Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Utilizing multiple light beams

Subclass of:

359 - Optical: systems and elements

359196100 - DEFLECTION USING A MOVING ELEMENT

359197100 - Using a periodically moving element

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
359204100 Utilizing multiple light beams 84
20090097090OPTICAL MULTI-BEAM SCANNING DEVICE AND IMAGE FORMING APPARATUS - It is an object of the present invention to provide an optical multi-beam scanning device and an image forming apparatus which adopt a horizontal synchronization sensor and can suppress displacement in a horizontal scanning direction even when latent images are written on a surface to be scanned by a plurality of light beams tilting with respect to the surface to be scanned.04-16-2009
20090103157OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - In an optical scanning device, a rotational axis of a first rotary polygon mirror and a rotational axis of a second rotary polygon mirror are inclined toward the same side with respect to a direction perpendicular to a reference plane inclusive of each of center axes of a first member to be scanned and a second member to be scanned, as viewed in directions of the center axes of the first member to be scanned and the second member to be scanned. As a consequence, a width in an arrangement direction of a plurality of rotary polygon mirrors can be reduced, thus achieving miniaturization without degrading a quality of an image in an image forming apparatus.04-23-2009
20090147337METHOD OF OPERATING A DOUBLE-SIDED SCANNER - An opening method for a double-sided scanner is provided. A light source of one particular color inside a first group of light sources and a light source of a different color (or the same color) inside a second group of light source are lit to scan the front and back surface of a scan document. Optical signals from the front and back surface of the scan document are received and converted into analogue electrical signals. Thereafter, the analogue electrical signals are converted into digital electrical signal. Finally, the digital electrical signals are output to a host computer. This invention utilizes two groups of light sources (for example, light-emitting diodes) to serve as light sources for the double-sided scanner. Because light-emitting diodes require no warm-up period and is quick to switch, double-sided scanning is simplified.06-11-2009
20090153933OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - A disclosed optical scanning device includes a light source unit configured to emit a laser beam; an oscillating mirror configured to deflect the laser beam from the light source unit; a scanning/imaging optical system configured to focus the deflected laser beam on a target surface; and plural light-receiving elements configured to receive the laser beam in a scanning area of the laser beam, the position of the oscillating mirror being adjusted such that time intervals between output pulses in output signals of the respective light-receiving elements become substantially the same between the light-receiving elements and/or widths of the output pulses become substantially the same between the light-receiving elements.06-18-2009
20090168132OPTICAL SCANNING APPARATUS AND IMAGE FORMING APPARATUS - Synchronization detecting units detect synchronization signals by receiving the light beam deflected to one side of a light source on one side of an optical deflector and receiving the light beam deflected to an opposite side of an optical axis of a scanning optical system from the light source on the other side of the optical deflector. Photodetectors that detect the synchronization signals are arranged on the opposite side of an optical axis of a scanning optical system from the light sources and on a side closer to the scanning optical system that detects the synchronization signals by receiving the light beam deflected to the light source.07-02-2009
20090185252SCANNING OPTICAL SYSTEM - An object of the present invention is to provide a scanning optical system capable of reducing the number of its components and its size with a simple construction, and an image forming apparatus using the scanning optical system. In a specific scanning optical system, a plurality of light beams emitted from a plurality of light source units are deflected and scanned by a plurality of different deflecting facets of a common optical deflecting unit, and a plurality of scanned surfaces are scanned with the light beams deflected and scanned by the different deflecting facets, respectively. In the scanning optical system, the number of the light source units is 4n, the number of the light beams is 4nm (n and m are positive integers, respectively), incidence optical paths of the light beams incident on the optical deflecting unit are symmetrically disposed with respect to a first cross section and a second cross section which are perpendicular to each other, the first cross section is parallel to a rotational axis of the optical deflecting unit, and the second cross section is perpendicular to the rotational axis of the optical deflecting unit.07-23-2009
20090195849OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - A first optical system couples a light beam from a light source, including a first lens made of glass with a positive power and a second lens made of plastic with a negative power. A second optical system focuses the light beam from the first optical system onto a scanning surface and moves a light spot on the scanning surface in a main-scanning direction. One of an incidence plane and an output plane of the first lens is spherical while the other is spherical or flat. A cross-sectional plane of the second lens along one of the main-scanning direction and a sub-scanning direction has a non-arc shape on at least one of the incidence plane and the output plane.08-06-2009
20090231654OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An aperture has an aperture opening that transmits a predetermined portion of a light beam. A phase optical element changes a phase of a portion of a light beam. A scanning lens focuses the light beam into a beam spot on a scanning surface. The phase optical element has a function of increasing light intensity of a side-lobe of the scanning beam near the scanning surface. The aperture opening is set to satisfy 0.03≦(SR−SA)/SR≦0.20, where SR and SA are areas of a rectangle circumscribing the aperture opening and the aperture opening, respectively. The function of the phase optical element and the aperture expand a depth allowance of the beam spot.09-17-2009
20090231655OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device includes a plurality of converging lenses and a plurality of supporting members. Each supporting member supports a corresponding one of the converging lenses. Moreover, the converging lenses are arranged so as to be out of alignment with one another in a main-scanning direction and are arranged in a row in a sub-scanning direction in such a manner that no converging lens interferes with supporting members that support other converging lenses.09-17-2009
20090231656OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device includes a deflecting unit that deflects a laser beam from a light source in a main-scanning direction; a scanning imaging unit that focuses the laser beam deflected by the deflecting unit on a scanning surface and scans the scanning surface with focused laser beam; and a light receiving unit that detects optical intensity of the laser beam and a synchronous timing in the main-scanning direction and that includes a plurality of photodetecting elements arranged on a substrate in the main-scanning direction.09-17-2009
20090316244LIGHT SCANNING UNIT AND IMAGE FORMING APPARATUS COMPRISING THE SAME - A light scanning unit comprises: a light source unit for emitting first and second light; a beam deflector for deflecting the first and second light emitted from the light source unit; and a synchronization detection optical system. The synchronization detection optical system includes synchronization detection sensors for detecting scanning synchronization of the first and second light and synchronization optical path converting members for converting optical paths of portions of the first and second light deflected by the beam deflector. The optical paths of the portions of the first and second light are directed to come into close proximity with one another. The light scanning unit may be incorporated in an image forming apparatus.12-24-2009
20100033790OPTICAL SCANNING APPARATUS - The optical scanning apparatus including a light source unit having plurality laser light sources for emitting laser light and one lens in which the laser light emitted from the plurality laser light sources is transmitted, a deflect device that deflects and scans the laser light on an image bearing member, an optical member that images the laser light on the image bearing member, a housing that internally includes the deflect device and the optical member, the housing forms an opening portion that passes through the laser light emitted from the plurality of the laser light sources, and an elastic member that blocks a gap between the lens and the opening portion, the elastic member being pinched between the lens and the housing. It achieves sealing of the flow-in path and sealing of the gap between the light source unit and the housing with a simple configuration.02-11-2010
20100046055OPTICAL SCANNING APPARATUS AND IMAGE FORMING APPARATUS USING THE SAME - An optical scanning apparatus having a low-height optical box and accurately arranged reflecting mirrors, and an image forming apparatus using the same. The imaging optical system includes: an imaging optical element which a scanning beam transmits off a profile center thereof in a sub-scanning direction during guiding a beam from a light source to a scanning surface by an imaging optical system via a deflector; a first mirror which deflects the beam transmitted the imaging optical element to fold an optical path toward the edge-surface-A side where within the sub-scanning section, the edge surface A is one of the edge surfaces of the imaging optical element closer to a passing position of the scanning beam; and a second mirror. The second mirror is disposed between the deflection unit and imaging optical element so that the second mirror exists across a plane including the edge surface A.02-25-2010
20100046056OPTICAL SCANNING APPARATUS AND IMAGE FORMING APPARATUS USING THE SAME - The light scanning optical apparatus for reducing registration displacement during a temperature increase, includes: multiple light source units; a common optical deflector deflectively scanning light fluxes emitted from the multiple light source units; and first and second imaging optical systems facing each other across an optical direction, sandwiching the optical deflector, and guiding the light fluxes from the optical deflector to different scanned surfaces; and a housing member housing each of the first and second imaging optical systems. Among imaging optical elements constituting those imaging optical systems, two imaging optical elements disposed adjacently to the optical deflector include main scanning direction standard positioning portions disposed at different positions in a scanning direction in those imaging optical systems. The main scanning direction standard positioning portions are positioned with respect to a standard reception portion of the housing member.02-25-2010
20100085620Aligning beams over successive reflections by facets of rotating polygonal mirror - First delay mechanisms to delay a beam-detect signal by different lengths of time in synchronization with a first clock signal. The beam-detect signal is generated responsive to one or more beams being output towards a rotating polygonal mirror having facets and directed towards a sensor. One or more second delay mechanisms each correspond to one of the beams to delay a second clock signal, resulting in a beam-clock signal to align the beam over successive reflections by the facets. A mechanism determines a delay by which each second delay mechanism is to delay the second clock signal, based on the beam-detect signal as differently delayed by the first delay mechanisms.04-08-2010
20100165434LIGHT SCANNING UNIT - Disclosed is a light scanning unit that includes an imaging optical system disposed between a beam deflector and a surface to be scanned. The imaging optical system includes two adjacent imaging optical devices that are inclined with respect to the light path. The inclination directions of the two adjacent imaging optical devices may be determined according to the number of reflection units that are disposed on the light path between the two adjacent imaging optical devices. The disclosed light scanning unit of the above configuration may advantageously exhibit reduced ghost images, reduced bowing of the scan line, improved beam diameter uniformity, and/or improved color registration.07-01-2010
20100182669ILLUMINATED POSITION ADJUSTING METHOD IN OPTICAL SCANNING APPARATUS - An illuminated position adjusting method used in optical scanning apparatus, suppressing deterioration of imaging spot shape on scanning surface, and preventing undesirable light from arriving at the scanning surface, to form high-quality image. The optical scanning apparatus includes: a common deflector for deflecting beams emitted from light source units; and imaging optical units each including at least one imaging optical element and at least one reflector which are disposed in optical path of beam deflected by the common deflector, and image the beam on scanning surface. In an optical path in which the largest number of the reflectors are disposed among the optical paths guided to the scanning surfaces, the reflector which is disposed optically closest to the scanning surface is rotated in sub-scanning direction, to adjust the illuminated position of the beam, which illuminates the scanning surface, on the scanning surface in sub-scanning direction.07-22-2010
20100302610MULTIBEAM SCANNING DEVICE - A multibeam scanning device, comprising: a plurality of first optical systems, each of the plurality of optical systems including a light source unit configured to emit a non-collimated light beam, and an optical element having a predetermined power and having an optical effect on the laser beam; a second optical system arranged on a downstream side of the plurality of first optical systems, including a first deflector on which light beams emitted by the plurality of first optical systems are incident, the first deflector being to deflect the laser beams, and a common optical system configured to change degree of divergence of each of the plurality of light beams; and an optical path shifting system configured to translate an incident optical path of the light beam which is emitted by the light source and incident on the optical element, wherein all the light beams incident on the first deflector are incident on the first deflector at substantially the same position, and wherein the optical elements are arranged such that optical axes of the optical elements intersect at a position spaced from the optical element by a distance equal to a focal length of the optical element.12-02-2010
20110019254Optical Scanner - An optical scanner scans target surfaces with laser beams emitted from first and second light sources and deflected by a light deflector. The optical scanner includes a first frame on which the first and second light sources, and the light deflector are mounted. The first frame has first and second exposure openings each extending in a main scanning direction and configured allow a laser beam to pass therethrough from an interior of the optical scanner toward a corresponding target surface outside the optical scanner. The light deflector is attached to the first frame in a surrounding area defined by the first and second exposure openings. A second frame is provided opposite to the first frame on a side of the first frame where the light deflector is positioned, and at least one connecting member for connecting the first and second frames is provided in the surrounding area.01-27-2011
20110043879OPTICAL SCANNING DEVICE - An optical scanning device to be employed in an image forming apparatus having a photosensitive member that is scanned with a plurality of beams, and the optical scanning device has a plurality of light emitting elements that are arranged in an area of a parallelogram, in a matrix of M rows and N columns, all the light emitting elements emitting beams, and a deflector for deflecting the beams emitted from the light emitting elements. The light emitting elements are arranged such that the beam emitted from the light emitting element located in the mth row and the nth column and the beam emitted from the light emitting element located in the (m−1)th row and the (n+1)th column are scanned on adjacent scanning lines on the photosensitive member, and a scanning line on which the beam emitted from the light emitting element in the first row and the first column is scanned at a time of the (L+1)th scanning motion of the light emitting elements is located in an area from a scanning line on which the beam emitted from the light emitting element in the first row and the first column is scanned at a time of the Lth scanning motion of the light emitting elements to a scanning line on which the beam emitted from the light emitting element in the Mth row and the Nth column is scanned at a time of the Lth scanning motion of the light emitting elements.02-24-2011
20110063703MULTI-BEAM LIGHT SCANNING APPARATUS AND IMAGE FORMING APPARATUS USING THE SAME - A multi-beam light scanning apparatus includes incident optical systems each of which allows a light beam to enter a deflection surface of a rotational polygon mirror in a sub scanning section from above and below directions obliquely with respect to a surface perpendicular to a rotation axis of the rotational polygon mirror at a finite angle, and a light source unit which is disposed for each of the incident optical systems and has light emitting portions. A light emitting portion corresponding to printing of a head line in the sub scanning direction among the light emitting portions of the light source unit that are disposed obliquely in the upward direction, and a light emitting portion corresponding to the printing of the head line in the sub scanning direction, that are disposed obliquely in the downward direction are different from each other in the sub scanning direction.03-17-2011
20110063704OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS USING SAME - The optical scanning device includes a light source emitting multiple light beams; an optical deflecting device having a reflection surface on which the light beams are incident to be reflected while deflected; multiple scanning optics systems focusing the light beams on the surfaces of members to be scanned while scanning the surfaces with the light beams in a main scanning direction; and multiple glass plates located between the multiple scanning optical systems and the members on the light paths while slanted and having no refracting power in the main and sub-scanning scanning directions. The light beams include two or more light beams having different incidence angles in the sub-scanning direction relative to the normal line of the reflection surface of the optical deflecting device, and the slanting angles of the glass plates are determined depending on the incidence angles of the corresponding light beams passing through the glass plates.03-17-2011
20110069367OPTICAL SCANNER - An optical scanner includes a light source, an optical splitter which splits light from the light source into a plurality of light beams, an input optical element on which the light beams split by the optical splitter are incident, a driver which generates a voltage signal, an optical deflector which comprises at least two deflector portions formed close to each other on a same substrate and individually supplied with an electric action of the driver so as to capture and deflect the incident light beams using the electric action, and an output optical element which emits the deflected light beams to an image plane, wherein the optical scanner is configured to scan the image plane with the light beams by adjusting the voltage signal of the driver.03-24-2011
20110102873OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS PROVIDED WITH OPTICAL SCANNING DEVICE - An optical output level of laser diodes is detected by a photodiode for each of the laser diodes, and this photodiode detection output is used in feedback control of the laser diodes, thereby achieving stabilization of the optical output levels of the laser diodes. Furthermore, feedback control gain and laser diode bias are stored in an EEPROM (nonvolatile memory), and the feedback control is carried out according to arithmetic processing by an integrated circuit using the gain and bias in the EEPROM such that malfunctions of the optical scanning device can be addressed by rewriting the gain and bias in the EEPROM.05-05-2011
20110116147SURFACE EMITTING LASER DEVICE, SURFACE EMITTING LASER ARRAY, OPTICAL SCANNING DEVICE, AND IMAGE FORMING APPARATUS - A disclosed surface emitting laser device includes an oscillator structure including an active layer, semiconductor multilayer reflection mirrors sandwiching the oscillator structure, an electrode provided on an emitting surface where light is emitted in a manner such that the electrode surrounds an emitting region, and a dielectric film formed in at least one region outside a center part of the emitting region so that a refractive index of the region outside the center part of the emitting region is less than the refractive index of the center part of the emitting region. When viewed from an emitting direction of the light, a part of the electrode overlaps a part of the dielectric film.05-19-2011
20110134500OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device includes a coupling optical system, a light source including a plurality of light emitting units for emitting light beams, and a deflector including a deflecting surface for deflecting the light beams. The coupling optical system is arranged on an optical path between the light source and the deflector so that the light beams enter the deflector at an angle with respect to a normal direction of the deflecting surface in a sub-scanning direction. The light emitting units are arranged two-dimensionally, and a distance between two light emitting units at opposite ends in a main scanning direction is smaller than a distance between two light emitting units at opposite ends in the sub-scanning direction.06-09-2011
20110141536OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device includes: a light source including a plurality of light-emitting elements; a deflector that defects light beams output from the light source; a scanning optical system that condenses the light beams deflected on the deflector onto a surface to be scanned, and includes at least one resin scanning lens and at least one folding mirror disposed behind the at least one resin scanning lens; a light-receiving element to which part of the light beams, which is deflected on the deflector but not used for scanning the surface, enters not via the at least one folding mirror as light-amount monitoring light beams; and a controller that controls a driving signal for the light-emitting elements based on an output signal from the light-receiving element.06-16-2011
20110164295MOLDED PLASTIC PART, METHOD FOR MOLDING PLASTIC PART, AND OPTICAL SCANNING DEVICE USING THE MOLDED PLASTIC PART - A molded plastic part prepared by injecting a resin in a cavity of a die so that a pressure is generated in the resin in the cavity and at least one transfer wall surface of the cavity is transferred to the resin. The plastic part has at least one transferred surface; at least one imperfectly transferred concave portion on a first surface thereof other than the transferred surface; and at least one imperfectly transferred convex portion on the first surface or a second surface thereof other than the transferred surface. The ratio (a)/(b) of the thickness (a) of the plastic part in a direction perpendicular to the transferred surface to the thickness (b) of the plastic part in a direction parallel to the transferred surface is less than 1.07-07-2011
20110176192SCANNING OPTICAL DEVICE - A scanning optical device includes at least one light source unit for emitting a light beam, a first deflector for deflecting the emitted light beam in an auxiliary scanning direction, a condensing optical system for generating an intermediate image of the light beam deflected by the first deflector, a collecting optical system for condensing a light beam diverged from the generated intermediate image, a second deflector for deflecting the condensed light beam in a main-scanning direction, and a scanning optical system for scanning the surface to be scanned with the light beam deflected by the second deflector. The condensing optical system has an f-θ characteristic, the collecting optical system has an f-sin θ characteristic, and the scanning optical system has an f-sin θ characteristic.07-21-2011
20110199663Optical scanning device and image forming apparatus - An optical scanning device of opposed scanning type, includes: a plurality of light sources, being arranged substantially symmetrically about a rotating deflection unit; a group of pre-deflection optical elements including optical elements that make the light beams incident on the rotating deflection unit; and scanning optical systems which are distributed to right and left with the rotating deflection unit as an axis of symmetry, wherein optical elements of the respective scanning optical systems are arranged substantially symmetrically about the rotating deflection unit, wherein a plurality of rib structures are arranged on respective areas of an optical housing substrate, the areas extends from the respective light sources to a vicinity of the rotating deflection unit, and the plurality of rib structures are arranged asymmetrically in the right and left optical systems with the rotating deflection unit as the axis of symmetry.08-18-2011
20110222135OPTICAL SCANNING DEVICE - An optical scanning device has a light source comprising a plurality of light emitting points arranged on a plane two-dimensionally; a deflector for deflecting beams emitted from the light emitting points in a main-scanning direction; a first optical system for directing the beams emitted from the light emitting points to the deflector; and a second optical system for directing the beams deflected by the deflector to a photosensitive member and for imaging the beams on a surface of the photosensitive member. The plurality of light emitting points are arranged in a parallelogram lattice composed of M by N lattice points, wherein M and N are integers equal to or greater than six, with none of the light emitting points allocated on central (M−4) by (N−4) lattice points.09-15-2011
20110228368OPTICAL SCANNING DEVICE, OPTICAL WRITING DEVICE, AND IMAGE FORMING APPARATUS - An optical scanning device includes a first optical system for guiding light beams emitted from a plurality of light emitting units to an optical deflector, and a second optical system for focusing the light beams to optically scan a surface to be scanned. At least one of the first optical system and the second optical system includes a resin lens having a diffractive surface. The diffractive surface includes a diffractive portion and a refractive portion. A power of the diffractive portion and a power of the refractive portion cancel each other.09-22-2011
20110310454OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device for scanning a photoreceptor surface with beams, said optical scanning device comprising: a light source that emits a plurality of beams in one direction; a deflector for deflecting the beams; a detector for detecting light intensities of the beams; and a switch for switching travel routes of the beams between a first route leading from the light source to the deflector and a second route leading from the light source to the detector.12-22-2011
20120013964PLASTIC ARTICLE, METHOD OF SHAPING PLASTIC ARTICLE, AND OPTICAL SCANNING DEVICE HAVING PLASTIC ARTICLE - A plastic article is formable by using a metal die having a cavity to accommodate melted resin therein at a given pressure. The plastic article includes a transfer face to which is transferred a face shape of the metal die, a projection disposed at least one face other than the transfer face, an incomplete transfer face having a concave shape disposed at the same face on which the projection is disposed, formed by an incomplete transfer of a face shape of the cavity of the metal die, and an incomplete transfer face having a convex shape disposed at least one face other than the transfer face.01-19-2012
20120026566Multi-Beam Light Source Device and Multi-Beam Light Scanning Device - A multi-beam light source device and a multi-beam scanning device including the multi-beam light source device are provided. The multi-beam light source device includes: a light source including: a cylindrical package having a side edge portion which extends in a rotational direction about a rotational axis line defined as a first direction; a plurality of light emitting units which are disposed in the cylindrical package and configured to emit laser light in the first direction; and a housing which holds the light source. The housing has a holder that holds the side edge portion of the cylindrical package to be relatively rotatable in the rotational direction. The holder is formed with at least one opening which exposes the side edge portion of the light source.02-02-2012
20120069416SURFACE-EMISSION LASER ARRAY, OPTICAL SCANNING APPARATUS AND IMAGE FORMING APPARATUS - A surface-emission laser array comprises a plurality of surface-emission laser diode elements arranged in the form of a two-dimensional array, wherein a plurality of straight lines drawn perpendicularly to a straight line extending in a first direction from respective centers of the plurality of surface emission laser diode elements aligned in a second direction perpendicular to the first direction, are formed with generally equal interval in the first direction, the plurality of surface-emission laser diode elements are aligned in the first direction with an interval set to a reference value, and wherein the number of the surface-emission laser diode elements aligned in the first direction is smaller than the number of the surface-emission laser diode elements aligned in the second direction.03-22-2012
20120081770OPTICAL SCANNING APPARATUS - An optical scanning apparatus includes a light source for emitting light, a deflecting device including a deflecting element for deflection-scanning a surface to be scanned with the light emitted from the light source and including a motor for driving the deflecting element, and an optical system casing including a supporting surface for disposing thereon the deflecting device and including a wall provided to stand on the supporting surface and to face the deflecting element. At a portion at which the wall stands on the supporting surface, an opening is provided so as to extending along the wall.04-05-2012
20120092740ADJUSTMENT APPARATUS FOR LIGHT SOURCE UNIT AND ADJUSTMENT METHOD THEREFOR - An adjustment apparatus for a light source unit installed on an optical scanning apparatus including a deflector, the light source unit including a laser light source and a condensing optical element, and leading the condensed light beam to the deflector, the adjustment apparatus including: a dividing element for dividing the light beam into a plurality of light beams in at least one of a main scanning direction and a sub-scanning direction; an imaging optical element for imaging the plurality of light beams on a light receiving element; and an adjustment mechanism for adjusting a relative position ΔX between the condensing optical element and the laser light source in a direction of an optical axis of the condensing optical element, and relative positions ΔY and ΔZ between the condensing optical element and the laser light source in directions orthogonal to the optical axis of the condensing optical element.04-19-2012
20120188624SCANNING OPTICAL APPARATUS - A scanning optical apparatus includes a light source, a deflecting element for deflecting a beam of light emitted from the light source, and an optical device for causing the beam to be imaged into a linear shape long in the main scanning direction on the deflecting surface of the deflecting element. The device comprises a first optical element and a second optical element, and a third optical element for causing the deflected beam of light to be imaged into a spot-like shape on a surface to be scanned. The third element includes a single lens, the opposite lens surfaces of which both include a toric surface of an aspherical surface shape in the main scanning plane, the curvatures of the opposite lens surfaces in the sub scanning plane being continuously varied from the on-axis toward the off-axis in the lens's effective portion.07-26-2012
20120206783OPTICAL SCANNING DEVICE - An optical scanning device has an incident optical system in which optical path lengths from laser diodes to a polygon mirror become longer in the order of the optical path length of the laser beam associated with black, that of the laser beam associated with cyan, that of the laser beam associated with magenta and that of the laser beam associated with yellow. The optical scanning device has an outgoing optical system in which optical path lengths from the polygon mirror to mirrors at which laser beam eclipse occurs become shorter in the order of the optical path length of the laser beam associated with black, that of the laser beam associated with cyan, that of the laser beam associated with magenta and that of the laser beam associated with yellow.08-16-2012
20120218614METHOD OF MANUFACTURING OPTICAL SCANNING APPARATUS AND OPTICAL SCANNING APPARATUS - A method of manufacturing an optical scanning apparatus which includes: a light source having a plurality of luminous points; a coupling lens converting a plurality of beams from the light source into luminous flux; a deflector deflecting the luminous flux in a main scanning direction; a scanning lens focusing the luminous flux from the deflector onto a scanned surface so as to form an image; and a frame supporting at least the light source and the coupling lens, the method includes: fixing a coupling lens to a frame; adjusting a position of the light source, relative to the coupling lens fixed to the frame, while the light source emits the light; adjusting a pitch between the plurality of beams the optical axis while the light source emits the light; and fixing the light source to the frame at the adjusted position and the adjusted pitch.08-30-2012
20120236380OPTICAL SCANNING DEVICE, IMAGE FORMING APPARATUS, SCANNING LENS, AND MOLDING METHOD OF THE SCANNING LENS - An optical scanning device that scans a plurality of surfaces to be scanned in a main scanning direction by using a light beam includes: a plurality of light sources; a light deflector that deflects a plurality of light beams emitted from the light sources; and a scanning optical system that individually guides each one of the light beams deflected by the light deflector to a corresponding one of the surfaces to be scanned. The scanning optical system includes one scanning lens shared by the light beams, and at least one surface of the scanning lens has a plurality of optical surfaces corresponding to the plurality of light beams disposed in a sub-scanning direction with a flat surface provided between the optical surfaces.09-20-2012
20120293849MULTI-BEAM LIGHT SOURCE DEVICE, OPTICAL SCANNING DEVICE, AND IMAGE FORMING APPARATUS - A multi-beam light source device includes a vertical cavity surface emitting laser device having monolithically fabricated multiple light sources; an optical sensor to monitor an output of beams of light emitted from the vertical cavity surface emitting laser; a printed circuit board on which a driving circuit is formed to drive the vertical cavity surface emitting laser device based on monitoring signals from the optical sensor; a coupling lens to change the beams of light emitted from the vertical cavity surface emitting laser device to a predetermined state; a transparent board on which a wiring pattern is formed to wire an electrode of the vertical cavity surface emitting laser device and a terminal of the driving circuit; and a holding unit to integrally hold the vertical cavity surface emitting laser device, the optical sensor, the printed circuit board, the coupling device, and the transparent board.11-22-2012
20120307329OPTICAL SCANNING DEVICE - An optical scanning device is provided, which includes a casing including a supporting wall supporting a deflector, a first reflecting mirror supporting portion and a second reflecting mirror supporting portion that are opposed to each other across the deflector and extend from the supporting wall and a reinforcing wall configured to extend from the supporting wall, between the deflector and first and second light source units, so as to connect the first reflecting mirror supporting portion with the second reflecting mirror supporting portion, the reinforcing wall including a first through-hole configured such that a first laser beam emitted by the first light source unit toward the deflector and the second laser beam emitted by the second light source unit toward the deflector pass therethrough.12-06-2012
20130120818OPTICAL SCANNING APPARATUS - The optical scanning apparatus including a light source unit having plurality laser light sources for emitting laser light and one lens in which the laser light emitted from the plurality laser light sources is transmitted, a deflect device that deflects and scans the laser light on an image bearing member, an optical member that images the laser light on the image bearing member, a housing that internally includes the deflect device and the optical member, the housing forms an opening portion that passes through the laser light emitted from the plurality of the laser light sources, and an elastic member that blocks a gap between the lens and the opening portion, the elastic member being pinched between the lens and the housing. It achieves sealing of the flow-in path and sealing of the gap between the light source unit and the housing with a simple configuration.05-16-2013
20140029076OPTICAL MODULE AND SCANNING TYPE IMAGE DISPLAY DEVICE - An optical module including a case to hold the optical module, and two sloped surfaces symmetrically formed to enclose a first surface including the optical axis of the optical component in an optical component holder retaining a portion of the optical component, a sloped surface is formed in the case at one position each so as to be formed opposite to the sloped surfaces at two positions of the optical component or optical component holder, and the one sloped surface of the optical component or optical component holder and the one sloped surface of the case at opposite side are symmetrical to the second surface parallel to the first surface and including the side intersecting the surface extending from the sloped surface of the case and the sloped surface of optical component or optical component holder, and the section between these sloped surfaces contains adhesive.01-30-2014
20140133002OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device includes a vertical-cavity surface-emitting laser light source that emits laser beams perpendicular to a top surface thereof; a first optical system that couples the beams from the light source; a deflecting unit that deflects the beams; a second optical system that guides the beams from the first optical system to the deflecting unit; a third optical system that focuses the beams deflected by the deflecting unit into an optical spot on a scanned surface; and a light-quantity adjusting element disposed between the light source and the deflecting unit and having a substrate formed of a first and second surfaces. The first surface of the light-quantity adjusting element is coated with neutral density coating and the second surface is coated with antireflection coating so that reflectance of the second surface is made smaller than reflectance of the first surface.05-15-2014
20140146374OPTICAL SCANNING APPARATUS - The optical scanning apparatus including a light source unit having plurality laser light sources for emitting laser light and one lens in which the laser light emitted from the plurality laser light sources is transmitted, a deflect device that deflects and scans the laser light on an image bearing member, an optical member that images the laser light on the image bearing member, a housing that internally includes the deflect device and the optical member, the housing forms an opening portion that passes through the laser light emitted from the plurality of the laser light sources, and an elastic member that blocks a gap between the lens and the opening portion, the elastic member being pinched between the lens and the housing. It achieves sealing of the flow-in path and sealing of the gap between the light source unit and the housing with a simple configuration.05-29-2014
20140160545OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device includes: a light source including a plurality of light-emitting elements; a deflector that defects light beams output from the light source; a scanning optical system that condenses the light beams deflected on the deflector onto a surface to be scanned, and includes at least one resin scanning lens and at least one folding mirror disposed behind the at least one resin scanning lens; a light-receiving element to which part of the light beams, which is deflected on the deflector but not used for scanning the surface, enters not via the at least one folding mirror as light-amount monitoring light beams; and a controller that controls a driving signal for the light-emitting elements based on an output signal from the light-receiving element.06-12-2014
20140168737OPTICAL SCANNING APPARATUS AND IMAGE FORMING APPARATUS INCLUDING THE SAME - An optical scanning apparatus includes first and second light source units including respective light sources; a rotating polygon mirror that performs deflection scanning of laser beams emitted from the light sources included in the first and second light source units; and a positioning member including a first abutting portion on which the first light source unit abuts and a second abutting portion on which the second light source unit abuts, the positioning member positioning the first and second light source units. The first and second light source units are positioned by the positioning member and arranged next to each other in a rotation axis direction of the rotating polygon mirror. The positioning member is a single member disposed between the first and second light source units in the rotation axis direction.06-19-2014
20140185118Adjustable Mirror Motor Mounting for Laser Printhead - A scan unit printhead of an imaging device having an adjustable mirror mounting. The scan unit includes a housing to which a rotatable minor, one or more light sources and an optical assembly are secured. The scan unit also includes a motor for driving the rotatable mirror, a plurality of fasteners for securing the motor to the housing and a plurality of spacers interposed between a base associated with the motor and the housing. The plurality of spacers resiliently bias the base of the motor away from the housing such that each of the plurality of spacers allows relative adjustment of a space between the base of the motor and the housing during a tightening and loosening operation of at least one of the to plurality of fasteners.07-03-2014
20140233080Multi-Beam ROS Imaging System - A multiple-beam imager includes multiple light sources (e.g., laser diodes) that transmit light beam pulses (energy doses) along parallel paths onto print plate spots disposed in a circumferential target region during each imaging period. The beam pulses are coordinated with rotation of the imaging cylinder such that, as a selected print plate spot is rotated through the target region, it is sequentially positioned during successive imaging periods to receive light beam pulses from each of the sequentially-aligned light sources, whereby the selected print plate spot receives multiple energy doses (e.g., one during each raster-scan) as it passes through the target region, thereby gradually heating and then evaporating the fountain solution predisposed over the selected print spot. A polygon mirror is used to raster-scan the beam pulses along parallel raster-scan zones.08-21-2014
20140233081Optical Scanning Apparatus - An optical scanning apparatus includes first and second light sources configured to emit first and second light fluxes respectively, a deflector having a reflecting surface which reflects the first and second light fluxes, and configured to deflect the first and second light fluxes in a main scanning direction, and an imaging lens configured to let the first and second light fluxes through and form an image of the first and second light fluxes on the reflecting surface of the deflector. The imaging lens has a first incident surface into which the first light flux enters at a right angle, a second incident surface into which the second light flux enters at a right angle, a first outgoing surface from which the first light flux exits, and a second outgoing surface which makes an angle with the first outgoing surface and from which the second light flux exits.08-21-2014
20150062679OPTICAL SCANNER AND IMAGE FORMING APPARATUS - The light source body of an optical scanner includes a main frame and a disc portion. The main frame is formed into a cylindrical columnar shape so as to irradiate the light beams from a front end thereof. The disc portion protrudes radially outward from a rear end side of the main frame. A side plate of the housing have a through-hole. The side plate includes a support member installed on the outer surface. The support member has an arc surface formed to extend along a edge portion of the through-hole. A pressing member is configured to press the disc portion of the light source body against the arc surface of the support member in such a state that the front end of the main frame is inserted into the through-hole and that an end surface of the disc portion makes contact with the side plate of the housing.03-05-2015
20150346487OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device includes plural light sources, a light deflector including a deflecting-reflecting surface, and a scanning optical system including plural folding mirrors and plural scanning lenses, wherein the plural scanning lenses have the same shape, at least one of an optical surface at the incidence side and an optical surface at the emission side has an asymmetric shape with respect to a sub-scanning direction, and has an asymmetric shape in the sub-scanning direction with respect to the main scanning direction, and a difference in a number of folding mirrors disposed between the corresponding scanning lens and the light deflector between light incident on the light deflector from a direction inclined to one side relative to a virtual surface including a normal line of the deflecting-reflecting surface and light incident on the light deflector from a direction inclined to the other side is an odd number.12-03-2015
20160082548Laser Beam Splitting and Angle Adjusting Device - The present invention relates to a laser beam splitting and angle adjusting device. The device comprises a design of a multibeam module disposed between a plurality of laser units and a refractor to allow light beams emitted out from the plurality of laser units being modulated by the multibeam module so as to perform scan photolithography on photomask patterns. Different cutting purposes can be achieved through adjusting an arrangement of light beams in order to accomplish effects including deepening depths of cutting, and adjusting or controlling a size of groove widths of groove cutting, and so on.03-24-2016
20180024246LIDAR APPARATUS FOR VEHICLES01-25-2018
359204200 Including modulated light beam 9
20100014141SCANNING DISPLAY APPARATUS USING LASER BEAM SOURCE - Disclosed is a scanning display apparatus using a laser beam source. In accordance with an embodiment of the present invention, the scanning display apparatus can include a lighting optical system, configured to use a laser device as a light source, the laser device outputting a plurality of beams having different wavelengths that are recognized as an identical color; an optical modulator, configured to output a modulation beam by diffracting a beam transferred from the lighting optical system; a diffuser, placed on an optical path of the modulation beam outputted from the optical modulator and configured to expand a width of the modulation beam through a diffraction grating pattern formed on one surface of the diffuser; and a scanning mirror, configured to scan the modulation beam having passed through the diffuser on a screen.01-21-2010
20100033791IMAGE DISPLAY APPARATUS AND METHOD OF CONTROLLING THE SAME - An image display apparatus generates a first light beam and a second light beam corresponding to image signals for the eyes of an observer, and makes the first light beam and the second light beam incident on a reflection surface which makes a reciprocating rotation about a first axis, thereby generating first and second scanning light beams to scan in a lateral direction. Images observable by the eyes of the observer are formed based on the first and second scanning light beams. Control is performed to reflect the first light beam and generate the first scanning light beam while the reflection surface rotates in the first direction of the reciprocating rotation and reflect the second light beam and generate the second scanning light beam while the reflection surface rotates in the second direction opposite to the first direction.02-11-2010
20100277782Micromechanical Device and Method for Projecting Electromagnetic Radiation - A micromechanical apparatus includes a moving element which comprises a controllable heating apparatus for introduction of a defined amount of heat into the moving element, wherein the apparatus furthermore has a control unit which is designed to control the heating apparatus as a function of an instantaneous temperature and/or of an instantaneous amount of heat that is introduced. The apparatus can be designed to project electromagnetic radiation when the moving element is in the form of a beam deflection unit for deflection of radiation, which originates from a radiation source, onto a projection surface.11-04-2010
20110096383LIGHT BEAM SCANNING IMAGE PROJECTION APPARATUS - The object of the invention included in the present application is to automatically prevent the deterioration of the image even when the image quality of the projected image is deteriorated due to the replacement of the light source or the like. The following light beam scanning image projection apparatus is one means for achieving the object. In the light beam scanning image projection apparatus including a plurality of light sources which emit the light beams of respectively different wavelengths, a driving section which modulates the intensity of each light beam in accordance with the image signal, the light axis alignment means which aligns the light axes of each light beam, and scanning means which scans the light beams, the light axis alignment means includes: a plurality of optical elements; and an adjusting section which adjusts at least one of a position and a gradient of at least one of the optical elements, and the light beam scanning image projection apparatus further includes: detecting means which detects a shift between a spot center of each light beam and a center reference point; and position correction means which controls the adjusting section based on a detection result in the detecting means to adjust at least one of the position and the gradient of at least one of the optical elements of the light axis alignment means, thereby aligning the light axes of each light beam.04-28-2011
20110116148SCANNING OPTICAL APPARATUS - A scanning optical apparatus includes a light source, a deflecting element for deflecting a beam of light emitted from the light source, an optical device for causing the beam of light emitted from the light source to be imaged into a linear shape long in the main scanning direction on the deflecting surface of the deflecting element. The optical device is comprised of a first optical element and a second optical element, and a third optical element for causing the beam of light deflected by the deflecting element to be imaged into a spot-like shape on a surface to be scanned. The third optical element includes a single lens, the opposite lens surfaces of which both include a toric surface of an aspherical surface shape in the main scanning plane, the curvatures of the opposite lens surfaces in the sub scanning plane being continuously varied from the on-axis toward the off-axis in the effective portion of the lens.05-19-2011
20110242633SCANNING OPTICAL APPARATUS - In a scanning optical apparatus, a third optical element is configured such that a first optical axis defined as an optical axis of an incident-side lens surface of the third optical element is inclined in a main scanning plane with respect to a normal line extending from a scanning center on a target surface to be scanned and an intersection point between the first optical axis and the incident-side lens surface is shifted with respect to the normal line, and that a second optical axis defined as an optical axis of an emission-side lens surface is inclined in the main scanning plane with respect to the first optical axis and an intersection point between the second optical axis and the emission-side lens surface is shifted with respect to the first optical axis.10-06-2011
20110273757OPTICAL IMAGE-CAPTURING APPARATUS - Light beams from light sources 11-10-2011
20120002261SCANNING OPTICAL APPARATUS - In a scanning optical apparatus, light emitted from each of a plurality of light sources is converted by a first optical element into a beam of light, which in turn is converted by a second optical element into a linear image extending in a main scanning direction incident on a deflecting mirror at which the beams of light are deflected in the main scanning direction. A third optical element configured to convert the beams from the deflecting mirror into spot-like images is a single lens, and each of opposite lens surfaces thereof has a curvature in a sub-scanning direction varying continuously from a position corresponding to an optical axis thereof outward in the main scanning direction in such a manner that MTF values in a sub-scanning direction of an image formed on the scanned surface vary less with image height.01-05-2012
20170235143WAVEGUIDE DISPLAY WITH TWO-DIMENSIONAL SCANNER08-17-2017
359204300 Including polarized light beam 12
20100118366POLARIZATION SPLITTING DEVICE, METHOD OF MANUFACTURING POLARIZATION BEAM SPLITTER, OPTICAL SCANNING DEVICE, AND IMAGE FORMING APPARATUS - A polarization splitting device includes a polarization beam splitter having a polarization splitting surface and allows P-polarized light to transmit therethrough and reflects S-polarized light. A subwavelength structure grating is formed on the polarization splitting surface with a grating pitch smaller than wavelength of incident light. The polarization splitting device also includes a polarizer that is arranged on an optical path of light reflected from the polarization beam splitter and has a transmission axis that is parallel to a polarization direction of the S-polarized light.05-13-2010
20110002025POLARIZATION-SEPARATION DEVICE, OPTICAL SCANNING APPARATUS, AND IMAGE FORMING APPARATUS - A polarization-separation device includes: a beam splitter that includes a beam-separating surface, on which a light beam that contains a first light beam and a second light beam impinges, wherein polarization direction of the first light beam and polarization direction of the second light beam are perpendicular to each other, and incident angle of the first light beam and incident angle of the second beam vary independently while incident into the beam-separating surface; a first polarizer arranged in an optical path of light beams having transmitted through the beam splitter, and allows the first light beam to transmit therethrough; and a second polarizer arranged in an optical path of light beams reflected from the beam splitter, and allows the second light beam to transmit therethrough.01-06-2011
20110063705MULTIBEAM DEFLECTOR FOR SEPARATING BEAMS OUTPUT FROM OPTICAL DEFLECTION DEVICES - A multibeam deflector includes a plurality of optical deflection devices formed on a single substrate and an output optical system. Each of the optical deflection devices includes a slab optical waveguide formed by a material having an electro-optic effect. The output optical system is configured to separate beams output from the optical deflection devices from each other.03-17-2011
20110122472OPTICAL SCANNING APPARATUS - An optical scanning apparatus includes a first optical member for receiving a plurality of light beams with an interval and for causing a first group of beams to emerge with a narrower interval, the first optical member being rotatable to adjust the interval of the beams emergent therefrom; a second optical member for receiving a second light beam and the first group of beams emergent from the first optical member with an interval and for causing a third group of beams to emerge with a narrower interval, the second optical member being rotatable to change the interval between the first group of beams and the second beam; and deflecting means for scanningly deflecting a third group of beams emergent from the second optical member.05-26-2011
20110176193Multiple-Source Multiple-Beam Polarized Laser Scanning System - Two integrated multi-beam sources are positioned and disposed such that each emits light toward an optical splitter. The emitted light is polarized such that the splitter brings the optical paths of the two integrated multi-beam sources generally parallel to one another such that the optical system aperture throughput for the two integrated multi-beam sources is roughly the same as for a single integrated multi-beam source. The splitter may be such that a portion of the optical energy from each source is directed into an imaging path and a portion of the optical energy is directed toward one or more non-polarizing splitters and optical sensors for, inter alia, controlling the output of the sources. In various embodiments, the number of splitters, and hence the extent of optical loss, may be reduced by use of a combined polarized and non-polarized splitter, dual polarized splitters, and time-sequenced beam generation and monitoring.07-21-2011
20110216386LIGHT SCANNING DEVICE, AND IMAGE FORMING APPARATUS HAVING THE SAME - A light scanning device scanning a plurality of scanned faces by a light beam, includes a light source unit emitting a plurality of light beams including a first light beam and a second light beam having different polarization directions to each other; a beam splitter splitting each of the first light beam and the second light beam emitted from the light source unit; an incident optical system allowing each of split first light beams to be incident with an a angular difference to each other, and allowing each of split second light beams to be incident with an angular difference to each other; a deflector respectively deflecting each of the split first light beams and each of the split second light beams entered from the incident optical system; and a scanning optical system, including a polarization splitting device for splitting a plurality of the light beams deflected by the deflector based on a difference in a polarization direction, individually focusing each of the plurality of the light beams split by the polarization splitting device on a corresponding scanned face.09-08-2011
20120275002SCAN TYPE IMAGE DISPLAY DEVICE - Optical beams emitted by optical sources are incident on a mirror surface of a scan mirror in a substantially vertical direction and reflected in a substantially vertical direction by the scan mirror. The mirror surface of the scan mirror is driven to repeatedly rotate two-dimensionally by a predetermined scan angle by a scan mirror drive circuit. A polarized beam splitter causes the optical beam emitted by the optical source to be incident on the scan mirror through a quarter wave plate, and outputs the optical beam that has been reflected by the scan mirror and passed through the quarter wave plate toward the screen. A scan angle expander is arranged on the output side of the polarized beam splitter, whereby the scan angle of the optical beam is increased by N times.11-01-2012
20130044360SYSTEM AND METHOD FOR DIRECT IMAGING - A direct imaging system comprises an illumination unit comprising a plurality of light sources, the plurality of light sources configured to emit a plurality of beams, an optical system for forming the plurality of beams to be aligned in position or angle, an acoustic optical modulator positioned to receive the plurality of beams aligned in one of position or angle and to consecutively diffract different portions of the plurality of beams as an acoustic wave propagates in an acoustic direction, and a scanning element adapted to scan an exposure plane with the plurality of beams modulated by the acoustic optical modulator at a scanning velocity, wherein the scanning velocity is selected to incoherently unite the different portions of the plurality of beams into a single exposure spot.02-21-2013
20130070323OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device separately scanning plural scan target surfaces in a first direction with light includes: a light source unit configured to emit first and second light beams mutually different in polarization state; an optical deflector configured to rotate around an axis parallel to a second direction perpendicular to the first direction, and deflect the emitted light beams; an imaging optical element provided on respective optical paths of the deflected light beams; a polarization adjustment element provided on the optical paths of the light beams transmitted through the imaging optical element, and configured to correct respective changes in polarization state of the light beams occurring during the transmission of the light beams through the imaging optical element; and a polarization separation element provided on the optical paths of the light beams emitted from the polarization adjustment element, and configured to separate the light beams from each other.03-21-2013
20130182304SPECKLE REDUCTION IN LASER SCANNING DISPLAY SYSTEMS - Speckle effect in scanning display systems that employs polarized phase-coherent light is reduced by depolarizing the phase-coherent light using a depolarizer and scanning the depolarized light for producing desired images.07-18-2013
20130301096OPTICAL SCANNING DEVICE AND SCANNING INSPECTION APPARATUS - A scanning rate is increased without causing the light utilization efficiency to decrease. An optical scanning device includes a polarization switching unit that switches the polarization direction of a beam at a predetermined switching timing; at least one polarization beam splitter that splits the beam into two optical paths in accordance with the polarization direction switched by the polarization switching unit; a reflecting optical system that causes the beams split by the polarization beam splitter to have relative angles in the same plane so as to make the beams meet at the same location; and a scanner that scans the beams made to meet at the same location by means of the reflecting optical system in a direction parallel to the plane in synchronization with the switching timing of the polarization switching unit.11-14-2013
20130342886VARIABLE ORIENTATION ILLUMINATION-PATTERN ROTATOR - Variable orientation illumination-pattern rotators (“IPRs”) that can be incorporated into structured illumination microscopy instruments to rapidly rotate an interference pattern are disclosed. An IPR includes a rotation selector and at least one mirror cluster. The rotation selector directs beams of light into each one of the mirror clusters for a brief period of time. Each mirror cluster imparts a particular predetermined angle of rotation on the beams. As a result, the beams output from the IPR are rotated through each of the rotation angles imparted by each of the mirror clusters. The rotation selector enables the IPR to rotate the beams through each predetermined rotation angle on the order of 5 milliseconds or faster.12-26-2013
359204400 Having multiple light beams with visible wavelengths 4
20090051993Optical scanning projector apparatus - An optical scanning projector apparatus includes a light emitting element array having a plurality of light emitting elements arranged in a row in a first direction for emitting light according to display data; a light scanning unit for scanning light of the light emitting elements in a second direction perpendicular to the first direction; a scanning optical system for collecting light of the light emitting elements to form an image on a screen; and a control unit for controlling the light scanning unit and the scanning optical system. The light emitting elements include micro resonator type light emitting diodes (LED) having a radiation angle smaller than or equal to 20 degrees at a half of maximum light intensity.02-26-2009
20110170155SURFACE-EMITTING LASER ELEMENT, SURFACE-EMITTING LASER ARRAY, OPTICAL SCANNER DEVICE, AND IMAGE FORMING APPARATUS - A disclosed surface-emitting laser element includes an emission region configured to emit a laser beam and a high reflectance region including a first dielectric film having a first refractive index and a second dielectric film having a second refractive index differing from the first refractive index where the first dielectric film and the second dielectric film are stacked within the emission region to provide high reflectance. In the surface-emitting laser element, the high reflectance region is formed in a region including a central portion of the emission region and is configured to include shape anisotropy in two orthogonal directions in a plane in parallel with the emission region.07-14-2011
20130235441Nanoscale Integrated Beam Scanner - Briefly, in accordance with one or more embodiments, a beam scanner may comprise a nanophotonics chip to provide a scanned output beam. The nanophotonics chip comprises a substrate, a grating in-coupler formed in the substrate to couple a beam from a light source into the substrate, a modulator to modulate the beam, and a photonic crystal (PC) superprism to provide a scanned output beam that is scanned in response to the modulated beam.09-12-2013
20150378151IMAGE DISPLAY DEVICE AND HEAD-MOUNTED DISPLAY - An image display device includes a signal light generation section including a light source section adapted to emit a light beam, a light scanner adapted to perform a scan with the light beam emitted by the light source section, and a switching section disposed between the light source section and the light scanner, and being adapted to switch between a first state of making the light beam emitted by the light source section enter the light scanner, and a second state of preventing the light beam emitted by the light source section from entering the light scanner. The switching section switches to first state when a voltage is applied to the switching section and switches to the second state when the voltage fails to be applied to the switching section.12-31-2015
359204500 With diffraction grating 2
20090251753OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device includes a diffractive optical element. The diffractive optical element is a hybrid lens in which a resin layer is joined to a glass-lens base material, and a diffractive surface is provided in the resin layer. The diffractive surface has a multi-step structure including a plurality of zonal surfaces and a plurality of step surfaces.10-08-2009
20110286067OPTICAL SCANNING DEVICE AND IMAGE FORMING APPARATUS - An optical scanning device includes a light source; a scanning unit to deflect/scan a laser beam from the light source; an imaging optical system to focus the deflected and scanned laser beam to a scan-target surface; an electro-optic element to electrically change a refractive index thereof; a controller to control the refractive index of the electro-optic element to adjust deflection amount of the laser beam; and a positional shift detecting unit, disposed away from the light path, to detect a positional shift of the incident laser beam from an ideal position in a sub-scanning direction. The device further includes a beam splitting element, and the controller adjusts a deflection amount of the laser beam from the electro-optic element based on a detection result by the positional shift detecting unit and corrects a positional shift in the sub-scanning direction of the laser beam on the scan-target surface.11-24-2011

Patent applications in class Utilizing multiple light beams

Patent applications in all subclasses Utilizing multiple light beams

Website © 2025 Advameg, Inc.