Class / Patent application number | Description | Number of patent applications / Date published |
702053000 | Resistive sensor | 10 |
20100125426 | High temperature transducer using SOI electronics - There is disclosed a high temperature pressure sensing system which includes a SOI Wheatstone bridge including piezoresistors. The bridge provides an output which is applied to an analog to digital converter also fabricated using SOI technology. The output of the analog to digital converter is applied to microprocessor, which microprocessor processes the data or output of the bridge to produce a digital output indicative of bridge value. The microprocessor also receives an output from another analog to digital converter indicative of the temperature of the bridge as monitored by a span resistor coupled to the bridge. The microprocessor has a separate memory coupled thereto which is also fabricated from SOI technology and which memory stores various data indicative of the microprocessor also enabling the microprocessor test and system test to be performed. | 05-20-2010 |
20100185403 | High temperature,high bandwidth pressure acquisition system - A system for measuring a multiplicity of pressures as those experienced by a model in a wind tunnel is depicted. The system includes individual sensor devices which are connected to an Acquisition and Compensation electronics module. The individual sensor or transducer devices are semiconductor piezoresistive devices and are connected to the Acquisition and Compensation electronics module by means of a cable in a first embodiment. In an alternate embodiment the system uses connectors which connect each of the individual sensor devices to the Acquisition and Compensation electronics module via a mating connector located therein. The connectors may also include a memory which stores compensation coefficients associated with each of the various sensor devices. In this manner as described, the transducers which are small devices are connected via electrical lines or cables to the central Acquisition and Compensation electronics modules. This module houses electronics which digitally converts the data from the sensors and then compensates the data for temperature effects. The advantage of the system is that each individual sensor does not have any compensation and it can be made very small to operate at very high temperatures without any loss of accuracy. Thus, a large number of sensors can be utilized in a very small volume, even under extreme environmental conditions. It is noted that the Acquisition and Compensation electronics module can be located remotely in a safe environment outside of the wind tunnel and therefore respond extremely accurately to the pressure and temperatures subjected by the model in the wind tunnel. | 07-22-2010 |
20110098947 | UNDERWATER DEPTH MEASUREMENT DEVICE - An underwater depth measurement device includes a piezoresistive ceramic transducer in communication with a circuit for outputting an absolute pressure. | 04-28-2011 |
20110118997 | HIGH TEMPERATURE TRANSDUCER USING SOI ELECTRONICS - There is disclosed a high temperature pressure sensing system which includes a SOI Wheatstone bridge including piezoresistors. The bridge provides an output which is applied to an analog to digital converter also fabricated using SOI technology. The output of the analog to digital converter is applied to microprocessor, which microprocessor processes the data or output of the bridge to produce a digital output indicative of bridge value. The microprocessor also receives an output from another analog to digital converter indicative of the temperature of the bridge as monitored by a span resistor coupled to the bridge. The microprocessor has a separate memory coupled thereto which is also fabricated from SOI technology and which memory stores various data indicative of the microprocessor also enabling the microprocessor test and system test to be performed. | 05-19-2011 |
20110166804 | SEMICONDUCTOR PRESSURE SENSOR AND DATA PROCESSING DEVICE - For example, to adjust an offset of a pressure sensor, there are provided an external resistor RE and an internal resistor circuit that is connected to both ends of RE and formed in a semiconductor chip such as a processor. The internal resistor circuit includes N pieces of internal resistors RI connected in series between both ends of RE, and (N+1) pieces of switches selecting one of voltages of respective nodes of the serial resistors and outputs the same as a signal. RE has a high absolute value precision of, e.g., several ten ohms to several hundred ohms, and RI has a high relative value precision of, e.g., several kilo-ohms. Therefore, an offset adjustment range is decided at a high absolute value precision mainly by RE, and with regard to the arrangement resolution, a high precision can be obtained along with the relative value precision of the RI. | 07-07-2011 |
20110231117 | Electronic Vacuum Gauge and Systems and Methods of Calibration and Operation of Same - An electronic thermistor-based vacuum gauge and systems and methods of calibration and operation of the same that require no calibration against a known vacuum standard to obtain high accuracy through broad vacuum and ambient temperature ranges. Additional features of the invention include a construction and method of improving battery life, a construction and method of detecting faulty vacuum sensors, a method for determining the state of calibration of a vacuum sensor, a method of quantifying vacuum leak rates, and a method of automatically alerting an operator when an evacuation process has concluded. | 09-22-2011 |
20130261995 | METHOD OF ON-LINE RAPID FLUID DENSITY MEASUREMENT USING A PIEZORESISTIVE MICRO-CANTILEVER - The present invention provides a method of on-line rapid fluid density measurement using a piezoresistive micro-cantilever, the present invention can achieve on-line measurement without changing the existing device; more importantly, without acquiring the resonant frequency of the cantilever in fluid to be detected, thus remarkably reducing measurement time, and guaranteeing the real on-line rapid measurement. By using the method of the present invention, measurement of the density of fluid to be detected by a calibrated piezoresistive micro-cantilever may be achieved within seconds or even shorter. | 10-03-2013 |
20130282310 | Electronic Vacuum Gauge and Systems and Methods of Calibration and Operation of Same - An electronic thermistor-based vacuum gauge and systems and methods of calibration and operation of the same that require no calibration against a known vacuum standard to obtain high accuracy through broad vacuum and ambient temperature ranges. Additional features of the invention include a construction and method of improving battery life, a construction and method of detecting faulty vacuum sensors, a method for determining the state of calibration of a vacuum sensor, a method of quantifying vacuum leak rates, and a method of automatically alerting an operator when an evacuation process has concluded. | 10-24-2013 |
20140067288 | High Temperature, High Bandwidth Pressure Acquisition System - A method, device and system are provided for measuring multiple pressures under severe conditions. In one embodiment, a method comprises receiving, by a processor, from a first sensor, a first pressure signal; receiving, by the processor, from a second sensor, a second pressure signal; receiving, by the processor, from a first memory, a first correction coefficient for the first sensor; receiving, by the processor, from a second memory, a second correction coefficient for the second sensor; modifying, by the processor, the first pressure signal using the first correction coefficient to generate a first corrected pressure signal; modifying, by the processor, the second pressure signal using the second correction coefficient to generate a second corrected pressure signal; and outputting, by the processor, the first corrected pressure signal and the second corrected pressure signal. | 03-06-2014 |
20150300901 | HIGH TEMPERATURE TRANSDUCER USING SOI, SILICON CARBIDE OR GALLIUM NITRIDE ELECTRONICS - There is disclosed a high temperature pressure sensing system which includes a SOI, silicon carbide, or gallium nitride Wheatstone bridge including piezoresistors. The bridge provides an output which is applied to an analog to digital converter also fabricated using SOI, silicon carbide, or gallium nitride materials. The output of the analog to digital converter is applied to microprocessor, which microprocessor processes the data or output of the bridge to produce a digital output indicative of bridge value. The microprocessor also receives an output from another analog to digital converter indicative of the temperature of the bridge as monitored by a span resistor coupled to the bridge. The microprocessor has a separate memory coupled thereto which is also fabricated from SOI, silicon carbide, or gallium nitride materials and which memory stores various data indicative of the microprocessor also enabling the microprocessor test and system test to be performed. | 10-22-2015 |