Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


GENERAL ASPECTS OF SPM PROBES, THEIR MANUFACTURE, OR THEIR RELATED INSTRUMENTATION, INSOFAR AS THEY ARE NOT SPECIALLY ADAPTED TO A SINGLE SPECIFIC SPM TECHNIQUE

Subclass of:

850 - Scanning-probe techniques or apparatus; applications of scanning-probe techniques, e.g., scanning probe microscopy [spm]

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
850052000GENERAL ASPECTS OF SPM PROBES, THEIR MANUFACTURE, OR THEIR RELATED INSTRUMENTATION, INSOFAR AS THEY ARE NOT SPECIALLY ADAPTED TO A SINGLE SPECIFIC SPM TECHNIQUE74
20090077697METHOD AND APPARATUS OF AUTOMATIC SCANNING PROBE IMAGING - A method of operating a scanning probe microscope (SPM) includes scanning a sample as a probe of the SPM interacts with a sample, and collecting sample surface data in response to the scanning step. The method identifies a feature of the sample from the sample surface data and automatically performs a zoom-in scan of the feature based on the identifying step. The method operates to quickly identify and confirm the location of features of interest, such as nano-asperities, so as to facilitate performing a directed high resolution image of the feature.03-19-2009
20090188011TWEEZERS SYSTEM FOR SCANNING PROBE MICROSCOPE, SCANNING PROBE MICROSCOPE APPARATUS AND METHOD OF REMOVING DUST - To enable to freely interchange a front end shape of a work in accordance with an object of, for example, removing a dust or the like, in addition thereto, even in a case of contaminating a work, to be able to easily deal therewith, and to be able to recognize a defect even when, for example, operated by an operator of a beginner without being governed by a technique of the operator, a tweezers constituted by two arms having probes arranged opposedly to a sample integrated to a scanning probe microscope and constituting an object of observation or working respectively at front ends thereof, and a plurality of kinds of interchanging works one of the plurality of kinds of which is selectively grasped by the tweezers are provided. As the interchanging works, there are an observing stylus work, a work for a contact hole, a corner moving work, a cutting work, a spatula shape work.07-23-2009
20090276924SCANNING PROBE MICROSCOPE AND ACTIVE DAMPING DRIVE CONTROL DEVICE - There is provided a scanning probe microscope that allows active damping to be advantageously carried out.11-05-2009
20100122386DRIVING APPARATUS - A driving apparatus (05-13-2010
20100293675PROBE AND CANTILEVER - To provide a probe 11-18-2010
20110099673STAGE FOR SCANNING PROBE MICROSCOPY AND SAMPLE OBSERVATION METHOD - It is an object of the invention to provide a stage for scanning probe microscopy that can be used in any kind of SPM and can effectively irradiate light to a sample and a solution near the sample without irradiated light blocked by a cantilever. The stage for scanning probe microscopy of the invention is a stage for scanning probe microscopy for fixing a sample substrate that mounts a sample to be observed thereon and has optical transparency and includes an opening that is provided below a portion where the sample substrate is fixed and that has an opening area included within the sample substrate in plan view. Light is radiated from a bottom surface of the sample substrate onto the sample through the opening.04-28-2011
20110126329DEVICE COMPRISING A CANTILEVER AND SCANNING SYSTEM - A device including a first part and a second part, one of which is a cantilever, the first and second parts being connected to each other and movable relative to each other. The device includes a magnetic element arranged on the first part and configured to provide a magnetic field. The device further includes a magnetization device arranged on the second part and configured to provide an actuation magnetic field which interacts with the magnetic field of the magnetic element, thereby causing or suppressing relative movement of the first and second parts. A scanning system including such a device is also described.05-26-2011
20120192320CANTILEVER EXCITATION DEVICE AND SCANNING PROBE MICROSCOPE - Provided is a cantilever excitation device capable of preventing complication of resonance characteristics by a simple configuration. A cantilever excitation device (07-26-2012
20090077697METHOD AND APPARATUS OF AUTOMATIC SCANNING PROBE IMAGING - A method of operating a scanning probe microscope (SPM) includes scanning a sample as a probe of the SPM interacts with a sample, and collecting sample surface data in response to the scanning step. The method identifies a feature of the sample from the sample surface data and automatically performs a zoom-in scan of the feature based on the identifying step. The method operates to quickly identify and confirm the location of features of interest, such as nano-asperities, so as to facilitate performing a directed high resolution image of the feature.03-19-2009
20090188011TWEEZERS SYSTEM FOR SCANNING PROBE MICROSCOPE, SCANNING PROBE MICROSCOPE APPARATUS AND METHOD OF REMOVING DUST - To enable to freely interchange a front end shape of a work in accordance with an object of, for example, removing a dust or the like, in addition thereto, even in a case of contaminating a work, to be able to easily deal therewith, and to be able to recognize a defect even when, for example, operated by an operator of a beginner without being governed by a technique of the operator, a tweezers constituted by two arms having probes arranged opposedly to a sample integrated to a scanning probe microscope and constituting an object of observation or working respectively at front ends thereof, and a plurality of kinds of interchanging works one of the plurality of kinds of which is selectively grasped by the tweezers are provided. As the interchanging works, there are an observing stylus work, a work for a contact hole, a corner moving work, a cutting work, a spatula shape work.07-23-2009
20090276924SCANNING PROBE MICROSCOPE AND ACTIVE DAMPING DRIVE CONTROL DEVICE - There is provided a scanning probe microscope that allows active damping to be advantageously carried out.11-05-2009
20100122386DRIVING APPARATUS - A driving apparatus (05-13-2010
20100293675PROBE AND CANTILEVER - To provide a probe 11-18-2010
20110099673STAGE FOR SCANNING PROBE MICROSCOPY AND SAMPLE OBSERVATION METHOD - It is an object of the invention to provide a stage for scanning probe microscopy that can be used in any kind of SPM and can effectively irradiate light to a sample and a solution near the sample without irradiated light blocked by a cantilever. The stage for scanning probe microscopy of the invention is a stage for scanning probe microscopy for fixing a sample substrate that mounts a sample to be observed thereon and has optical transparency and includes an opening that is provided below a portion where the sample substrate is fixed and that has an opening area included within the sample substrate in plan view. Light is radiated from a bottom surface of the sample substrate onto the sample through the opening.04-28-2011
20110126329DEVICE COMPRISING A CANTILEVER AND SCANNING SYSTEM - A device including a first part and a second part, one of which is a cantilever, the first and second parts being connected to each other and movable relative to each other. The device includes a magnetic element arranged on the first part and configured to provide a magnetic field. The device further includes a magnetization device arranged on the second part and configured to provide an actuation magnetic field which interacts with the magnetic field of the magnetic element, thereby causing or suppressing relative movement of the first and second parts. A scanning system including such a device is also described.05-26-2011
20120192320CANTILEVER EXCITATION DEVICE AND SCANNING PROBE MICROSCOPE - Provided is a cantilever excitation device capable of preventing complication of resonance characteristics by a simple configuration. A cantilever excitation device (07-26-2012
850053000 Probe holders 10
20100037360SCANNING PROBE MICROSCOPE WITH AUTOMATIC PROBE REPLACEMENT FUNCTION - An automatic probe exchange system for a scanning probe microscope (SPM) exchanges probes between a probe mount on the SPM and a probe mount on a probe tray based on differential magnetic force. When the magnetic force on the SPM side is greater, the probe is attached to the probe mount on the SPM. When the magnetic force on the probe tray side is greater, the probe is attached to the probe mount on the probe tray. The magnetic force on the probe tray side is varied by moving the magnets that generate the magnetic force on the probe tray side closer to or further from the probe.02-11-2010
20100192268Method and Apparatus for Micromachines, Microstructures, Nanomachines and Nanostructures - Parts and structures are described for micro and nano machines and the creation of macro structures with nano and micro layers of special materials to provide improved performance.07-29-2010
20110093991Probe Storage Container, Prober Apparatus, Probe Arranging Method and Manufacturing Method of Probe Storage Container - An object of the present invention relates to an arrangement of a manufactured probe in a prober apparatus without being exposed to an atmospheric air.04-21-2011
20110107472SENSOR FOR QUANTITATIVE MEASUREMENT OF ELECTROMECHANICAL PROPERTIES AND MICROSTRUCTURE OF NANO-MATERIALS AND METHOD FOR MAKING THE SAME - A sensor for quantitative test electromechanical properties and microstructure of nano-materials and a manufacturing method for the sensor are provided. The sensor comprises a suspended structure, pressure-sensitive resistor cantilevers, support beams, bimetallic strip and other components. When the bimetallic strip produces bending deformation, one of the pressure-sensitive resistor cantilevers is actuated and then stretches the low-dimensional nano-materials which drive the other pressure-sensitive resistor cantilever to bend. Through signal changes are outputted by the Wheatstone bridge, the variable stresses of low-dimensional nano-materials are obtained. Meanwhile, the variable strains of low-dimensional nano-materials are obtained by the horizontal displacements between two cantilevers, so the stress-strain curves of low-dimensional nano-materials are worked out. When the low-dimensional nano-materials are measured in the power state, the voltage-current curves are also obtained. In addition, by the help of high resolution imaging system in the transmission electron microscopy, the mechanical-electrical-microstructure relationship of the nano-materials can be recorded in situ and in atomic lattice resolution.05-05-2011
20110296565MULTIFUNCTIONAL SCANNING PROBE MICROSCOPE - The invention relates to a multifunctional scanning probe microscope comprising: 12-01-2011
20120036603METHOD AND APPARATUS FOR MICROMACHINES, MICROSTRUCTURES, NANOMACHINES AND NANOSTRUCTURES - Parts and structures are described for micro and nano machines and the creation of macro structures with nano and micro layers of special materials to provide improved performance.02-09-2012
20120324608MOUNT FOR A SCANNING PROBE SENSOR PACKAGE, SCANNING PROBE SENSOR PACKAGE, SCANNING PROBE MICROSCOPE AND METHOD OF MOUNTING OR DISMOUNTING A SCANNING PROBE SENSOR PACKAGE - A mount for a scanning probe sensor package (12-20-2012
20140123348HIGH THROUGHOUT REPRODUCIBLE CANTILEVER FUNCTIONALIZATION - A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.05-01-2014
20140331368PROBE MODULE, METHOD FOR MAKING AND USE OF SAME - A probe module includes a mount; a cantilever disposed on the mount; an electrode disposed on the mount and opposing the cantilever, and a primary fastener disposed on the mount to mechanically separate the cantilever and the electrode at a primary distance. In the probe module, the cantilever is detachably disposed on the mount, the electrode is detachably disposed on the mount, or a combination thereof.11-06-2014
20140380532SCANNING PROBE MICROSCOPE AND METHOD OF OPERATING THE SAME - Provided are a scanning probe microscope and a method of operating the same. The scanning probe microscope includes a chuck configured to fix an object. A stacker is configured to load one or more cantilevers onto a head module. A stacker lifting element is configured to move the stacker in an up and down direction.12-25-2014
20100037360SCANNING PROBE MICROSCOPE WITH AUTOMATIC PROBE REPLACEMENT FUNCTION - An automatic probe exchange system for a scanning probe microscope (SPM) exchanges probes between a probe mount on the SPM and a probe mount on a probe tray based on differential magnetic force. When the magnetic force on the SPM side is greater, the probe is attached to the probe mount on the SPM. When the magnetic force on the probe tray side is greater, the probe is attached to the probe mount on the probe tray. The magnetic force on the probe tray side is varied by moving the magnets that generate the magnetic force on the probe tray side closer to or further from the probe.02-11-2010
20100192268Method and Apparatus for Micromachines, Microstructures, Nanomachines and Nanostructures - Parts and structures are described for micro and nano machines and the creation of macro structures with nano and micro layers of special materials to provide improved performance.07-29-2010
20110093991Probe Storage Container, Prober Apparatus, Probe Arranging Method and Manufacturing Method of Probe Storage Container - An object of the present invention relates to an arrangement of a manufactured probe in a prober apparatus without being exposed to an atmospheric air.04-21-2011
20110107472SENSOR FOR QUANTITATIVE MEASUREMENT OF ELECTROMECHANICAL PROPERTIES AND MICROSTRUCTURE OF NANO-MATERIALS AND METHOD FOR MAKING THE SAME - A sensor for quantitative test electromechanical properties and microstructure of nano-materials and a manufacturing method for the sensor are provided. The sensor comprises a suspended structure, pressure-sensitive resistor cantilevers, support beams, bimetallic strip and other components. When the bimetallic strip produces bending deformation, one of the pressure-sensitive resistor cantilevers is actuated and then stretches the low-dimensional nano-materials which drive the other pressure-sensitive resistor cantilever to bend. Through signal changes are outputted by the Wheatstone bridge, the variable stresses of low-dimensional nano-materials are obtained. Meanwhile, the variable strains of low-dimensional nano-materials are obtained by the horizontal displacements between two cantilevers, so the stress-strain curves of low-dimensional nano-materials are worked out. When the low-dimensional nano-materials are measured in the power state, the voltage-current curves are also obtained. In addition, by the help of high resolution imaging system in the transmission electron microscopy, the mechanical-electrical-microstructure relationship of the nano-materials can be recorded in situ and in atomic lattice resolution.05-05-2011
20110296565MULTIFUNCTIONAL SCANNING PROBE MICROSCOPE - The invention relates to a multifunctional scanning probe microscope comprising: 12-01-2011
20120036603METHOD AND APPARATUS FOR MICROMACHINES, MICROSTRUCTURES, NANOMACHINES AND NANOSTRUCTURES - Parts and structures are described for micro and nano machines and the creation of macro structures with nano and micro layers of special materials to provide improved performance.02-09-2012
20120324608MOUNT FOR A SCANNING PROBE SENSOR PACKAGE, SCANNING PROBE SENSOR PACKAGE, SCANNING PROBE MICROSCOPE AND METHOD OF MOUNTING OR DISMOUNTING A SCANNING PROBE SENSOR PACKAGE - A mount for a scanning probe sensor package (12-20-2012
20140123348HIGH THROUGHOUT REPRODUCIBLE CANTILEVER FUNCTIONALIZATION - A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.05-01-2014
20140331368PROBE MODULE, METHOD FOR MAKING AND USE OF SAME - A probe module includes a mount; a cantilever disposed on the mount; an electrode disposed on the mount and opposing the cantilever, and a primary fastener disposed on the mount to mechanically separate the cantilever and the electrode at a primary distance. In the probe module, the cantilever is detachably disposed on the mount, the electrode is detachably disposed on the mount, or a combination thereof.11-06-2014
20140380532SCANNING PROBE MICROSCOPE AND METHOD OF OPERATING THE SAME - Provided are a scanning probe microscope and a method of operating the same. The scanning probe microscope includes a chuck configured to fix an object. A stacker is configured to load one or more cantilevers onto a head module. A stacker lifting element is configured to move the stacker in an up and down direction.12-25-2014
850055000 Probe tip arrays 2
20150309073MULTIFUNCTIONAL GRAPHENE COATED SCANNING TIPS - A coat micro tip can include a tip having a base and an oppositely disposed tip end having a radius of curvature of less than 1 μm and a graphene film conformally coated on the tip. A method of making a graphene coated tip can include immersing a tip in a fluid comprising a graphene film floating on a surface of the fluid over the tip, disposing the immersed tip at an angle relative to the graphene film floating on the surface of the fluid as measured from a plane parallel to the base of the tip, and coating the tip with the graphene film by gradually bringing the graphene film into contact with the tip while maintaining the relative angle between the floating portion of the film and the tip during coating10-29-2015
20160252546Systems and Methods for Manufacturing Nano-Electro-Mechanical-System Probes09-01-2016
20150309073MULTIFUNCTIONAL GRAPHENE COATED SCANNING TIPS - A coat micro tip can include a tip having a base and an oppositely disposed tip end having a radius of curvature of less than 1 μm and a graphene film conformally coated on the tip. A method of making a graphene coated tip can include immersing a tip in a fluid comprising a graphene film floating on a surface of the fluid over the tip, disposing the immersed tip at an angle relative to the graphene film floating on the surface of the fluid as measured from a plane parallel to the base of the tip, and coating the tip with the graphene film by gradually bringing the graphene film into contact with the tip while maintaining the relative angle between the floating portion of the film and the tip during coating10-29-2015
20160252546Systems and Methods for Manufacturing Nano-Electro-Mechanical-System Probes09-01-2016
850056000 Probe characteristics 43
20090133170Optical Instruments Having Dynamic Focus - An optical system suitable for use in an optical instrument such as a handheld optical probe, the optical system including a scanning element and an objective, the objective including a variable focus lens that can be electronically controlled to change the focal length of the optical system. In some embodiments, the optical system can axially and laterally scan a subject material by sequentially focusing at an axial depth using the variable focus lens and laterally scanning the material at that depth using the scanning element.05-21-2009
20090178167INFORMATION MEMORY APPARATUS USING PROBE - A first thermal buffer layer and a second thermal buffer layer are arranged between a recording medium and an actuator structure. The heat conductivity of the first thermal buffer layer is set low and the heat conductivity of the second thermal buffer layer is set high. Most of the heat generated from a coil wiring of the actuator structure is blocked by the first thermal buffer layer, and heat leaked from the first thermal buffer layer is diffused by the second thermal buffer layer. Temperature distribution on the recording medium is made uniform, and thus, a configuration wherein the recording medium and the actuator structure are placed one over another can be provided, information reading accuracy or information recording stability can be improved and the sizes of an information storage device can be reduced.07-09-2009
20090178168INFORMATION MEMORY APPARATUS USING PROBE - In a two-dimensional probe array, an interval between the leading ends of probes adjacent to each other in an X direction is made shorter than that between the leading ends of probes adjacent to each other in a Y direction. Thus, the leading ends of the probes are arranged to form a lattice wherein many rectangles are arranged. Furthermore, the lowest resonance frequency of an actuator which moves a recording medium in the X direction is set higher than the lowest resonance frequency of an actuator which moves the recording medium in the Y direction. At the time of recording or reading information, the recording medium is reciprocated in the X direction at a frequency substantially equal to the lowest resonance frequency of the actuator.07-09-2009
20100031405Tool Tips with Scanning Probe Microscopy and/or Atomic Force Microscopy Applications - A micro-object is affixed to a mounting structure at a desired relative orientation. The micro-object may be a tool tip optimized to work with particular microscope objectives permitting the tip to be imaged along with the object surface and used to make measurements or modifications through a travel range along the microscope imaging axis equal to or nearly equal to the working distance of the given objective. The tool tip may have a lengths exceeding 80 microns, say up to several millimeters; even the longest tips can have widths of tens of microns.02-04-2010
20100175156Three-Dimensional Imaging and Manipulation - A three-dimensional imaging and manipulation tool is provided. Techniques for creating a three-dimensional imaging and manipulation tool include combining high-resolution capability of a probe with three-dimensional imaging capability of a heater sensor. Also, techniques for positioning a nano-manipulation device relative to a surface are provided. The techniques include using a heater sensor for non-contact imaging, linking the heater sensor to the nano-manipulation device, and positioning the nano-manipulation relative device to a surface.07-08-2010
20110113517WEAR-LESS OPERATION OF A MATERIAL SURFACE WITH A SCANNING PROBE MICROSCOPE - A method and a scanning probe microscope (SPM) for scanning a surface of a material. The method and SPM have a cantilever sensor configured to exhibit both a first spring behavior and a second, stiffer spring behavior. While operating the SPM in contact mode, the sensor is scanned on the material surface and a first spring behavior of the sensor (e.g. a fundamental mode of flexure thereof) is excited by deflection of the sensor by the material surface. Also while operating the SPM in contact mode, excitation means are used to excite a second spring behavior of the sensor at a resonance frequency thereof (e.g. one or more higher-order resonant modes) of the cantilever sensor to modulate an interaction of the sensor and the material surface and thereby reduce the wearing of the material surface.05-12-2011
20110138507WHISPERING GALLERY MODE ULTRASONICALLY COUPLED SCANNING PROBE MICROSCOPE - Scanning probe microscopes include a probe tip coupled to a tuning fork or other acoustic resonator so as to apply a shear force when contacted to a specimen surface based on an applied acoustic signal. A secondary ultrasonic transducer is in acoustic communication with the specimen and a resonant structure. Probe tip-specimen displacement can be detected based on whispering gallery mode ultrasonic waves in the resonant structure using the secondary transducer, and such displacements maintained using feedback control based on whispering gallery mode acoustic wave magnitude.06-09-2011
20110167526Microsprings Having Nanowire Tip Structures - A stress-engineered microspring is formed generally in the plane of a substrate. A nanowire (or equivalently, a nanotube) is formed at the tip thereof, also in the plane of the substrate. Once formed, the length of the nanowire may be defined, for example photolithographically. A sacrificial layer underlying the microspring may then be removed, allowing the engineered stresses in the microspring to cause the structure to bend out of plane, elevating the nanowire off the substrate and out of plane. Use of the nanowire as a contact is thereby provided. The nanowire may be clamped at the tip of the microspring for added robustness. The nanowire may be coated during the formation process to provide additional functionality of the final device.07-07-2011
20110277193SENSORS AND BIOSENSORS - Multiplexed printing and sensors for biological applications. Sensors can be made with high sensitivity and by high throughput methods. Multiple capture molecules can be applied to the same or different sensor elements such as cantilevers. The sensor element can be a microcantilever. Direct write lithography from nanoscopic tips can be used to make the sensor. Proteins and hydrogels can be printed. Specific binding can be detected.11-10-2011
20120060244Scanning probe having integrated silicon tip with cantilever - A cantilever-tip assembly for atomic force microscopy (AFM) or other scanning probe microscopy and its method of making based on micro-electromechanical systems (MEMS). Two crystalline silicon wafers and attached oxide and nitride layers are bonded together across an intermediate dielectric layer. A thin cantilever with a tetrahedral silicon probe tip at its distal end are formed in one wafer by anisotropic etching of silicon and a support structure is formed in the other wafer to support the proximal end of the cantilever preferably having an inclined face formed by anisotropic silicon etching. The cantilever may be silicon or silicon nitride.03-08-2012
20120066801NANOMACHINING METHOD AND APPARATUS - Methods and apparatus are disclosed for nanomachining operations. Excitation energy settings are provided to minimize machine induced scan cutting. Cut operations can be operated in a feedback mode to provide controlled cutting operations. Measurement and sweep techniques to facilitate nanomachining operations are disclosed.03-15-2012
20120131704SENSOR FOR NONCONTACT PROFILING OF A SURFACE - A sensor for scanning a surface with an oscillating cantilever (05-24-2012
20120167261High Frequency Deflection Measurement of IR Absorption - An AFM based technique has been demonstrated for performing highly localized IR spectroscopy on a sample surface by using the AFM probe to detect wavelength dependent IR radiation interaction, typically absorption with the sample in the region of the tip. The tip may be configured to produce electric field enhancement when illuminated by a radiation source. This enhancement allows for significantly reduced illumination power levels resulting in improved spatial resolution by confining the sample-radiation interaction to the region of field enhancement which is highly localized to the tip.06-28-2012
20120174268ASSEMBLY OF MICROCANTILEVER-BASED SENSORS WITH ENHANCED DEFLECTIONS - An assembly of microcantilever-based sensors with enhanced deflections. A deflection profile of an ε-assembly can be compared with that of a rectangular microcantilever and a modified triangular microcantilever. Various force-loading conditions can also be considered. A theorem of linear elasticity for thin beams is utilized to obtain the deflections. The obtained defections can be validated against an accurate numerical solution utilizing a finite element method with a maximum deviation of less than 10 percent. The ε-assembly produces larger deflections than the rectangular microcantilever under the same base surface stress and same extension length. Also, the ε-microcantilever assembly produces a larger deflection than a modified triangular microcantilever. The deflection enhancement increases as the ε-assembly's free length decreases for various types of force loading conditions. The ε-microcantilever can be utilized in microsensing applications to provide a favorable high detection capability with a reduced susceptibility to external noises.07-05-2012
20120291161CANTILEVER FOR MAGNETIC FORCE MICROSCOPE AND METHOD OF MANUFACTURING THE SAME - In a method of manufacturing this cantilever for the magnetic force microscope, a magnetic film is formed on a probe at a tip of the cantilever for the magnetic force microscope. When a non-magnetic rigid protective film is formed around the probe, the film is formed from the front of the probe of the cantilever for the magnetic force microscope at an angle (15° to 45°) and from the back of the probe of the cantilever for the magnetic force microscope in two directions each at an angle in a range of (15° to 30°).11-15-2012
20130036521High Frequency Deflection Measurement of IR Absorption with a Modulated IR Source - A method of obtaining submicron resolution IR absorption data from a sample surface. A probe microscope probe interacts with the sample surface while a tunable source of IR radiation illuminates the sample-tip interaction region. The source is modulated at a frequency substantially overlapping the resonant frequency of the probe and may be modulated at the contact resonance frequency of the probe when the probe is in contact with the sample surface. The modulation frequency is continually adjusted to account for shifts in the probe resonant frequency due to sample or other variations. A variety of techniques are used to observe such shifts and accomplish the adjustments in a rapid manner.02-07-2013
20130047303Magnetic Actuation and Thermal Cantilevers for Temperature and Frequency Dependent Atomic Force Microscopy - Described are methods for magnetically actuating microcantilevers and magnetically actuated and self-heated microcantilevers. Also described are methods for determining viscoelastic properties and thermal transition temperatures of materials.02-21-2013
20130061357METHOD OF DETERMINING A SPRING CONSTANT OF A CANTILEVER AND SCANNING PROBE MICROSCOPE USING THE METHOD - In a cantilever which is used in a scanning probe microscope or the like and has a trapezoidal cross-sectional shape formed through anisotropic etching in a silicon process, a cantilever spring constant is determined without measuring a thickness directly. A cantilever thickness is determined based on upper base and lower base lengths of the trapezoidal cross-sectional shape and geometric regularity of a surface generated by the anisotropic etching. Then, the cantilever spring constant is determined based on the cantilever thickness, a cantilever length, and a Young's modulus.03-07-2013
20130139285CHEMICAL SENSOR WITH OSCILLATING CANTILEVERED PROBE - The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.05-30-2013
20130291236CHARACTERIZATION STRUCTURE FOR AN ATOMIC FORCE MICROSCOPE TIP - A structure for the characterization of a tip of an atomic force microscope, the structure being produced on a substrate and including a first support element located above the substrate; a first characterization element with a constant thickness, the first characterization element being located above the first support element and having an upper flat surface and a lower flat surface covering the upper surface of the first support element with two zones extending beyond the upper surface of the first support element, each zone having a characterization surface at one end which is capable of coming into contact with a tip to be characterized, the upper surface and the lower surface of said first characterization element being parallel to the upper surface of the substrate.10-31-2013
20140047585SCANNING PROBE MICROSCOPY CANTILEVER COMPRISING AN ELECTROMAGNETIC SENSOR - An apparatus and method directed to a scanning probe microscopy cantilever. The apparatus includes body and an electromagnetic sensor having a detectable electromagnetic property varying upon deformation of the body. The method includes scanning the surface of a material with the cantilever, such that the body of the cantilever undergoes deformations and detecting the electromagnetic property varying upon deformation of the body of the cantilever.02-13-2014
20140068823MINIATURIZED CANTILEVER PROBE FOR SCANNING PROBE MICROSCOPY AND FABRICATION THEREOF - Cantilever probes are formed from a multilayer structure comprising an upper substrate, a lower substrate, an interior layer, a first separation layer, and a second separation layer, wherein the first separation layer is situated between the upper substrate and the interior layer, the second separation layer is situated between the lower substrate and the interior layer, and wherein the first and the second separation layers are differentially etchable with respect to the first and the second substrates, the interior layer. The upper substrate is a first device layer from which a probe tip is formed. The interior layer is a second device layer from which a cantilever arm is formed. The lower substrate is a handle layer from which a handle, or base portion, is formed. Patterning and etching processing of any layer is isolated from the other layers by the separation layers.03-06-2014
20140130215Indented Mold Structures For Diamond Deposited Probes - The present invention discloses a method of fabricating a scanning probe microscopy probe including positioning a pattern probe over a mold substrate; indenting the pattern probe into the mold substrate material to form a mold pit; depositing a film onto the mold substrate including the mold pit; removing a portion of the deposited film to form a probe, and releasing the probe from the mold substrate material.05-08-2014
20140250553SENSOR FOR LOW FORCE-NOISE DETECTION IN LIQUIDS - The embodiments described herein provide a sensor. In an exemplary embodiment, the sensor includes (1) a resonator, (2) a probe attached to the resonator, and (3) an encasement that encases the resonator, where the encasement includes an opening through which the probe can protrude and where the dimensions of the encasement are on the same order as the dimensions of the resonator.09-04-2014
20140366230MINIATURIZED CANTILEVER PROBE FOR SCANNING PROBE MICROSCOPY AND FABRICATION THEREOF - Cantilever probes are formed from a multilayer structure comprising an upper substrate, a lower substrate, an interior layer, a first separation layer, and a second separation layer, wherein the first separation layer is situated between the upper substrate and the interior layer, the second separation layer is situated between the lower substrate and the interior layer, and wherein the first and the second separation layers are differentially etchable with respect to the first and the second substrates, the interior layer. The upper substrate is a first device layer from which a probe tip is formed. The interior layer is a second device layer from which a cantilever arm is formed. The lower substrate is a handle layer from which a handle, or base portion, is formed. Patterning and etching processing of any layer is isolated from the other layers by the separation layers.12-11-2014
20090133170Optical Instruments Having Dynamic Focus - An optical system suitable for use in an optical instrument such as a handheld optical probe, the optical system including a scanning element and an objective, the objective including a variable focus lens that can be electronically controlled to change the focal length of the optical system. In some embodiments, the optical system can axially and laterally scan a subject material by sequentially focusing at an axial depth using the variable focus lens and laterally scanning the material at that depth using the scanning element.05-21-2009
20090178167INFORMATION MEMORY APPARATUS USING PROBE - A first thermal buffer layer and a second thermal buffer layer are arranged between a recording medium and an actuator structure. The heat conductivity of the first thermal buffer layer is set low and the heat conductivity of the second thermal buffer layer is set high. Most of the heat generated from a coil wiring of the actuator structure is blocked by the first thermal buffer layer, and heat leaked from the first thermal buffer layer is diffused by the second thermal buffer layer. Temperature distribution on the recording medium is made uniform, and thus, a configuration wherein the recording medium and the actuator structure are placed one over another can be provided, information reading accuracy or information recording stability can be improved and the sizes of an information storage device can be reduced.07-09-2009
20090178168INFORMATION MEMORY APPARATUS USING PROBE - In a two-dimensional probe array, an interval between the leading ends of probes adjacent to each other in an X direction is made shorter than that between the leading ends of probes adjacent to each other in a Y direction. Thus, the leading ends of the probes are arranged to form a lattice wherein many rectangles are arranged. Furthermore, the lowest resonance frequency of an actuator which moves a recording medium in the X direction is set higher than the lowest resonance frequency of an actuator which moves the recording medium in the Y direction. At the time of recording or reading information, the recording medium is reciprocated in the X direction at a frequency substantially equal to the lowest resonance frequency of the actuator.07-09-2009
20100031405Tool Tips with Scanning Probe Microscopy and/or Atomic Force Microscopy Applications - A micro-object is affixed to a mounting structure at a desired relative orientation. The micro-object may be a tool tip optimized to work with particular microscope objectives permitting the tip to be imaged along with the object surface and used to make measurements or modifications through a travel range along the microscope imaging axis equal to or nearly equal to the working distance of the given objective. The tool tip may have a lengths exceeding 80 microns, say up to several millimeters; even the longest tips can have widths of tens of microns.02-04-2010
20100175156Three-Dimensional Imaging and Manipulation - A three-dimensional imaging and manipulation tool is provided. Techniques for creating a three-dimensional imaging and manipulation tool include combining high-resolution capability of a probe with three-dimensional imaging capability of a heater sensor. Also, techniques for positioning a nano-manipulation device relative to a surface are provided. The techniques include using a heater sensor for non-contact imaging, linking the heater sensor to the nano-manipulation device, and positioning the nano-manipulation relative device to a surface.07-08-2010
20110113517WEAR-LESS OPERATION OF A MATERIAL SURFACE WITH A SCANNING PROBE MICROSCOPE - A method and a scanning probe microscope (SPM) for scanning a surface of a material. The method and SPM have a cantilever sensor configured to exhibit both a first spring behavior and a second, stiffer spring behavior. While operating the SPM in contact mode, the sensor is scanned on the material surface and a first spring behavior of the sensor (e.g. a fundamental mode of flexure thereof) is excited by deflection of the sensor by the material surface. Also while operating the SPM in contact mode, excitation means are used to excite a second spring behavior of the sensor at a resonance frequency thereof (e.g. one or more higher-order resonant modes) of the cantilever sensor to modulate an interaction of the sensor and the material surface and thereby reduce the wearing of the material surface.05-12-2011
20110138507WHISPERING GALLERY MODE ULTRASONICALLY COUPLED SCANNING PROBE MICROSCOPE - Scanning probe microscopes include a probe tip coupled to a tuning fork or other acoustic resonator so as to apply a shear force when contacted to a specimen surface based on an applied acoustic signal. A secondary ultrasonic transducer is in acoustic communication with the specimen and a resonant structure. Probe tip-specimen displacement can be detected based on whispering gallery mode ultrasonic waves in the resonant structure using the secondary transducer, and such displacements maintained using feedback control based on whispering gallery mode acoustic wave magnitude.06-09-2011
20110167526Microsprings Having Nanowire Tip Structures - A stress-engineered microspring is formed generally in the plane of a substrate. A nanowire (or equivalently, a nanotube) is formed at the tip thereof, also in the plane of the substrate. Once formed, the length of the nanowire may be defined, for example photolithographically. A sacrificial layer underlying the microspring may then be removed, allowing the engineered stresses in the microspring to cause the structure to bend out of plane, elevating the nanowire off the substrate and out of plane. Use of the nanowire as a contact is thereby provided. The nanowire may be clamped at the tip of the microspring for added robustness. The nanowire may be coated during the formation process to provide additional functionality of the final device.07-07-2011
20110277193SENSORS AND BIOSENSORS - Multiplexed printing and sensors for biological applications. Sensors can be made with high sensitivity and by high throughput methods. Multiple capture molecules can be applied to the same or different sensor elements such as cantilevers. The sensor element can be a microcantilever. Direct write lithography from nanoscopic tips can be used to make the sensor. Proteins and hydrogels can be printed. Specific binding can be detected.11-10-2011
20120060244Scanning probe having integrated silicon tip with cantilever - A cantilever-tip assembly for atomic force microscopy (AFM) or other scanning probe microscopy and its method of making based on micro-electromechanical systems (MEMS). Two crystalline silicon wafers and attached oxide and nitride layers are bonded together across an intermediate dielectric layer. A thin cantilever with a tetrahedral silicon probe tip at its distal end are formed in one wafer by anisotropic etching of silicon and a support structure is formed in the other wafer to support the proximal end of the cantilever preferably having an inclined face formed by anisotropic silicon etching. The cantilever may be silicon or silicon nitride.03-08-2012
20120066801NANOMACHINING METHOD AND APPARATUS - Methods and apparatus are disclosed for nanomachining operations. Excitation energy settings are provided to minimize machine induced scan cutting. Cut operations can be operated in a feedback mode to provide controlled cutting operations. Measurement and sweep techniques to facilitate nanomachining operations are disclosed.03-15-2012
20120131704SENSOR FOR NONCONTACT PROFILING OF A SURFACE - A sensor for scanning a surface with an oscillating cantilever (05-24-2012
20120167261High Frequency Deflection Measurement of IR Absorption - An AFM based technique has been demonstrated for performing highly localized IR spectroscopy on a sample surface by using the AFM probe to detect wavelength dependent IR radiation interaction, typically absorption with the sample in the region of the tip. The tip may be configured to produce electric field enhancement when illuminated by a radiation source. This enhancement allows for significantly reduced illumination power levels resulting in improved spatial resolution by confining the sample-radiation interaction to the region of field enhancement which is highly localized to the tip.06-28-2012
20120174268ASSEMBLY OF MICROCANTILEVER-BASED SENSORS WITH ENHANCED DEFLECTIONS - An assembly of microcantilever-based sensors with enhanced deflections. A deflection profile of an ε-assembly can be compared with that of a rectangular microcantilever and a modified triangular microcantilever. Various force-loading conditions can also be considered. A theorem of linear elasticity for thin beams is utilized to obtain the deflections. The obtained defections can be validated against an accurate numerical solution utilizing a finite element method with a maximum deviation of less than 10 percent. The ε-assembly produces larger deflections than the rectangular microcantilever under the same base surface stress and same extension length. Also, the ε-microcantilever assembly produces a larger deflection than a modified triangular microcantilever. The deflection enhancement increases as the ε-assembly's free length decreases for various types of force loading conditions. The ε-microcantilever can be utilized in microsensing applications to provide a favorable high detection capability with a reduced susceptibility to external noises.07-05-2012
20120291161CANTILEVER FOR MAGNETIC FORCE MICROSCOPE AND METHOD OF MANUFACTURING THE SAME - In a method of manufacturing this cantilever for the magnetic force microscope, a magnetic film is formed on a probe at a tip of the cantilever for the magnetic force microscope. When a non-magnetic rigid protective film is formed around the probe, the film is formed from the front of the probe of the cantilever for the magnetic force microscope at an angle (15° to 45°) and from the back of the probe of the cantilever for the magnetic force microscope in two directions each at an angle in a range of (15° to 30°).11-15-2012
20130036521High Frequency Deflection Measurement of IR Absorption with a Modulated IR Source - A method of obtaining submicron resolution IR absorption data from a sample surface. A probe microscope probe interacts with the sample surface while a tunable source of IR radiation illuminates the sample-tip interaction region. The source is modulated at a frequency substantially overlapping the resonant frequency of the probe and may be modulated at the contact resonance frequency of the probe when the probe is in contact with the sample surface. The modulation frequency is continually adjusted to account for shifts in the probe resonant frequency due to sample or other variations. A variety of techniques are used to observe such shifts and accomplish the adjustments in a rapid manner.02-07-2013
20130047303Magnetic Actuation and Thermal Cantilevers for Temperature and Frequency Dependent Atomic Force Microscopy - Described are methods for magnetically actuating microcantilevers and magnetically actuated and self-heated microcantilevers. Also described are methods for determining viscoelastic properties and thermal transition temperatures of materials.02-21-2013
20130061357METHOD OF DETERMINING A SPRING CONSTANT OF A CANTILEVER AND SCANNING PROBE MICROSCOPE USING THE METHOD - In a cantilever which is used in a scanning probe microscope or the like and has a trapezoidal cross-sectional shape formed through anisotropic etching in a silicon process, a cantilever spring constant is determined without measuring a thickness directly. A cantilever thickness is determined based on upper base and lower base lengths of the trapezoidal cross-sectional shape and geometric regularity of a surface generated by the anisotropic etching. Then, the cantilever spring constant is determined based on the cantilever thickness, a cantilever length, and a Young's modulus.03-07-2013
20130139285CHEMICAL SENSOR WITH OSCILLATING CANTILEVERED PROBE - The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.05-30-2013
20130291236CHARACTERIZATION STRUCTURE FOR AN ATOMIC FORCE MICROSCOPE TIP - A structure for the characterization of a tip of an atomic force microscope, the structure being produced on a substrate and including a first support element located above the substrate; a first characterization element with a constant thickness, the first characterization element being located above the first support element and having an upper flat surface and a lower flat surface covering the upper surface of the first support element with two zones extending beyond the upper surface of the first support element, each zone having a characterization surface at one end which is capable of coming into contact with a tip to be characterized, the upper surface and the lower surface of said first characterization element being parallel to the upper surface of the substrate.10-31-2013
20140047585SCANNING PROBE MICROSCOPY CANTILEVER COMPRISING AN ELECTROMAGNETIC SENSOR - An apparatus and method directed to a scanning probe microscopy cantilever. The apparatus includes body and an electromagnetic sensor having a detectable electromagnetic property varying upon deformation of the body. The method includes scanning the surface of a material with the cantilever, such that the body of the cantilever undergoes deformations and detecting the electromagnetic property varying upon deformation of the body of the cantilever.02-13-2014
20140068823MINIATURIZED CANTILEVER PROBE FOR SCANNING PROBE MICROSCOPY AND FABRICATION THEREOF - Cantilever probes are formed from a multilayer structure comprising an upper substrate, a lower substrate, an interior layer, a first separation layer, and a second separation layer, wherein the first separation layer is situated between the upper substrate and the interior layer, the second separation layer is situated between the lower substrate and the interior layer, and wherein the first and the second separation layers are differentially etchable with respect to the first and the second substrates, the interior layer. The upper substrate is a first device layer from which a probe tip is formed. The interior layer is a second device layer from which a cantilever arm is formed. The lower substrate is a handle layer from which a handle, or base portion, is formed. Patterning and etching processing of any layer is isolated from the other layers by the separation layers.03-06-2014
20140130215Indented Mold Structures For Diamond Deposited Probes - The present invention discloses a method of fabricating a scanning probe microscopy probe including positioning a pattern probe over a mold substrate; indenting the pattern probe into the mold substrate material to form a mold pit; depositing a film onto the mold substrate including the mold pit; removing a portion of the deposited film to form a probe, and releasing the probe from the mold substrate material.05-08-2014
20140250553SENSOR FOR LOW FORCE-NOISE DETECTION IN LIQUIDS - The embodiments described herein provide a sensor. In an exemplary embodiment, the sensor includes (1) a resonator, (2) a probe attached to the resonator, and (3) an encasement that encases the resonator, where the encasement includes an opening through which the probe can protrude and where the dimensions of the encasement are on the same order as the dimensions of the resonator.09-04-2014
20140366230MINIATURIZED CANTILEVER PROBE FOR SCANNING PROBE MICROSCOPY AND FABRICATION THEREOF - Cantilever probes are formed from a multilayer structure comprising an upper substrate, a lower substrate, an interior layer, a first separation layer, and a second separation layer, wherein the first separation layer is situated between the upper substrate and the interior layer, the second separation layer is situated between the lower substrate and the interior layer, and wherein the first and the second separation layers are differentially etchable with respect to the first and the second substrates, the interior layer. The upper substrate is a first device layer from which a probe tip is formed. The interior layer is a second device layer from which a cantilever arm is formed. The lower substrate is a handle layer from which a handle, or base portion, is formed. Patterning and etching processing of any layer is isolated from the other layers by the separation layers.12-11-2014
850057000 Shape or taper 10
20100043108PROBE FOR SCANNING PROBE MICROSCOPE - In a tip having a carbon nanotube tip used to a scanning probe microscope, its length of the tip is adjusted in a several order of 10 nm and the tip maintains cylindrical shape up to the extremity portion.02-18-2010
20100071100Probes, Methods of Making Probes, and Applications using Probes - Provided herein are methods and apparatuses for analyzing molecules, particularly polymers, and molecular complexes with extended conformations. In particular, the methods and apparatuses are used to identify sequence information in molecules or molecular ensembles, which is subsequently used to determine structural information about the molecules. Further, provided herein are various methods of forming probes and films for making such probes of nanoscale dimension.03-18-2010
20120159678NANOMETER-SCALE SHARPENING OF CONDUCTOR TIPS - The invention provides methods for sharpening the tip of an electrical conductor. The methods of the invention are capable of producing tips with an apex radius of curvature less than 2 nm. The methods of the invention are based on simultaneous direction of ionized atoms towards the apex of a previously sharpened conducting tip and application of an electric potential difference to the tip. The sign of the charge on the ions is the same as the sign of the electric potential. The methods of the invention can be used to sharpen metal wires, metal wires tipped with conductive coatings, multi-walled carbon nanotubes, semiconducting nanowires and semiconductors in other forms.06-21-2012
20120174269METAL TIP FOR SCANNING PROBE APPLICATIONS AND METHOD OF PRODUCING THE SAME - A metal tip (07-05-2012
20120255073SCANNING PROBE LITHOGRAPHY APPARATUS AND METHOD, AND MATERIAL ACCORDINGLY OBTAINED - A scanning probe lithography (SPL) apparatus, an SPL method, and a material having a surface thickness patterned according to the SPL method. The apparatus includes: two or more probes with respective shapes, where the respective shapes are different and the respective shapes form, in operation, different patterns in a thickness of a surface of a material processed with the apparatus.10-04-2012
20130180019PROBE SHAPE EVALUATION METHOD FOR A SCANNING PROBE MICROSCOPE - Provided is a method of evaluating a probe tip shape in a scanning probe microscope, including: measuring the probe tip shape by a probe shape test sample having a needle-like structure; determining radii of cross-sections at a plurality of distances from the apex; and calculating, based on the distances and the radii, a radios of curvature when the probe tip shape is approximated by a circle.07-11-2013
20140033374SYSTEM FOR FABRICATING NANOSCALE PROBE AND METHOD THEREOF - Disclosed is a method for fabricating a nanoscale probe. A first conductor and a second conductor are immersed into an electrolyte contained in an electrolytic tank. The first conductor and the second conductor are connected to a power source respectively. An electrolytic reaction is established when an electrical circuit is established between the first conductor and the second conductor. The second conductor is configured to output electrons. The first conductor is configured to receive electrons. Therefore, the first conductor is etched when the electrical circuit is established between the first conductor and the second conductor. A necking portion is created at the first conductor approximately near the surface of the electrolyte. A nanoscale probe is fabricated when first conductor breaks at the necking portion.01-30-2014
20100043108PROBE FOR SCANNING PROBE MICROSCOPE - In a tip having a carbon nanotube tip used to a scanning probe microscope, its length of the tip is adjusted in a several order of 10 nm and the tip maintains cylindrical shape up to the extremity portion.02-18-2010
20100071100Probes, Methods of Making Probes, and Applications using Probes - Provided herein are methods and apparatuses for analyzing molecules, particularly polymers, and molecular complexes with extended conformations. In particular, the methods and apparatuses are used to identify sequence information in molecules or molecular ensembles, which is subsequently used to determine structural information about the molecules. Further, provided herein are various methods of forming probes and films for making such probes of nanoscale dimension.03-18-2010
20120159678NANOMETER-SCALE SHARPENING OF CONDUCTOR TIPS - The invention provides methods for sharpening the tip of an electrical conductor. The methods of the invention are capable of producing tips with an apex radius of curvature less than 2 nm. The methods of the invention are based on simultaneous direction of ionized atoms towards the apex of a previously sharpened conducting tip and application of an electric potential difference to the tip. The sign of the charge on the ions is the same as the sign of the electric potential. The methods of the invention can be used to sharpen metal wires, metal wires tipped with conductive coatings, multi-walled carbon nanotubes, semiconducting nanowires and semiconductors in other forms.06-21-2012
20120174269METAL TIP FOR SCANNING PROBE APPLICATIONS AND METHOD OF PRODUCING THE SAME - A metal tip (07-05-2012
20120255073SCANNING PROBE LITHOGRAPHY APPARATUS AND METHOD, AND MATERIAL ACCORDINGLY OBTAINED - A scanning probe lithography (SPL) apparatus, an SPL method, and a material having a surface thickness patterned according to the SPL method. The apparatus includes: two or more probes with respective shapes, where the respective shapes are different and the respective shapes form, in operation, different patterns in a thickness of a surface of a material processed with the apparatus.10-04-2012
20130180019PROBE SHAPE EVALUATION METHOD FOR A SCANNING PROBE MICROSCOPE - Provided is a method of evaluating a probe tip shape in a scanning probe microscope, including: measuring the probe tip shape by a probe shape test sample having a needle-like structure; determining radii of cross-sections at a plurality of distances from the apex; and calculating, based on the distances and the radii, a radios of curvature when the probe tip shape is approximated by a circle.07-11-2013
20140033374SYSTEM FOR FABRICATING NANOSCALE PROBE AND METHOD THEREOF - Disclosed is a method for fabricating a nanoscale probe. A first conductor and a second conductor are immersed into an electrolyte contained in an electrolytic tank. The first conductor and the second conductor are connected to a power source respectively. An electrolytic reaction is established when an electrical circuit is established between the first conductor and the second conductor. The second conductor is configured to output electrons. The first conductor is configured to receive electrons. Therefore, the first conductor is etched when the electrical circuit is established between the first conductor and the second conductor. A necking portion is created at the first conductor approximately near the surface of the electrolyte. A nanoscale probe is fabricated when first conductor breaks at the necking portion.01-30-2014
850058000 Nano-tube tips 3
20100005553SIDEWALL TRACING NANOPROBES, METHOD FOR MAKING THE SAME, AND METHOD FOR USE - Sidewall tracing nanoprobes, in which the tip shape of the nanoprobe Is altered so that the diameter or width of the very tip of the probe is wider than the diameter of the supporting stem. Such side protruding probe tips are fabricated by a subtractive method of reducing the stem diameter, an additive method of increasing the tip diameter, or sideway bending of the probe tip. These sidewall tracing nanoprobes are useful for inspection of semiconductor devices, especially to quantitatively evaluate the defects on the side wall of trenches or via holes.01-07-2010
20100132080METHOD OF MAKING AND ASSEMBLING CAPSULATED NANOSTRUCTURES - An encapsulated nanostructure fabricated using layers of polymer material and further processed for use in a micro-scale target device is presented. The fabrication includes the formation on a substrate of an array of encapsulated nanostructures. The encapsulated nanostructures each include a nanostructure and a micro-scale, multi-block structure that encapsulates the nanostructure. Each encapsulated nanostructure can be made usable by a target device by removing, e.g., by etching, one of the layers to expose a portion of the nanostructure.05-27-2010
20110203021SPM NANOPROBES AND THE PREPARATION METHOD THEREOF - The present invention relates to SPM nanoprobes and the preparation method thereof, more particularly, to SPM nanoprobes comprising a spheroid deposit capped-nanoneedle bonded to one end of a mother tip, wherein the spheroid deposit is formed by particle beam induced deposition and is characterized in that the ratio of the diameter of the spheroid deposit to that of the nanoneedle is in the range of 1.5 to 8.5. The SPM nanoprobe according to the present invention is capable of imaging or measuring an irregularly curved or complicated surface, pattern and/or a frictional or adhesive force thereof and controlling size of a spheroid deposit formed at the end portion of nanoneedle and the ratio of the diameter of the spheroid deposit to that of the nanoneedle arbitrarily.08-18-2011
20100005553SIDEWALL TRACING NANOPROBES, METHOD FOR MAKING THE SAME, AND METHOD FOR USE - Sidewall tracing nanoprobes, in which the tip shape of the nanoprobe Is altered so that the diameter or width of the very tip of the probe is wider than the diameter of the supporting stem. Such side protruding probe tips are fabricated by a subtractive method of reducing the stem diameter, an additive method of increasing the tip diameter, or sideway bending of the probe tip. These sidewall tracing nanoprobes are useful for inspection of semiconductor devices, especially to quantitatively evaluate the defects on the side wall of trenches or via holes.01-07-2010
20100132080METHOD OF MAKING AND ASSEMBLING CAPSULATED NANOSTRUCTURES - An encapsulated nanostructure fabricated using layers of polymer material and further processed for use in a micro-scale target device is presented. The fabrication includes the formation on a substrate of an array of encapsulated nanostructures. The encapsulated nanostructures each include a nanostructure and a micro-scale, multi-block structure that encapsulates the nanostructure. Each encapsulated nanostructure can be made usable by a target device by removing, e.g., by etching, one of the layers to expose a portion of the nanostructure.05-27-2010
20110203021SPM NANOPROBES AND THE PREPARATION METHOD THEREOF - The present invention relates to SPM nanoprobes and the preparation method thereof, more particularly, to SPM nanoprobes comprising a spheroid deposit capped-nanoneedle bonded to one end of a mother tip, wherein the spheroid deposit is formed by particle beam induced deposition and is characterized in that the ratio of the diameter of the spheroid deposit to that of the nanoneedle is in the range of 1.5 to 8.5. The SPM nanoprobe according to the present invention is capable of imaging or measuring an irregularly curved or complicated surface, pattern and/or a frictional or adhesive force thereof and controlling size of a spheroid deposit formed at the end portion of nanoneedle and the ratio of the diameter of the spheroid deposit to that of the nanoneedle arbitrarily.08-18-2011
850059000 Particular materials 8
20090172846NANOMETRIC EMITTER/RECEIVER GUIDES - The invention relates to a nanoprobe comprising a silica fibre (07-02-2009
20100011472Apparatus And Method For The Detection Of Forces In The Sub-Micronewton Range - A force microscope for the detection of forces in the sub-micronewton range has a measurement head which is used to carry out a relative movement with respect to a sample holder and to which a carrier molecule is attached on which probe molecules are placed.01-14-2010
20100275335SCANNING PROBE AND METHOD FOR ATTACHING CONDUCTIVE PARTICLE TO THE APEX OF THE PROBE TIP OF THE SCANNING PROBE - A method for attaching a conductive particle to the apex of a probe tip comprises the steps of: moving the apex of a probe tip close to a conductive particle and applying a bias voltage between the probe tip and the conductive particle so that the conductive particle can permanently attach to the apex. The method uses only a bias voltage to transfer and attach conductive particles to the apex of a probe tip, and no surface treatment of the probe tip is required.10-28-2010
20110067151CONTACT PROBE PIN FOR SEMICONDUCTOR TEST APPARATUS - It is an object to provide a contact probe pin for a semiconductor test apparatus, including an amorphous carbon type conductive film formed on the probe pin base material surface. The conductive film is excellent in tin adhesion resistance of preventing tin which is the main component of solder from adhering to the contact part of the probe pin during contact between the probe pin and solder. The contact probe pin for a semiconductor test apparatus, includes an amorphous carbon type conductive film formed on the conductive base material surface. The amorphous carbon type conductive film has an outer surface with a surface roughness (Ra) of 6.0 nm or less, a root square slope (RΔq) of 0.28 or less, and a mean value (R) of curvature radii of concave part tips of the surface form of 180 nm or more, in a 4-μm03-17-2011
20110078835SEEK-SCAN PROBE (SSP) MEMORY WITH SHARP PROBE TIPS FORMED AT CMOS-COMPATIBLE TEMPERATURES - Embodiments of a process comprising forming one or more micro-electro-mechanical (MEMS) probe on a conductive metal oxide semiconductor (CMOS) wafer, wherein each MEMS probe comprises a cantilever beam with a fixed end and a free end and wherein the CMOS wafer has circuitry thereon; forming an unsharpened tip at or near the free end of each cantilever beam; depositing a silicide-forming material over the tip; annealing the wafer to sharpen the tip; and exposing the sharpened tip. Embodiments of an apparatus comprising a conductive metal oxide semiconductor (CMOS) wafer including circuitry therein; one or more micro-electro-mechanical (MEMS) probes integrally formed on the CMOS wafer, wherein each MEMS probe comprises a cantilever beam with a fixed end and a free end and a sharpened tip at or near the free end, the sharpened tip formed by a process comprising forming an unsharpened tip at or near the free end of each cantilever beam, depositing a silicide-forming material over the unsharpened tip, annealing the wafer to sharpen the unsharpened tip, and exposing the sharpened tip.03-31-2011
20110107473DIAMOND-LIKE CARBON COATED NANOPROBES - Diamond-like carbon (DLC) coated nanoprobes and methods for fabricating such nanoprobes are provided. The nanoprobes provide hard, wear-resistant, low friction probes for use in such applications as atomic force microscopy, nanomachining, nanotribology, metrology and nanolithography. The diamond-like carbon coatings include a carbon implantation layer which increases adhesion of a deposited DLC layer to an underlying nanoprobe tip.05-05-2011
20120167262SILICON PEN NANOLITHOGRAPHY - Disclosed are methods of lithography using a tip array having a plurality of pens attached to a backing layer, where the tips can comprise a metal, metalloid, and/or semi-conducting material, and the backing layer can comprise an elastomeric polymer. The tip array can be used to perform a lithography process in which the tips are coated with an ink (e.g., a patterning composition) that is deposited onto a substrate upon contact of the tip with the substrate surface. The tips can be easily leveled onto a substrate and the leveling can be monitored optically by a change in light reflection of the backing layer and/or near the vicinity of the tips upon contact of the tip to the substrate surface.06-28-2012
20140338075Vertical Embedded Sensor and Process of Manufacturing Thereof - A scanning probe assembly having a nanometer sensor element defined at a tip apex and its method of fabrication using micro-electromechanical systems (MEMS) processing techniques. The assembly comprises a probe body, a cantilever extending outward, and a hollow tip at the end of the cantilever. A first conductive material is disposed on the hollow tip, followed by a dielectric layer thus embedding the conductive layer. A nanometer hole is milled through the tip, first conductor and dielectric materials. A metal sensor element is deposited by means of electrochemical deposition in the through-hole. A second conductor is deposited on a lower layer. The first and second conductors form electrical connections to the sensor element in the tip. The intra-tip metal, in combination with other layers, may form a thermocouple, thermistor, Schottky diode, ultramicroelectrode, or Hall Effect sensor, and used as a precursor to grow spikes such a nanotubes.11-13-2014
20090172846NANOMETRIC EMITTER/RECEIVER GUIDES - The invention relates to a nanoprobe comprising a silica fibre (07-02-2009
20100011472Apparatus And Method For The Detection Of Forces In The Sub-Micronewton Range - A force microscope for the detection of forces in the sub-micronewton range has a measurement head which is used to carry out a relative movement with respect to a sample holder and to which a carrier molecule is attached on which probe molecules are placed.01-14-2010
20100275335SCANNING PROBE AND METHOD FOR ATTACHING CONDUCTIVE PARTICLE TO THE APEX OF THE PROBE TIP OF THE SCANNING PROBE - A method for attaching a conductive particle to the apex of a probe tip comprises the steps of: moving the apex of a probe tip close to a conductive particle and applying a bias voltage between the probe tip and the conductive particle so that the conductive particle can permanently attach to the apex. The method uses only a bias voltage to transfer and attach conductive particles to the apex of a probe tip, and no surface treatment of the probe tip is required.10-28-2010
20110067151CONTACT PROBE PIN FOR SEMICONDUCTOR TEST APPARATUS - It is an object to provide a contact probe pin for a semiconductor test apparatus, including an amorphous carbon type conductive film formed on the probe pin base material surface. The conductive film is excellent in tin adhesion resistance of preventing tin which is the main component of solder from adhering to the contact part of the probe pin during contact between the probe pin and solder. The contact probe pin for a semiconductor test apparatus, includes an amorphous carbon type conductive film formed on the conductive base material surface. The amorphous carbon type conductive film has an outer surface with a surface roughness (Ra) of 6.0 nm or less, a root square slope (RΔq) of 0.28 or less, and a mean value (R) of curvature radii of concave part tips of the surface form of 180 nm or more, in a 4-μm03-17-2011
20110078835SEEK-SCAN PROBE (SSP) MEMORY WITH SHARP PROBE TIPS FORMED AT CMOS-COMPATIBLE TEMPERATURES - Embodiments of a process comprising forming one or more micro-electro-mechanical (MEMS) probe on a conductive metal oxide semiconductor (CMOS) wafer, wherein each MEMS probe comprises a cantilever beam with a fixed end and a free end and wherein the CMOS wafer has circuitry thereon; forming an unsharpened tip at or near the free end of each cantilever beam; depositing a silicide-forming material over the tip; annealing the wafer to sharpen the tip; and exposing the sharpened tip. Embodiments of an apparatus comprising a conductive metal oxide semiconductor (CMOS) wafer including circuitry therein; one or more micro-electro-mechanical (MEMS) probes integrally formed on the CMOS wafer, wherein each MEMS probe comprises a cantilever beam with a fixed end and a free end and a sharpened tip at or near the free end, the sharpened tip formed by a process comprising forming an unsharpened tip at or near the free end of each cantilever beam, depositing a silicide-forming material over the unsharpened tip, annealing the wafer to sharpen the unsharpened tip, and exposing the sharpened tip.03-31-2011
20110107473DIAMOND-LIKE CARBON COATED NANOPROBES - Diamond-like carbon (DLC) coated nanoprobes and methods for fabricating such nanoprobes are provided. The nanoprobes provide hard, wear-resistant, low friction probes for use in such applications as atomic force microscopy, nanomachining, nanotribology, metrology and nanolithography. The diamond-like carbon coatings include a carbon implantation layer which increases adhesion of a deposited DLC layer to an underlying nanoprobe tip.05-05-2011
20120167262SILICON PEN NANOLITHOGRAPHY - Disclosed are methods of lithography using a tip array having a plurality of pens attached to a backing layer, where the tips can comprise a metal, metalloid, and/or semi-conducting material, and the backing layer can comprise an elastomeric polymer. The tip array can be used to perform a lithography process in which the tips are coated with an ink (e.g., a patterning composition) that is deposited onto a substrate upon contact of the tip with the substrate surface. The tips can be easily leveled onto a substrate and the leveling can be monitored optically by a change in light reflection of the backing layer and/or near the vicinity of the tips upon contact of the tip to the substrate surface.06-28-2012
20140338075Vertical Embedded Sensor and Process of Manufacturing Thereof - A scanning probe assembly having a nanometer sensor element defined at a tip apex and its method of fabrication using micro-electromechanical systems (MEMS) processing techniques. The assembly comprises a probe body, a cantilever extending outward, and a hollow tip at the end of the cantilever. A first conductive material is disposed on the hollow tip, followed by a dielectric layer thus embedding the conductive layer. A nanometer hole is milled through the tip, first conductor and dielectric materials. A metal sensor element is deposited by means of electrochemical deposition in the through-hole. A second conductor is deposited on a lower layer. The first and second conductors form electrical connections to the sensor element in the tip. The intra-tip metal, in combination with other layers, may form a thermocouple, thermistor, Schottky diode, ultramicroelectrode, or Hall Effect sensor, and used as a precursor to grow spikes such a nanotubes.11-13-2014
850060000 Probe manufacture 11
20090106869METHOD FOR FABRICATING SPM AND CD-SPM NANONEEDLE PROBE USING ION BEAM AND SPM AND CD-SPM NANONEEDLE PROBE THEREBY - The present invention relates to a method for fabricating a scanning probe microscope (SPM) nanoneedle probe using ion beam which is preferably focused ion beam and a nanoneedle probe thereby. More particularly, the present invention relates to a method for fabricating a SPM nanoneedle probe capable of being easily adjusted with an intended pointing direction of a nanoneedle attached on a tip of the SPM nanoneedle probe and of being easily straightened with the nanoneedle attached on the tip of the SPM nanoneedle probe along the intended pointing direction, and to a SPM nanoneedle probe thereby. Also, the present invention relates to a method for fabricating a critical dimension SPM (CD-SPM) nanoneedle probe capable of precisely scanning the sidewall of an sample object in nanoscale using ion beam which is preferably focused ion beam, and to a CD-SPM nanoneedle probe thereby. More particularly, the present invention relates to a method for fabricating a CD-SPM nanoneedle probe capable of precisely scanning the sidewall of the sample object in nanoscale by bending a portion of an end of the nanoneedle attached on the tip of the SPM nanoneedle probe in a specific angle toward a direction other than an original direction in which the nanoneedle attached on the tip of the SPM nanoneedle probe extends out, and to a CD-SPM nanoneedle probe thereby. A method of fabricating scanning probe microscope (SPM) nanoneedle probe using ion beam, comprises: positioning the probe so that a tip of the probe on which the nanoneedle is attached faces toward a direction in which the ion beam is irradiated; and aligning the nanoneedle attached on the tip of the probe with the ion beam in parallel by irradiating the ion beam toward the tip of the probe on which the nanoneedle is attached. A method of fabricating a critical dimension scanning probe microscope (CD-SPM) nanoneedle probe using ion beam, comprises: screening a certain portion of the nanoneedle attached on a tip of the probe using a mask; and bending a part of the nanoneedle exposed out of the mask to align the part of the nanoneedle by irradiating the ion beam on the part of the nanoneedle exposed out of the mask, along the direction of the irradiated ion beam.04-23-2009
20090133171Tapered probe structures and fabrication - Probe structures and fabrication techniques are described. The described probe structures can be used as probes for various applications such as conductance measurement probes, field emitter probes, nanofabrication probes, and magnetic bit writing or reading probes.05-21-2009
20090138995ATOM PROBE COMPONENT TREATMENTS - The present invention relates to treatments for atom probe components. For example, certain aspects are directed toward processes for treating an atom probe component that includes removing material from a surface of the atom probe component (e.g., using an ion beam, a plasma, a chemical etching process, and/or photonic energy). Another aspect of the invention is directed toward a method for treating an atom probe specimen that includes using a computing device to automatically control a voltage used in an ion sputtering process. Still other aspects of the invention are directed toward methods for treating an atom probe component that includes introducing photonic energy proximate to a surface of the atom probe component, annealing at least a portion of a surface of the atom probe component, coating at least a portion of a surface of the atom probe component, and/or cooling at least a portion of the atom probe component.05-28-2009
20090138996MICROTIPS AND NANOTIPS, AND METHOD FOR THEIR PRODUCTION - The present invention relates to a method for the production of tips, the order of magnitude of which lies in the micro- and/or nanometer range, comprising contacting a precursor material with a matrix and then energetically activating over a large area, wherein the precursor material contains an element other than carbon from the second to fifth main groups, the sixth main group with an atomic number Z≧16 or a sub-group of the periodic table of the elements and organic groups which are chemically bonded to the respective element directly and/or via an element of the sixth main group.05-28-2009
20100095409METHOD OF MANUFACTURING AN SPM PROBE WITH A SCANNING TIP AND WITH AN ALIGNMENT AID LOCATED OPPOSITE THE SCANNING TIP - A method of manufacturing an SPM probe having a support element, a cantilever, and a scanning tip on an underside of the cantilever, and having a mark located on the top side of the cantilever opposite the scanning tip. The mark on the top side of the cantilever is located exactly opposite the scanning tip on the underside of the cantilever. This makes it possible to identify the exact position of the scanning tip in the scanning probe microscope from the upward-pointing top side of the cantilever, which significantly simplifies the alignment of the SPM probe. The support element with the cantilever may be prefabricated conventionally and the scanning tip and the mark are then produced on the cantilever in a self-aligning way by means of a particle-beam-induced material deposition based on a gas-induced process.04-15-2010
20100229265PROBE SYSTEM COMPRISING AN ELECTRIC-FIELD-ALIGNED PROBE TIP AND METHOD FOR FABRICATING THE SAME - A mechanically stable and oriented scanning probe tip comprising a carbon nanotube having a base with a gradually decreasing diameter, with a sharp tip at the probe tip. Such a tip or an array of tips is produced by depositing a catalyst metal film on a substrate, depositing a carbon dot on the catalyst metal film, etching away the catalyst metal film not masked by the carbon dot, removing the carbon dot from the catalyst metal film to expose the catalyst metal film and growing a carbon nanotube probe tip on the catalyst metal film. The carbon probe tips can be straight, angled, or sharply bent and have various technical applications.09-09-2010
20120090058Video Rate-Enabling Probes for Atomic Force Microscopy - Method for producing a probe for atomic force microscopy with a silicon nitride cantilever and an integrated single crystal silicon tetrahedral tip with high resonant frequencies and low spring constants intended for high speed AFM imaging.04-12-2012
20120117696INTEGRATED METALLIC MICROTIP COUPON STRUCTURE FOR ATOM PROBE TOMOGRAPHIC ANALYSIS - An integrated coupon structure for atom probe tomography (APT) analysis includes a base portion and an array of microtip posts protruding from the base portion. Both the base portion and the microtip posts formed from a same metal material, and the microtip posts being shaped at an apex thereof so as to be adapted to receive a sample attached thereto.05-10-2012
20120297509MASSIVELY PARALLEL LITHOGRAPHY WITH TWO-DIMENSIONAL PEN ARRAYS - Massive parallel printing of structures and nanostructures at high speed with high resolution and high quality using two dimensional arrays comprising cantilevers and tip-based transfer of material to a surface. The array is designed so only tips touch the surface. This can be accomplished by long tips and bent cantilevers and alignment. An article comprising: a two-dimensional array of a plurality of cantilevers, wherein the array comprises a plurality of base rows, each base row comprising a plurality of cantilevers, wherein each of the cantilevers comprise tips at the cantilever end away from the base, wherein the number of cantilevers is greater than 250, and wherein the tips have an apex height relative to the cantilever of at least four microns, and a support for the array. Combinatorial arrays and bioarrays can be prepared. The arrays can be manufactured by micromachining methods.11-22-2012
20130091607METHODS OF PREPARING NANOPROBES AND ENDOSCOPE-LIKE DEVICES - The present invention is directed to methods of preparing nanoprobes, including multifunctional cellular endoscope-like devices, comprising nanotubes, nanorods, and/or nanowires.04-11-2013
20090106869METHOD FOR FABRICATING SPM AND CD-SPM NANONEEDLE PROBE USING ION BEAM AND SPM AND CD-SPM NANONEEDLE PROBE THEREBY - The present invention relates to a method for fabricating a scanning probe microscope (SPM) nanoneedle probe using ion beam which is preferably focused ion beam and a nanoneedle probe thereby. More particularly, the present invention relates to a method for fabricating a SPM nanoneedle probe capable of being easily adjusted with an intended pointing direction of a nanoneedle attached on a tip of the SPM nanoneedle probe and of being easily straightened with the nanoneedle attached on the tip of the SPM nanoneedle probe along the intended pointing direction, and to a SPM nanoneedle probe thereby. Also, the present invention relates to a method for fabricating a critical dimension SPM (CD-SPM) nanoneedle probe capable of precisely scanning the sidewall of an sample object in nanoscale using ion beam which is preferably focused ion beam, and to a CD-SPM nanoneedle probe thereby. More particularly, the present invention relates to a method for fabricating a CD-SPM nanoneedle probe capable of precisely scanning the sidewall of the sample object in nanoscale by bending a portion of an end of the nanoneedle attached on the tip of the SPM nanoneedle probe in a specific angle toward a direction other than an original direction in which the nanoneedle attached on the tip of the SPM nanoneedle probe extends out, and to a CD-SPM nanoneedle probe thereby. A method of fabricating scanning probe microscope (SPM) nanoneedle probe using ion beam, comprises: positioning the probe so that a tip of the probe on which the nanoneedle is attached faces toward a direction in which the ion beam is irradiated; and aligning the nanoneedle attached on the tip of the probe with the ion beam in parallel by irradiating the ion beam toward the tip of the probe on which the nanoneedle is attached. A method of fabricating a critical dimension scanning probe microscope (CD-SPM) nanoneedle probe using ion beam, comprises: screening a certain portion of the nanoneedle attached on a tip of the probe using a mask; and bending a part of the nanoneedle exposed out of the mask to align the part of the nanoneedle by irradiating the ion beam on the part of the nanoneedle exposed out of the mask, along the direction of the irradiated ion beam.04-23-2009
20090133171Tapered probe structures and fabrication - Probe structures and fabrication techniques are described. The described probe structures can be used as probes for various applications such as conductance measurement probes, field emitter probes, nanofabrication probes, and magnetic bit writing or reading probes.05-21-2009
20090138995ATOM PROBE COMPONENT TREATMENTS - The present invention relates to treatments for atom probe components. For example, certain aspects are directed toward processes for treating an atom probe component that includes removing material from a surface of the atom probe component (e.g., using an ion beam, a plasma, a chemical etching process, and/or photonic energy). Another aspect of the invention is directed toward a method for treating an atom probe specimen that includes using a computing device to automatically control a voltage used in an ion sputtering process. Still other aspects of the invention are directed toward methods for treating an atom probe component that includes introducing photonic energy proximate to a surface of the atom probe component, annealing at least a portion of a surface of the atom probe component, coating at least a portion of a surface of the atom probe component, and/or cooling at least a portion of the atom probe component.05-28-2009
20090138996MICROTIPS AND NANOTIPS, AND METHOD FOR THEIR PRODUCTION - The present invention relates to a method for the production of tips, the order of magnitude of which lies in the micro- and/or nanometer range, comprising contacting a precursor material with a matrix and then energetically activating over a large area, wherein the precursor material contains an element other than carbon from the second to fifth main groups, the sixth main group with an atomic number Z≧16 or a sub-group of the periodic table of the elements and organic groups which are chemically bonded to the respective element directly and/or via an element of the sixth main group.05-28-2009
20100095409METHOD OF MANUFACTURING AN SPM PROBE WITH A SCANNING TIP AND WITH AN ALIGNMENT AID LOCATED OPPOSITE THE SCANNING TIP - A method of manufacturing an SPM probe having a support element, a cantilever, and a scanning tip on an underside of the cantilever, and having a mark located on the top side of the cantilever opposite the scanning tip. The mark on the top side of the cantilever is located exactly opposite the scanning tip on the underside of the cantilever. This makes it possible to identify the exact position of the scanning tip in the scanning probe microscope from the upward-pointing top side of the cantilever, which significantly simplifies the alignment of the SPM probe. The support element with the cantilever may be prefabricated conventionally and the scanning tip and the mark are then produced on the cantilever in a self-aligning way by means of a particle-beam-induced material deposition based on a gas-induced process.04-15-2010
20100229265PROBE SYSTEM COMPRISING AN ELECTRIC-FIELD-ALIGNED PROBE TIP AND METHOD FOR FABRICATING THE SAME - A mechanically stable and oriented scanning probe tip comprising a carbon nanotube having a base with a gradually decreasing diameter, with a sharp tip at the probe tip. Such a tip or an array of tips is produced by depositing a catalyst metal film on a substrate, depositing a carbon dot on the catalyst metal film, etching away the catalyst metal film not masked by the carbon dot, removing the carbon dot from the catalyst metal film to expose the catalyst metal film and growing a carbon nanotube probe tip on the catalyst metal film. The carbon probe tips can be straight, angled, or sharply bent and have various technical applications.09-09-2010
20120090058Video Rate-Enabling Probes for Atomic Force Microscopy - Method for producing a probe for atomic force microscopy with a silicon nitride cantilever and an integrated single crystal silicon tetrahedral tip with high resonant frequencies and low spring constants intended for high speed AFM imaging.04-12-2012
20120117696INTEGRATED METALLIC MICROTIP COUPON STRUCTURE FOR ATOM PROBE TOMOGRAPHIC ANALYSIS - An integrated coupon structure for atom probe tomography (APT) analysis includes a base portion and an array of microtip posts protruding from the base portion. Both the base portion and the microtip posts formed from a same metal material, and the microtip posts being shaped at an apex thereof so as to be adapted to receive a sample attached thereto.05-10-2012
20120297509MASSIVELY PARALLEL LITHOGRAPHY WITH TWO-DIMENSIONAL PEN ARRAYS - Massive parallel printing of structures and nanostructures at high speed with high resolution and high quality using two dimensional arrays comprising cantilevers and tip-based transfer of material to a surface. The array is designed so only tips touch the surface. This can be accomplished by long tips and bent cantilevers and alignment. An article comprising: a two-dimensional array of a plurality of cantilevers, wherein the array comprises a plurality of base rows, each base row comprising a plurality of cantilevers, wherein each of the cantilevers comprise tips at the cantilever end away from the base, wherein the number of cantilevers is greater than 250, and wherein the tips have an apex height relative to the cantilever of at least four microns, and a support for the array. Combinatorial arrays and bioarrays can be prepared. The arrays can be manufactured by micromachining methods.11-22-2012
20130091607METHODS OF PREPARING NANOPROBES AND ENDOSCOPE-LIKE DEVICES - The present invention is directed to methods of preparing nanoprobes, including multifunctional cellular endoscope-like devices, comprising nanotubes, nanorods, and/or nanowires.04-11-2013
850061000 Functionalization 1
20100281587OPTICAL ELECTRIC FIELD ENHANCEMENT ELEMENT AND PROBE USING THE SAME - The optical electric field enhancement element of the invention comprises a nanorod where a conductive layer and an insulating layer are laminated. In particular, the optical electric field enhancement element comprising a tungsten oxide nanorod exhibits a high enhancement effect not by an aggregate of fine crystals but by the crystal structure itself, therefore securing good reproducibility and a stable Raman scattering enhancement effect. A sensor comprising the optical electric field enhancement element enables various high-precision analyses heretofore impossible in the art.11-04-2010
20100281587OPTICAL ELECTRIC FIELD ENHANCEMENT ELEMENT AND PROBE USING THE SAME - The optical electric field enhancement element of the invention comprises a nanorod where a conductive layer and an insulating layer are laminated. In particular, the optical electric field enhancement element comprising a tungsten oxide nanorod exhibits a high enhancement effect not by an aggregate of fine crystals but by the crystal structure itself, therefore securing good reproducibility and a stable Raman scattering enhancement effect. A sensor comprising the optical electric field enhancement element enables various high-precision analyses heretofore impossible in the art.11-04-2010

Patent applications in class GENERAL ASPECTS OF SPM PROBES, THEIR MANUFACTURE, OR THEIR RELATED INSTRUMENTATION, INSOFAR AS THEY ARE NOT SPECIALLY ADAPTED TO A SINGLE SPECIFIC SPM TECHNIQUE

Patent applications in all subclasses GENERAL ASPECTS OF SPM PROBES, THEIR MANUFACTURE, OR THEIR RELATED INSTRUMENTATION, INSOFAR AS THEY ARE NOT SPECIALLY ADAPTED TO A SINGLE SPECIFIC SPM TECHNIQUE

Website © 2025 Advameg, Inc.