Si of greater than 0% to 3.0%, Mn of 0.1% to 5.0%, P of greater than 0% to 0.1%, S of greater than 0% to 0.02%, Al of 0.01% to 1.0%, and N of greater than 0% to 0.01%, in mass percent, with the remainder including iron and inevitable impurities. The steel sheet has a microstructure containing ferrite as a soft primary phase in an area percentage of 20% to 50% with the remainder including tempered martensite and/or tempered bainite as a hard secondary phase. The ferrite grains are adapted to contain cementite particles having an appropriate size in an appropriate number density. | 10-16-2014 |
20150020933 | HEAT-RESISTANT COLD ROLLED FERRITIC STAINLESS STEEL SHEET, HOT ROLLED FERRITIC STAINLESS STEEL SHEET FOR COLD ROLLING RAW MATERIAL, AND METHODS FOR PRODUCING SAME - Provided is a heat-resistant cold rolled ferritic stainless steel sheet containing, in terms of mass %, 0.02% or less of C, 0.1% to 1.0% of Si, greater than 0.6% to 1.5% of Mn, 0.01% to 0.05% of P, 0.0001% to 0.0100% of S, 13.0% to 20.0% of Cr, 0.1% to 3.0% of Mo, 0.005% to 0.20% of Ti, 0.3% to 1.0% of Nb, 0.0002% to 0.0050% of B, 0.005% to 0.50% of Al, and 0.02% or less of N, with the balance being Fe and inevitable impurities, in which {111}-oriented grains are present at an area ratio of 20% or greater in a region from a surface layer to t/4 (t is a sheet thickness), {111}-oriented grains are present at an area ratio of 40% or greater in a region from t/4 to t/2, and {011}-oriented grains are present at an area ratio of 15% or less in the entire region in a thickness direction. | 01-22-2015 |
20150075680 | STEEL SHEET SUITABLE FOR IMPACT ABSORBING MEMBER AND METHOD FOR ITS MANUFACTURE - A steel sheet suitable as a starting material for a vehicle impact absorbing member with high absorption of impact energy and resistance to cracking contains, by mass %, C: 0.08-0.30%, Mn: 1.5-3.5%; Si+Al: 0.50-3.0%, P: 0.10% or less, S: at most 0.010%, and N: at most 0.010%, and optionally, one or more types selected from Cr: at most 0.5%, Mo: at most 0.5%, B: at most 0.010%, Ti: less than 0.04%, Nb: less than 0.030%, V: less than 0.5%, Ca: at most 0.010%, Mg: at most 0.010%, REM: at most 0.050%, and Bi: at most 0.050%. The microstructure contains, by area %, bainite: more than 50%, martensite: 3-30%, and retained austenite: 3-15%, the remainder comprising ferrite having an average grain diameter of less than 5 mm. The product of uniform elongation and hole expansion ratio is at least 300% | 03-19-2015 |
20150114524 | HIGH STRENGTH COLD-ROLLED STEEL SHEET EXHIBITING LITTLE VARIATION IN STRENGTH AND DUCTILITY, AND MANUFACTURING METHOD FOR SAME - In a high strength cold-rolled steel plate having a specific chemical composition, a soft first phase (ferrite) has an area ratio of 20-50%, the remainder being a hard second phase (tempered martensite and/or tempered bainite), among all the ferrite grains, ferrite grains that have an average grain diameter of 10-25 μm account for a total area ratio of 80% or more, the number of the cementite grains that have an equivalent circle diameter of 0.3 μm or more is more than 0.15 piece and 1.0 piece or less per 1 μm | 04-30-2015 |
20150144231 | HIGH STRENGTH COLD-ROLLED STEEL SHEET AND MANUFACTURING METHOD THEREFOR - In a steel sheet having a specific chemical composition and having a microstructure including ferrite that is a soft first phase by 20-50% in terms of the area ratio, the remainder being tempered martensite and/or tempered bainite that is a hard second phase, the microstructure of steel of a surface layer section of the steel sheet from the surface to the depth of 100 μm and a center section of t/4-3t/4 (t is the sheet thickness) is controlled. | 05-28-2015 |
20150322552 | HIGH STRENGTH COLD ROLLED STEEL SHEET WITH LOW YIELD RATIO AND METHOD OF MANUFACTURING THE SAME - A high strength cold rolled steel sheet with a low yield ratio has a chemical composition containing C: 0.05% to 0.10%, Si: 0.6% to 1.3%, Mn: 1.4% to 2.2%, P: 0.08% or less, S: 0.010% or less, Al: 0.01% to 0.08%, N: 0.010% or less, and the remainder being Fe and incidental impurities, on a percent by mass basis, and a microstructure in which the average grain size of ferrite is 15 μm or less, the volume fraction of ferrite is 70% or more, the volume fraction of bainite is 3% or more, the volume fraction of retained austenite is 4% to 7%, the average grain size of martensite is 5 μm or less, and the volume fraction of martensite is 1% to 6%, wherein the average C concentration (percent by mass) in the retained austenite is 0.30% to 0.70%, yield ratio is 64% or less, and the tensile strength is 590 MPa or more. | 11-12-2015 |
20160024627 | HOT ROLLED FERRITIC STAINLESS STEEL SHEET, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING FERRITIC STAINLESS STEEL SHEET - This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv. | 01-28-2016 |
20160060724 | STEEL SHEET AND METHOD FOR PRODUCING SAME - Disclosed herein are a steel sheet having excellent aging resistance and low yield ratio properties, and a method for producing the same. The disclosed sheet comprises, by weight, 0.005-0.06% carbon (C), 0.2% or less silicon (Si), 1.0-2.0% manganese (Mn), 0.08% or less phosphorus (P), 0.01% or less sulfur (S), 0.2-2.0% aluminum (Al), one or more of chromium (Cr) and molybdenum (Mo) in an amount satisfying 0.3≦[Cr wt %]+0.3[Mo wt %]≦2.0, and 0.008% or less nitrogen (N), with the remainder being iron (Fe) and inevitable impurities, and has a single-phase structure of ferrite in a hot-rolled state, and a two-phase structure of ferrite and martensite in a cold-rolled state. | 03-03-2016 |
20160131222 | STEEL SHEET FOR STEEL BELT AND PROCESS FOR MANUFACTURING SAME, AND STEEL BELT - Manufacturing a steel sheet for a steel belt includes hot rolling a steel slab containing, in mass %, 0.60 to 0.80% of C, 1.0% or less of Si, 0.10 to 1.0% of Mn, 0.020% or less P, 0.010% or less S, 0.1 to 1.0% of Cr, 0 to 0.5% of V, 0 to 0.1% of Ti, 0 to 0.1% of Nb, and 0 to 0.01% of B, the balance Fe and unavoidable impurities, under a finish hot rolling temperature of 800 to 900° C. An average cooling rate from finish rolling to coiling is 20° C. per second or more. A coiling temperature is 450 to 650° C. The hot-rolled slab is cold rolled with a total rolling reduction ratio of 40% or more and a reduction ratio per one pass of less than 12%, without performing a heat treatment. The cold-rolled slab is aged at 200 to 500° C. for 0.5 to 30 hours. | 05-12-2016 |
20160145706 | HIGH-STRENGTH STEEL SHEET AND MANUFACTURING METHOD THEREFOR - A high-strength steel sheet according to the present invention comprises, by weight, 10.0-15.0% Mn, 6.0-9.0% Al, 0.5-2.0% Cr, 0.8-1.6% C, and 0.001-0.01% N, and further comprises, by weight, 0.02-0.1% V, 0.005-0.015% Nb, and 0.005-0.02% Mo, or further comprises 0.1-0.5 wt % TiAl particles. The high-strength steel sheet has a mixed structure comprising austenite and a fine k-carbide having a mean particle diameter of 10-500 nm. | 05-26-2016 |
20160153064 | HOT-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND ANTI-AGING PROPERTIES AND METHOD FOR MANUFACTURING SAME | 06-02-2016 |
20160160308 | STEEL SHEET FOR CAN AND METHOD FOR MANUFACTURING THE SAME - A steel sheet exhibiting good drawability and excellent buckling strength of a can body portion against an external pressure, and a method for manufacturing the same. The steel sheet includes C: 0.0030% or more and 0.0100% or less, Si: 0.05% or less, Mn: 0.10% or more and 1.0% or less, P: 0.030% or less, S: 0.020% or less, Al: 0.010% or more and 0.100% or less, N: 0.0050% or less, Nb: 0.010% or more and 0.050% or less, and incidental impurities. Contents of C and Nb satisfy 0.10 ([Nb]/92.9)/([C]/12)<0.60, the HR30T hardness of the steel sheet is 56 or more, and the average Young's modulus of the steel sheet is 210 GPa or more. | 06-09-2016 |
20160177427 | HIGH-YIELD-RATIO, HIGH-STRENGTH COLD ROLLED STEEL SHEET AND PRODUCTION METHOD THEREFOR | 06-23-2016 |
20160186285 | ULTRAHIGH-STRENGTH STEEL SHEET AND MANUFACTURING METHOD THEREFOR - The present invention relates to an ultrahigh-strength steel sheet and a manufacturing method therefor. More specifically, the present invention can provide an ultra-high strength steel sheet which can ensure weldability and a delayed fracture resistance property by controlling the contents of elements affecting platability along with the contents of austenite-stabilizing elements and increasing twin formation through re-rolling, and simultaneously improve impact characteristics and workability by ensuring excellent yield strength and ductility. | 06-30-2016 |