Class / Patent application number | Description | Number of patent applications / Date published |
359209100 | Transmissive type moving element | 18 |
20110019255 | SCANNING OBJECTIVE LENS, SCANNING PROBE AND SCANNING ENDOSCOPE - A scanning objective lens for scanning on an observation target with light emitted from an exit end face of an optical fiber moving on a curved plane formed to be convex on an objective lens side, including first and second lens groups each having a positive power, wherein the first lens group and the second lens group are arranged in this order from the optical fiber's exit end face side, and the scanning objective lens satisfies conditions: | 01-27-2011 |
20120218615 | LIGHT SCATTERING ELEMENT, OPTICAL SCANNING DEVICE, AND IMAGE DISPLAYING DEVICE - A light scattering element | 08-30-2012 |
20120236382 | SPECTRAL DECOMPOSITION DEVICE AND MANUFACTURING THE SAME - For achieving balance between manufacturing effort and spectrometer accuracy, a spectral decomposition device is not completely integrated into a substrate stack, but, for example, after manufacturing the substrate stack in the manufacturing process, the opportunity of compensating inaccuracies in substrate stack manufacturing is given by mounting a component with a suitable optical functional element to a window, like, e.g., an entry, exit or intermediate window of the substrate stack, to at least partially cover the respective window, wherein the optical functional element is, for example, an entry aperture, an exit aperture or also part of an optics or an optical element having a spectrally decomposing effect. The substrate stack may be manufactured on wafer level and the manufacturing tolerances in this manufacturing may be loosened, as the subsequent substrate stack-individual mounting or even window-individual mounting of the components may compensate the fluctuations which resulted in substrate stack manufacturing. | 09-20-2012 |
359210100 | Moving lens | 11 |
20100245960 | Optical deflection method and optical deflection apparatus - An optical deflection apparatus includes a signal light source configured to emit signal light having one or more wavelengths, a control light source configured to emit control light having a wavelength different from the wavelength of the signal light, a thermal lens forming optical element including a light absorption layer configured to transmit the signal light and selectively absorb the control light, and a beam-condensing unit configured to cause beam-condensation of the control light and the signal light at different convergence points in the light absorption layer. The thermal lens forming optical element causes convergence and divergence of the control light and the signal light on an incidence plane of the light absorption layer or its vicinity in a light traveling direction, wherein a thermal lens is reversibly formed in the light absorption layer due to a temperature increase occurring in a region where the control light is absorbed and its peripheral region, and the thermal lens changes a refractive index to change a traveling direction of the signal light. | 09-30-2010 |
20110188105 | SYSTEM AND METHOD FOR ADJUSTING A BEAM EXPANDER IN AN IMAGING SYSTEM - A line confocal microscope system, comprising an illumination system with a source of collimated light and a line forming optics arranged to provide a line shaped illumination area to be scanned over a sample, an image receiving system, and two or more objective lenses that are interchangeable in the optical path to provide different magnification, wherein the objective lenses have different aperture diameters, and the illumination system comprises a beam shape transformer arranged in between the source of collimated light and the line forming optics to selectively transform the cross-sectional shape of the collimated beam of light transmitted to the line forming optics to a predetermined shape in response to the back aperture diameter of the objective lens that is arranged in the optical path. | 08-04-2011 |
20110211242 | LIGHT SCANNING APPARATUS - A one-dimensional image is obtained by light modulation using a one-dimensional light modulation device | 09-01-2011 |
20110292481 | Light Source Device and Optical Scanner - A light source device includes a light source, a coupling lens configured to convert light emitted from the light source into a beam of light, a holding member configured to hold the coupling lens, and a frame to which the holding member is fixed. The holding member includes a tubular main body portion for holding the coupling lens, and a pair of first protrusions sticking out from an outer peripheral surface of the main body portion. The pair of first protrusions have fixing surfaces lying in the same plane and fixed to the frame. | 12-01-2011 |
20120275003 | Laser Scanning Optical Device - A laser scanning optical device includes: alight source having a plurality of emission points; a plate-like light source holder which holds the light source in a center of the light source holder; a base arranged to face the light source holder; and an attitude adjusting part which adjusts an attitude of the light source by adjusting a tilt of the light source holder, and the attitude adjusting part includes an inclined part and an inclination conveying part, and adjusts the tilt of the light source holder with respect to the base by displacing an abutting position of the inclined part corresponding to the inclination conveying part along an inclined surface of the inclined part. | 11-01-2012 |
20120275004 | SWITCHABLE 3D/2D OPTICAL IMAGING SYSTEM - The present invention is directed a switchable optical imaging system and a 3D/2D image switchable apparatus having high functional flexibility in a number of aspects and adaptability to various applications. The present invention is based on generating directional optical beams, transforming these optical beams and projecting transformed optical beams in a field of view to thereby divide the field of view into one or more adjustable viewing zones and to form 2-dimensional (2D) images or perspective views of a 3-dimensional (3D) image of an object or scene therein. The present invention is embodied in the switchable optical imaging system and the 3D/2D image switchable apparatus using the same system. | 11-01-2012 |
20140146375 | OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device includes an optical housing; an elongated optical element arranged in the optical housing and having a shape extending in a main-scanning direction; a retaining member provided at a side opposite to a surface of the optical housing on which the optical element is arranged to maintain an attachment attitude of the optical element in the optical housing; a curvature adjusting unit configured to adjust a curvature of the elongated optical element in a scanning line via the retaining member; a tilt adjusting unit configured to adjust a tilt of the optical element in the scanning line by making the optical element rotate on an optical axis via the retaining member; and a positioning unit configured to position the optical element in the optical axis direction, and provided in the optical housing and having such a shape that the optical element fits the positioning unit. | 05-29-2014 |
20140327947 | FORWARD SCANNING OPTICAL PROBES - In certain embodiments, a scanning system includes optical elements and a movement system. The optical elements include an optical fiber and a gradient-index (GRIN) lens. The optical fiber has a fiber axis that extends to an imaginary fiber axis, and is configured to transmit a light ray. The GRIN lens has a GRIN perimeter and a GRIN lens optical axis, and is configured to refract the light ray. The movement system moves a first optical element relative to a second optical element in a closed path such that the GRIN lens optical axis substantially aligns with the imaginary fiber axis at at least one point of the path and the GRIN perimeter intersects the imaginary fiber axis at at least two points of the path. | 11-06-2014 |
359210200 | Rotational Lens | 3 |
20090080047 | Laser Direct Imaging Apparatus - A laser direct imaging apparatus which can expose photosensitive materials having various sensitivities and which can correct an imaging position in accordance with deformation of a workpiece. In the laser direct imaging apparatus, the workpiece is moved in a sub-scanning direction while a cylindrical lens is used to converge a laser beam, which has been modulated based on raster data, in the sub-scanning direction and deflect the laser beam toward a main scanning direction so as to image a desired pattern on the workpiece. The cylindrical axis of the cylindrical lens is designed to be able to rotate horizontally and to be able to change an angle with respect to the main scanning direction. | 03-26-2009 |
20120268802 | Laser Scanning Optical Device - The laser scanning optical device comprises: a light source; a collimator lens; a light source holder; a lens holder; a light source unit holder; a first rotation axis; and a second rotation axis. The light source includes a plurality of light emitting points. The collimator lens converts diverging rays irradiated from the light source into parallel rays. The light source holder holds the light source. The lens holder holds the collimator lens. The light source unit holder holds the light source holder and the lens holder. The first rotation axis rotates the collimator lens with respect to an ideal optical axis. The second rotation axis rotates the light source unit holder while constantly maintaining a positional relationship between the light source holder and the lens holder. | 10-25-2012 |
20140333978 | FORWARD SCANNING OPTICAL PROBES WITH ONE OR MORE ROTATING COMPONENTS - In certain embodiments, a scanning system comprises optical elements and a movement system. The optical elements comprise an optical fiber and a focusing element. The optical fiber transmits a light ray and has a fiber axis that extends to an imaginary fiber axis. The focusing element refracts the light ray and has a focusing element optical axis that is substantially aligned with the imaginary fiber axis. The movement system rotates the focusing element about the focusing element optical axis to scan the light ray. In other embodiments, a scanning system comprises optical elements and a movement system. The optical elements comprise an optical fiber, a focusing element, and a prism. The prism has a prism optical axis and receives the light ray from the focusing element. The movement system rotates the prism about the prism optical axis to scan the light ray. | 11-13-2014 |
359211100 | Moving prism | 4 |
20090051995 | Linear Optical Scanner - A device for linear scanning including a mirror roof structure. The mirror roof structure includes a roof prism with at least two reflecting surfaces or at least two mirror surfaces. The reflecting surfaces of the roof prism or the two mirror surfaces are mutually perpendicular reflecting surfaces intersecting in a line of intersection. A scanning mechanism moves the mirror roof structure in a direction perpendicular to a plane of bilateral symmetry of the mirror roof structure. The line of intersection is included in the plane of bilateral symmetry; and an incident beam entering the mirror roof structure and an exit beam exiting the mirror roof structure are angularly separated by a substantial angle. | 02-26-2009 |
359211200 | Rotating prism | 3 |
20150029571 | OPTICAL SCANNING DEVICES AND SYSTEMS - Optical scanning devices and systems are disclosed. In one aspect, an optical scanning device comprises a first rotatable optical component and a second rotatable optical component. The first and second optical components are configured to rotate about a common optical axis and further configured to deflect an optical path of light transmitted or received through the optical scanning device. The device further comprises a mounting bracket positioned between the first and second optical components and comprises first and second motor assemblies configured to rotate the corresponding first and second optical components about the optical axis independently of each other. An inner portion of each of the first and second optical components is mounted to an outer portion of the corresponding first and second motor assemblies such that the optical axis is configured to extend through the center of the first and second optical components and tubes. | 01-29-2015 |
359211300 | Multiple prisms | 2 |
20100259807 | Light-beam-scanning system utilizing counter-rotating prism wheels - A light-beam-scanning system includes two counter-rotating prism wheels. Each prism wheel has a set of prisms at its periphery, selected so that prisms of equal half-angle deflections are sequentially aligned. A light transceiver structure directs a light beam parallel to the rotational axes of the prism wheels and at a distance from the rotational axes so that the light beam passes through the aligned prisms. A prism-wheel drive is operable to drive the prism wheels in opposite rotational directions. | 10-14-2010 |
20140185119 | ULTRA WIDE BAND ACHROMATIC RISLEY PRISM SCANNER - A system and method for scanning a wide band beam is presented. An apparatus includes a pair of prism triplets. Each prism triplet includes a first wedge prism, a second wedge prism and a third wedge prism all formed with different optical materials. In operation, a beam passing through the wide band team scanning apparatus first passes through the first, second and third wedge prisms of the first prism triplet. The beam then passes through the wedge prisms of the second prism triplet in a mirrored order (the third, then second, then first wedge prisms) than that of the first prism triplet. This apparatus with two prism triplets allows wide band light transmitted through it to emerge with its plurality of different wavelengths of light travelling in the same direction to equalize net dispersive effects each of different wavelengths. | 07-03-2014 |