Class / Patent application number | Description | Number of patent applications / Date published |
712211000 | Decoding instruction to generate an address of a microroutine | 6 |
20090024836 | MULTIPLE-CORE PROCESSOR WITH HIERARCHICAL MICROCODE STORE - A multiple-core processor having a hierarchical microcode store. A processor may include multiple processor cores, each configured to independently execute instructions defined according to a programmer-visible instruction set architecture (ISA). Each core may include a respective local microcode unit configured to store microcode entries. The processor may also include a remote microcode unit accessible by each of the processor cores. Any given one of the processor cores may be configured to generate a given microcode entrypoint corresponding to a particular microcode entry including one or more operations to be executed by the given processor core, and to determine whether the particular microcode entry is stored within the respective local microcode unit of the given core. In response to determining that the particular microcode entry is not stored within the respective local microcode unit, the given core may convey a request for the particular microcode entry to the remote microcode unit. | 01-22-2009 |
20100070741 | MICROPROCESSOR WITH FUSED STORE ADDRESS/STORE DATA MICROINSTRUCTION - A microprocessor includes an instruction translator that translates a store macroinstruction into exactly one fused store microinstruction. The store macroinstruction in the microprocessor's macroarchitecture macroinstruction set instructs the microprocessor to store data from a general purpose register of the microprocessor to a memory location. The fused store microinstruction is an instruction in the microprocessor's microarchitecture microinstruction set. A reorder buffer (ROB) receives the fused store microinstruction from the instruction translator into exactly one of its plurality of entries. An instruction dispatcher dispatches for execution a store address microinstruction and a store data microinstruction to different respective execution units of the microprocessor in response to receiving the fused store microinstruction. Neither the store address microinstruction nor the store data microinstruction occupy any of the ROB entries. The ROB retires the fused store microinstruction after being notified that both the store address microinstruction and the store data microinstruction have been executed. | 03-18-2010 |
20110022824 | Address Generation Unit with Pseudo Sum to Accelerate Load/Store Operations - In an embodiment, an address generation unit (AGU) is configured to generate a pseudo sum from an index portion of two or more operands. The pseudo sum may equal the index if the carry-in of the actual sum to the least significant bit of the index is a selected value (e.g. zero). The AGU may also include circuitry coupled to receive the operands and to generate the actual carry-in to the least significant bit of the index. The AGU may transmit the pseudo sum and the carry-in to a decode block for a memory array. The decode block may decode the pseudo sum into one or more one-hot vectors. The one-hot vectors may be input to muxes, and the one-hot vectors rotated by one position may be the other input. The actual carry-in may be the selection control of the mux. | 01-27-2011 |
20120079248 | Aliased Parameter Passing Between Microcode Callers and Microcode Subroutines - An apparatus of an aspect includes a plurality of microcode alias locations and a microcode storage. A microinstruction of a microcode subroutine is stored in the microcode storage. The microinstruction has an indication of a microcode alias location. A microcode caller of the microcode subroutine is also stored in the microcode storage. The microcode caller is operable to specify a location of a parameter in the microcode alias location that is indicated by the microinstruction of the microcode subroutine. The apparatus also includes parameter location determination logic that is coupled with the microcode alias locations. The parameter location determination logic is operable, responsive to the microinstruction of the microcode subroutine, to receive the indication of the microcode alias location from the microinstruction and determine the location of the parameter specified in the microcode alias location indicated by the microinstruction. | 03-29-2012 |
20140351561 | MICROPROCESSOR THAT FUSES IF-THEN INSTRUCTIONS - A microprocessor includes an instruction translation unit that extracts condition information from the IT instruction and fuses the IT instruction with the first IT block instruction. For each instruction of the IT block, the instruction translation unit: determines a respective condition for the IT block instruction using the condition information extracted from the IT instruction and translates the IT block instruction into a microinstruction. The microinstruction includes the respective condition. Execution units conditionally execute the microinstruction based on the respective condition. For each IT block instruction, the instruction translation unit determines a respective state value using the extracted condition information. The state value comprises the lower eight bits of the IT instruction having the lower five bits left-shifted by N-1 bits, where N indicates a position of the IT block instruction in the IT block. | 11-27-2014 |
20160054999 | ARITHMETIC PROCESSOR - An arithmetic processor of an embodiment comprises program counter, a program memory, registers, and a decoder. Also the arithmetic processor comprises an arithmetic unit that carries out an operation using the operand and operator acquired from the registers based on a decode result by the decoder, a data memory that stores constant data and an address in association with the data, and a load unit that comprises a load data address storing unit that stores a load data address indicating an address where the constant data is stored; and | 02-25-2016 |