Class / Patent application number | Description | Number of patent applications / Date published |
359222100 | By frustrated total internal reflection | 10 |
20100328748 | TIR Light Valve - An array of light valves switch light by enabling and disabling total internal reflection (TIR) on a surface of the light valve. The disabling of the TIR is accomplished by putting another optical element in contact with the surface and then diffusing or changing the direction of the light. The mechanical mechanism to move the optical element is a simple one in that it only moves the optical element a small distance to change the valve from a first position to a second position. | 12-30-2010 |
20110007377 | APPARATUS AND METHOD FOR REDUCING PIXEL OPERATIONAL VOLTAGE IN MEMS-BASED OPTICAL DISPLAYS - Embodiments of a display comprising pixels formed from suitably tethered deformable membrane-based MEMS subsystems are provided that include the means to dynamically alter the in-plane tension, and thus the effective spring constant, of the deformable membrane being ponderomotively propelled between active and inactive optical states, said dynamic alteration being effected by exploiting transverse piezoelectric properties of the deformable membranes. Manipulating the spring constant can reduce the actuation force required to turn pixels on, thus significantly reducing the operational voltages for the display composed of an array of such subsystems. Since display power rises with the square of the pixel drive voltage, such architectures give rise to more power efficient display systems. | 01-13-2011 |
20110267667 | TIR Switched Flat Panel Display - A flat panel display uses pixels ( | 11-03-2011 |
20130107340 | Autostereoscopic Steering Light-Guide Three-Dimensional Displays | 05-02-2013 |
20130235442 | ACTIVE MATRIX LIGHTING UNITS FOR A DISPLAY - The present disclosure generally relates to a light manipulating device. The light manipulating device can include a light guide and an actuator above the light guide with at least one lens connected to the actuator. The at least one lens and the light guide can have a substantially similar refractive index. | 09-12-2013 |
20140192391 | Methods, Systems, and Products for Illuminating Displays - Methods, systems, and products illuminate display devices. Light in a waveguide is frustrated to illuminate an array of picture elements. | 07-10-2014 |
20140293392 | TECHNIQUES FOR QUANTUM DOT ILLUMINATION - Techniques for extracting light from a light guide are described. In some embodiments, a light source comprises a light guide configured to trap first light through total internal reflection. The light source may further comprise a plurality of light extractors configured to extract at least a portion of the first light upon establishing optical contact with the light guide. The light source is configured to control individual light extractors in the plurality of light extractors to make optical contact with the light guide. Quantum dots may be used with the light source to regenerate light, within desired frequency band, from the at least a portion of the first light. | 10-02-2014 |
20150146273 | METHOD AND APPARATUS FOR FRONT-LIT SEMI-RETRO-REFLECTIVE DISPLAY - The disclosure generally relates to a front-lit display having transparent and selectively emissive light directionality. The disclosed semi-retro-reflective, semi-specular and specular displays include directional front light systems that reflect light in a manner to preserve the non-Lambertian characteristic of the light output. This leads to brighter displays with a higher degree of luminance as compared to conventional microencapsulated electrophoretic displays with substantially Lambertian reflectance where much of the light is not reflected back towards the viewer. | 05-28-2015 |
20160139478 | DISPLACED POROUS ELECTRODE FOR FRUSTRATING TIR AND RETURNING LIGHT THROUGH EXIT PUPIL - A brightness enhancing structure for a reflective display incorporates a transparent sheet having an inward hemispherical surface, a backplane electrode, an apertured membrane between the hemispherical surface and the backplane electrode, and a light reflecting electrode on an outward side of the membrane. A voltage source connected between the electrodes is switchable to apply a first voltage to move the particles inwardly through the apertured membrane toward the backplane electrode, and a second voltage to move the particles outwardly through the apertured membrane toward the light reflecting electrode. Movement of the particles toward the light reflecting electrode frustrates total internal reflection of light rays at the hemispherical surface. Movement of the particles toward the backplane electrode permits total internal reflection of light rays at the hemispherical surface, and outward reflection from the light reflecting electrode toward the hemispherical surface of light rays which pass inwardly through the hemispherical surface. | 05-19-2016 |
20160147128 | TIR-MODULATED WIDE VIEWING ANGLE DISPLAY - Improvements and modifications are provided in the type of frustrated total internal reflection (TIR) systems described in U.S. Pat. Nos. 6,885,496; 6,891,658; 7,286,280; 7,760,417 and 8,040,591. The improvements and modifications include various methods to improve display operation of hemispherical beaded front plane TIR systems such as (a) inhibit or prevent the undesired non-uniform distribution and lateral migration of charged, electrophoretically mobile, TIR frustrating particles by encapsulating or tethering the particles to the beaded front plane surface; (b) inhibit or prevent the settling of the TIR frustrating particles such as modifying the viscosity of the low refractive index medium; and (c) inhibit or prevent the non-uniformity of the applied electric field during display operation such as using a conforming rear electrode. | 05-26-2016 |