Class / Patent application number | Description | Number of patent applications / Date published |
257603000 | AVALANCHE DIODE (E.G., SO-CALLED "ZENER" DIODE HAVING BREAKDOWN VOLTAGE GREATER THAN 6 VOLTS) | 20 |
20090026579 | EM RECTIFYING ANTENNA SUITABLE FOR USE IN CONJUNCTION WITH A NATURAL BREAKDOWN DEVICE - A rectenna capable of power conversion from electromagnetic (EM) waves of high frequencies is provided. In one embodiment, a rectenna element generates currents from two sources—based upon the power of the incident EM wave and from an n-type semiconductor, or another electron source attached to a maximum voltage point of an antenna element. The combined current from both sources increases the power output of the antenna, thereby increasing the detection sensitivity of the antenna of a low power signal. Full wave rectification is achieved using a novel diode connected to a gap in the antenna element of a rectenna element. The diode is conductive at forward bias voltage or reverse bias voltage, and rectifies the antenna signal generated by the desired EM wave received by antenna raise from The rectenna element of the present invention may be used as a building block to create large rectenna arrays. | 01-29-2009 |
20090085164 | WIRING BOARD - There is provided a wiring board. The wiring board includes: a semiconductor substrate having a through hole and covered with an insulating film; a through electrode formed in the through hole; a first wiring connected to one end of the through electrode; and a second wiring connected to the other end of the through electrode. The semiconductor substrate includes: a semiconductor element and a first guard ring formed to surround the through hole. The semiconductor element includes a first conductivity-type impurity diffusion layer having a different conductivity-type from that of the semiconductor substrate and is electrically connected to the first wiring and the second wiring. | 04-02-2009 |
20090152681 | NANO-MULTIPLICATION REGION AVALANCHE PHOTODIODES AND ARRAYS - An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed. | 06-18-2009 |
20090302424 | METHOD OF FORMING A BI-DIRECTIONAL DIODE AND STRUCTURE THEREFOR - In one embodiment, a bi-directional diode structure is formed to have a substantially symmetrical current-voltage characteristic. | 12-10-2009 |
20100252912 | SEMICONDUCTOR DEVICE, AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a semiconductor device, comprising the steps of preparing a structure including a semiconductor substrate, an element formed therein, a through hole formed to penetrate the semiconductor substrate, and an insulating layer formed on both surface sides of the semiconductor substrate and an inner surface of the through hole, and covering the element, forming a penetrating electrode in the through hole, forming a first barrier metal pattern layer covering the penetrating electrode, forming a contact hole reaching a connection portion of the element in the insulating layer, removing a natural oxide film on the connection portion of the element in the contact hole, and forming a wiring layer connected to the first barrier metal pattern layer and connected to the element through the contact hole. | 10-07-2010 |
20110095399 | Method For Manufacturing Semiconductor Chips From A Wafer - A method is for manufacturing semiconductor chips from a wafer which includes a plurality of semiconductor chips. Defects in the crystal structure of the chips may be substantially reduced by producing rupture joints in the surface of the wafer after the wafer has been produced, and by breaking the wafer along the rupture joints to separate the semiconductor chips. | 04-28-2011 |
20110115055 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - To provide a technique that can decrease the leak current due to the photoelectric effect in a semiconductor device with a Zener diode. In a bidirectional Zener diode IZD having a trench structure in the invention, an upper electrode UE extends from an inside of an opening OP to cover a trench TR (isolation region). As shown in FIG. | 05-19-2011 |
20110121429 | LOW-VOLTAGE BIDIRECTIONAL PROTECTION DIODE - A vertical bidirectional protection diode including, on a heavily-doped substrate of a first conductivity type, first, second, and third regions of the first, second, and first conductivity types, these regions all having a doping level greater than from 2 to 5×10 | 05-26-2011 |
20110198728 | INTEGRATED SEMICONDUCTOR DEVICE - In one embodiment, a plurality of ESD devices are used to form an integrated semiconductor filter circuit. Additional diodes are formed in parallel with the ESD structures in order to increase the input capacitance. | 08-18-2011 |
20120061803 | ASYMMETRICAL BIDIRECTIONAL PROTECTION COMPONENT - An asymmetrical bidirectional protection component formed in a semiconductor substrate of a first conductivity type, including: a first implanted area of the first conductivity type; a first epitaxial layer of the second conductivity type on the substrate and the first implanted area; a second epitaxial layer of the second conductivity type on the first epitaxial layer, the second layer having a doping level different from that of the first layer; a second area of the first conductivity type on the outer surface of the epitaxial layer, opposite to the first to area; a first metallization covering the entire lower surface of the substrate; and a second metallization covering the second area. | 03-15-2012 |
20120074522 | VERTICAL ZENER DIODE STRUCTURE AND MANUFACTURING METHOD OF THE SAME - The present invention discloses a vertical zener diode structure, in which a deep N-sinker region and a P-implantation region of the zener diode are formed in an N-well within an epitaxial layer; the P-implantation region is closer to a silicon surface than the deep N-sinker region in a vertical direction. In this structure, as zener breakdown occurs at a position away from the silicon surface, the problem of a drift in the zener breakdown value can be improved. The present invention also discloses a manufacturing method of a vertical zener diode. | 03-29-2012 |
20120080773 | SWITCHABLE MEMORY DIODES BASED ON FERROELECTRIC/CONJUGATED POLYMER HETEROSTRUCTURES AND/OR THEIR COMPOSITES - An embodiment of the present memory cell a first layer of a chosen conductivity type, and a second layer which includes ferroelectric semiconductor material of the opposite conductivity type, the layers forming a pn junction. The first layer may be a conjugated semiconductor polymer, or may also be of ferroelectric semiconductor material. The layers are provided between first and electrodes. In another embodiment, a single layer of a composite of conjugated semiconductor polymer and ferroelectric semiconductor material is provided between first and second electrodes. The various embodiments may be part of a memory array. | 04-05-2012 |
20120223416 | THIN-FILM SEMICONDUCTOR COMPONENT WITH PROTECTION DIODE STRUCTURE AND METHOD FOR PRODUCING A THIN-FILM SEMICONDUCTOR COMPONENT - A thin-film semiconductor component includes a carrier and a semiconductor body with a semiconductor layer sequence including an active region provided to generate radiation. The semiconductor body is externally electrically contactable by a first contact and a second contact. The carrier includes a protection diode structure connected electrically in parallel to the semiconductor body. The protection diode structure includes a first diode and a second diode. The first diode and the second diode are electrically connected in series in mutually opposing directions with regard to their forward direction. | 09-06-2012 |
20130020680 | SEMICONDUCTOR STRUCTURE AND A METHOD FOR MANUFACTURING THE SAME - A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a diode. The diode comprises a first doped region, a second doped region and a third doped region. The first doped region and the third doped region have a first conductivity type. The second doped region has a second conductivity type opposite to the first conductivity type. The second doped region and the third doped region are separated from each other by the first doped region. The third doped region has a first portion and a second portion adjacent to each other. The first portion and the second portion are respectively adjacent to and away from the second doped region. A dopant concentration of the first portion is bigger than a dopant concentration of the second portion. | 01-24-2013 |
20130026604 | LATERAL AVALANCHE PHOTODIODE STRUCTURE - A lateral avalanche photodiode structure including a substrate, a PN diode and a metal layer is provided. The substrate has at least one first electrode area, at least one light receiving area, and at least one second electrode area which are arranged horizontally. The first electrode area is also an avalanche area, and the light receiving area is between the first electrode area and the second electrode area. The PN diode is disposed in the substrate in the first electrode area. The metal layer is disposed on the substrate and covers the first electrode area and the second electrode area, but does not cover the light receiving area. | 01-31-2013 |
20130175670 | ZENER DIODE STRUCTURE AND MANUFACTURING METHOD THEREOF - An exemplary embodiment illustrates a zener diode structure, wherein the zener diode structure includes a first-type semiconductor layer, a second-type semiconductor layer, a first electrode, a second electrode, and an insulation layer. The second-type semiconductor layer is disposed in a designated area in the first-type semiconductor layer. The first electrode is disposed on the bottom side of the first-type semiconductor layer. The second electrode is disposed above the first-type and the second-type semiconductor layers in corresponding to the central area of the second-type semiconductor layer. The insulation layer is disposed above the first-type and the second-type semiconductor layers surrounding the second electrode. The disclosed zener structure having the insulation layer can reduce the short circuit issue resulting from overflow of an adhesive material during the zener diode packaging process. | 07-11-2013 |
20150091136 | ZENER DIODE HAVIING A POLYSILICON LAYER FOR IMPROVED REVERSE SURGE CAPABILITY AND DECREASED LEAKAGE CURRENT - A semiconductor device such as a Zener diode includes a first semiconductor material of a first conductivity type and a second semiconductor material of a second conductivity type in contact with the first semiconductor material to form a junction therebetween. A first oxide layer is disposed over a portion of the second semiconductor material such that a remaining portion of the second semiconductor material is exposed. A polysilicon layer is disposed on the exposed portion of the second semiconductor material and a portion of the first oxide layer. A first conductive layer is disposed on the polysilicon layer. A second conductive layer is disposed on a surface of the first semiconductor material opposing a surface of the first semiconductor material in contact with the second semiconductor material. | 04-02-2015 |
20160079226 | ELECTRONIC DEVICE INCLUDING A DIODE - An electronic device can include a substrate, lower and upper semiconductor layers over the substrate, and a doped region at the interface between the lower and upper semiconductor layers. The doped region can have a conductivity type opposite that of a dopant within the lower semiconductor layer. Within the lower semiconductor layer, the dopant can have a dopant concentration profile that has a relatively steeper portion adjacent to the substrate, another relatively steeper portion adjacent to an interface between the first and second semiconductor layers, and a relatively flatter portion between the relative steeper portions. A diode lies at a pn junction where a second dopant concentration profile of the first doped region intersects the relatively flatter portion of the first dopant concentration profile. The electronic device can be formed using different processes described herein. | 03-17-2016 |
20160163883 | BIDIRECTIONAL ZENER DIODE - A bidirectional Zener diode of the present invention includes a semiconductor substrate of a first conductivity type, a first electrode and a second electrode which are defined on the semiconductor substrate, and a plurality of diffusion regions of a second conductivity type, which are defined at intervals from one another on a surface portion of the semiconductor substrate, to define p-n junctions with the semiconductor substrate, and the plurality of diffusion regions include diode regions which are electrically connected to the first electrode and the second electrode, and pseudo-diode regions which are electrically isolated from the first electrode and the second electrode. | 06-09-2016 |
20160254390 | ZENER DIODE | 09-01-2016 |
20090026579 | EM RECTIFYING ANTENNA SUITABLE FOR USE IN CONJUNCTION WITH A NATURAL BREAKDOWN DEVICE - A rectenna capable of power conversion from electromagnetic (EM) waves of high frequencies is provided. In one embodiment, a rectenna element generates currents from two sources—based upon the power of the incident EM wave and from an n-type semiconductor, or another electron source attached to a maximum voltage point of an antenna element. The combined current from both sources increases the power output of the antenna, thereby increasing the detection sensitivity of the antenna of a low power signal. Full wave rectification is achieved using a novel diode connected to a gap in the antenna element of a rectenna element. The diode is conductive at forward bias voltage or reverse bias voltage, and rectifies the antenna signal generated by the desired EM wave received by antenna raise from The rectenna element of the present invention may be used as a building block to create large rectenna arrays. | 01-29-2009 |
20090085164 | WIRING BOARD - There is provided a wiring board. The wiring board includes: a semiconductor substrate having a through hole and covered with an insulating film; a through electrode formed in the through hole; a first wiring connected to one end of the through electrode; and a second wiring connected to the other end of the through electrode. The semiconductor substrate includes: a semiconductor element and a first guard ring formed to surround the through hole. The semiconductor element includes a first conductivity-type impurity diffusion layer having a different conductivity-type from that of the semiconductor substrate and is electrically connected to the first wiring and the second wiring. | 04-02-2009 |
20090152681 | NANO-MULTIPLICATION REGION AVALANCHE PHOTODIODES AND ARRAYS - An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed. | 06-18-2009 |
20090302424 | METHOD OF FORMING A BI-DIRECTIONAL DIODE AND STRUCTURE THEREFOR - In one embodiment, a bi-directional diode structure is formed to have a substantially symmetrical current-voltage characteristic. | 12-10-2009 |
20100252912 | SEMICONDUCTOR DEVICE, AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a semiconductor device, comprising the steps of preparing a structure including a semiconductor substrate, an element formed therein, a through hole formed to penetrate the semiconductor substrate, and an insulating layer formed on both surface sides of the semiconductor substrate and an inner surface of the through hole, and covering the element, forming a penetrating electrode in the through hole, forming a first barrier metal pattern layer covering the penetrating electrode, forming a contact hole reaching a connection portion of the element in the insulating layer, removing a natural oxide film on the connection portion of the element in the contact hole, and forming a wiring layer connected to the first barrier metal pattern layer and connected to the element through the contact hole. | 10-07-2010 |
20110095399 | Method For Manufacturing Semiconductor Chips From A Wafer - A method is for manufacturing semiconductor chips from a wafer which includes a plurality of semiconductor chips. Defects in the crystal structure of the chips may be substantially reduced by producing rupture joints in the surface of the wafer after the wafer has been produced, and by breaking the wafer along the rupture joints to separate the semiconductor chips. | 04-28-2011 |
20110115055 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - To provide a technique that can decrease the leak current due to the photoelectric effect in a semiconductor device with a Zener diode. In a bidirectional Zener diode IZD having a trench structure in the invention, an upper electrode UE extends from an inside of an opening OP to cover a trench TR (isolation region). As shown in FIG. | 05-19-2011 |
20110121429 | LOW-VOLTAGE BIDIRECTIONAL PROTECTION DIODE - A vertical bidirectional protection diode including, on a heavily-doped substrate of a first conductivity type, first, second, and third regions of the first, second, and first conductivity types, these regions all having a doping level greater than from 2 to 5×10 | 05-26-2011 |
20110198728 | INTEGRATED SEMICONDUCTOR DEVICE - In one embodiment, a plurality of ESD devices are used to form an integrated semiconductor filter circuit. Additional diodes are formed in parallel with the ESD structures in order to increase the input capacitance. | 08-18-2011 |
20120061803 | ASYMMETRICAL BIDIRECTIONAL PROTECTION COMPONENT - An asymmetrical bidirectional protection component formed in a semiconductor substrate of a first conductivity type, including: a first implanted area of the first conductivity type; a first epitaxial layer of the second conductivity type on the substrate and the first implanted area; a second epitaxial layer of the second conductivity type on the first epitaxial layer, the second layer having a doping level different from that of the first layer; a second area of the first conductivity type on the outer surface of the epitaxial layer, opposite to the first to area; a first metallization covering the entire lower surface of the substrate; and a second metallization covering the second area. | 03-15-2012 |
20120074522 | VERTICAL ZENER DIODE STRUCTURE AND MANUFACTURING METHOD OF THE SAME - The present invention discloses a vertical zener diode structure, in which a deep N-sinker region and a P-implantation region of the zener diode are formed in an N-well within an epitaxial layer; the P-implantation region is closer to a silicon surface than the deep N-sinker region in a vertical direction. In this structure, as zener breakdown occurs at a position away from the silicon surface, the problem of a drift in the zener breakdown value can be improved. The present invention also discloses a manufacturing method of a vertical zener diode. | 03-29-2012 |
20120080773 | SWITCHABLE MEMORY DIODES BASED ON FERROELECTRIC/CONJUGATED POLYMER HETEROSTRUCTURES AND/OR THEIR COMPOSITES - An embodiment of the present memory cell a first layer of a chosen conductivity type, and a second layer which includes ferroelectric semiconductor material of the opposite conductivity type, the layers forming a pn junction. The first layer may be a conjugated semiconductor polymer, or may also be of ferroelectric semiconductor material. The layers are provided between first and electrodes. In another embodiment, a single layer of a composite of conjugated semiconductor polymer and ferroelectric semiconductor material is provided between first and second electrodes. The various embodiments may be part of a memory array. | 04-05-2012 |
20120223416 | THIN-FILM SEMICONDUCTOR COMPONENT WITH PROTECTION DIODE STRUCTURE AND METHOD FOR PRODUCING A THIN-FILM SEMICONDUCTOR COMPONENT - A thin-film semiconductor component includes a carrier and a semiconductor body with a semiconductor layer sequence including an active region provided to generate radiation. The semiconductor body is externally electrically contactable by a first contact and a second contact. The carrier includes a protection diode structure connected electrically in parallel to the semiconductor body. The protection diode structure includes a first diode and a second diode. The first diode and the second diode are electrically connected in series in mutually opposing directions with regard to their forward direction. | 09-06-2012 |
20130020680 | SEMICONDUCTOR STRUCTURE AND A METHOD FOR MANUFACTURING THE SAME - A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a diode. The diode comprises a first doped region, a second doped region and a third doped region. The first doped region and the third doped region have a first conductivity type. The second doped region has a second conductivity type opposite to the first conductivity type. The second doped region and the third doped region are separated from each other by the first doped region. The third doped region has a first portion and a second portion adjacent to each other. The first portion and the second portion are respectively adjacent to and away from the second doped region. A dopant concentration of the first portion is bigger than a dopant concentration of the second portion. | 01-24-2013 |
20130026604 | LATERAL AVALANCHE PHOTODIODE STRUCTURE - A lateral avalanche photodiode structure including a substrate, a PN diode and a metal layer is provided. The substrate has at least one first electrode area, at least one light receiving area, and at least one second electrode area which are arranged horizontally. The first electrode area is also an avalanche area, and the light receiving area is between the first electrode area and the second electrode area. The PN diode is disposed in the substrate in the first electrode area. The metal layer is disposed on the substrate and covers the first electrode area and the second electrode area, but does not cover the light receiving area. | 01-31-2013 |
20130175670 | ZENER DIODE STRUCTURE AND MANUFACTURING METHOD THEREOF - An exemplary embodiment illustrates a zener diode structure, wherein the zener diode structure includes a first-type semiconductor layer, a second-type semiconductor layer, a first electrode, a second electrode, and an insulation layer. The second-type semiconductor layer is disposed in a designated area in the first-type semiconductor layer. The first electrode is disposed on the bottom side of the first-type semiconductor layer. The second electrode is disposed above the first-type and the second-type semiconductor layers in corresponding to the central area of the second-type semiconductor layer. The insulation layer is disposed above the first-type and the second-type semiconductor layers surrounding the second electrode. The disclosed zener structure having the insulation layer can reduce the short circuit issue resulting from overflow of an adhesive material during the zener diode packaging process. | 07-11-2013 |
20150091136 | ZENER DIODE HAVIING A POLYSILICON LAYER FOR IMPROVED REVERSE SURGE CAPABILITY AND DECREASED LEAKAGE CURRENT - A semiconductor device such as a Zener diode includes a first semiconductor material of a first conductivity type and a second semiconductor material of a second conductivity type in contact with the first semiconductor material to form a junction therebetween. A first oxide layer is disposed over a portion of the second semiconductor material such that a remaining portion of the second semiconductor material is exposed. A polysilicon layer is disposed on the exposed portion of the second semiconductor material and a portion of the first oxide layer. A first conductive layer is disposed on the polysilicon layer. A second conductive layer is disposed on a surface of the first semiconductor material opposing a surface of the first semiconductor material in contact with the second semiconductor material. | 04-02-2015 |
20160079226 | ELECTRONIC DEVICE INCLUDING A DIODE - An electronic device can include a substrate, lower and upper semiconductor layers over the substrate, and a doped region at the interface between the lower and upper semiconductor layers. The doped region can have a conductivity type opposite that of a dopant within the lower semiconductor layer. Within the lower semiconductor layer, the dopant can have a dopant concentration profile that has a relatively steeper portion adjacent to the substrate, another relatively steeper portion adjacent to an interface between the first and second semiconductor layers, and a relatively flatter portion between the relative steeper portions. A diode lies at a pn junction where a second dopant concentration profile of the first doped region intersects the relatively flatter portion of the first dopant concentration profile. The electronic device can be formed using different processes described herein. | 03-17-2016 |
20160163883 | BIDIRECTIONAL ZENER DIODE - A bidirectional Zener diode of the present invention includes a semiconductor substrate of a first conductivity type, a first electrode and a second electrode which are defined on the semiconductor substrate, and a plurality of diffusion regions of a second conductivity type, which are defined at intervals from one another on a surface portion of the semiconductor substrate, to define p-n junctions with the semiconductor substrate, and the plurality of diffusion regions include diode regions which are electrically connected to the first electrode and the second electrode, and pseudo-diode regions which are electrically isolated from the first electrode and the second electrode. | 06-09-2016 |
20160254390 | ZENER DIODE | 09-01-2016 |