Class / Patent application number | Description | Number of patent applications / Date published |
701215000 | Having multiple GPS antennas or receivers (e.g., differential GPS) | 9 |
20090093959 | REAL-TIME HIGH ACCURACY POSITION AND ORIENTATION SYSTEM - A real-time high accuracy position and orientation system (RT-HAPOS) system for a vehicle, such as an aircraft, comprises a global navigation satellite system (GNSS) receiver disposed on the vehicle and an integrated inertial navigation (IIN) module disposed on the vehicle. The GNSS receiver generates GNSS position data indicating approximate positions of the vehicle during a data acquisition period in which the vehicle is moving. The IIN module executes a real-time kinematic (RTK) algorithm during the data acquisition period to generate output position data indicating positions of the vehicle at a greater precision than the GNSS position data, based on the GNSS position data, inertial measurement data acquired on the vehicle during the data acquisition period, and a set of virtual reference station (VRS) observables received during the data acquisition period from a remote source external to the vehicle, where the VRS observables are based on the GNSS position data. | 04-09-2009 |
20090119015 | Systems and Methods for Processing Navigational Solutions - Systems and methods for processing navigational solutions are provided. In this regard, a representative system includes a navigational computing device comprising a processor and memory that stores a navigational solution manager that is executed by the processor to provide a receiver position. The navigational solution manager is configured to collect navigational data from at least one satellite vehicle, compute initialization navigational measurements based on the collected navigational data, and compute the receiver position using the initialization navigation measurements. | 05-07-2009 |
20090192709 | POSITION SOURCE SELECTION - Techniques are described for position source selection. In an implementation, an electronic device provides a variety of functionality including at least functionality to determine position. The electronic device may be further configured to select between a plurality of position sources to determine position based upon a variety of selection criteria. In an implementation, a last known position may be stored when position is being determined through the plurality of position sources. The last known position may be used as an alternative to determining position via the position sources when one or more of the position sources are unavailable. In another implementation, the last known position may be employed to automatically select one of the plurality of position sources to be used by the electronic device for determining position. | 07-30-2009 |
20090222204 | VEHICLE GUIDANCE AND SENSOR BIAS DETERMINATION - Systems and methods for guiding a vehicle and vehicle sensor bias determination methods are disclosed. A method for guiding a vehicle includes a primary antenna of a primary survey-grade GNSS-receiver and a secondary antenna of a secondary GNSS-receiver mounted to the vehicle, which are at least temporarily receiving GNSS-signals of a global positioning system. A plurality of physical sensors mounted to the vehicle generate physical data indicative of respective measured physical parameters of at least part of the vehicle. The method includes de-biasing the physical data and applying a recursive statistical estimator, such as a Kalman filter, to the de-biased physical data and an output of the primary and secondary GNSS-receivers to determine a position and velocity of the vehicle. | 09-03-2009 |
20100211314 | PORTABLE MULTIBAND ANTENNA - A portable DGPS navigation apparatus is provided. The apparatus includes a receiver assembly and a DGPS antenna assembly. The receiver assembly includes a GNSS antenna, a GNSS receiver, and a DGPS modem. The DGPS antenna assembly includes a DGPS antenna; a top connector for coupling the DGPS antenna assembly to the receiver assembly such that the receiver assembly and DGPS antenna assembly are aligned with a geodetic pole, and a bottom connecter. | 08-19-2010 |
20100286912 | POSITIONING SYSTEM AND IN-VEHICLE DEVICE - A positioning system is configured such that an in-vehicle device includes an in-vehicle-side positioning unit that obtains in-vehicle-side positioning data that includes in-vehicle-side positioning coordinates representing positioned coordinates and a transmitting unit that transmits the in-vehicle-side positioning data obtained by the in-vehicle-side positioning unit to a portable terminal device, and the portable terminal device includes a portable-side positioning unit that obtains portable-side positioning data that includes portable-side positioning coordinates representing positioned coordinates, a selecting unit that selects the in-vehicle-side positioning unit and/or the portable-side positioning unit based on a positioning environment, and a vehicle-position calculating unit that calculates a vehicle position based on positioning coordinates of a positioning unit selected by the selecting unit. | 11-11-2010 |
20100299066 | INS based GPS carrier phase cycle slip detection and repairing - An apparatus comprising a position system configured to determine a global positioning (GPS) change vector, and an inertial navigation system (INS) change vector. The position system is configured to determine a relative position between a first platform and a second platform based on the GPS change vector and the INS change vector, and the position system is configured to correct a GPS position calculation error based on the GPS change vector and the INS change vector. | 11-25-2010 |
20110093198 | Method and apparatus for estimating behaviors of vehicle using GPS signals - A method and an apparatus for estimating behaviors of a vehicle are provided. At least two GPS antennas are located along a longitudinal axis of a vehicle so that speed vectors at the positions where the GPS antennas are located can be determined based on GPS signals received by the GPS antennas. The speed vectors are known to be estimated with high accuracy based on the GPS signals. The positions of the GPS antennas on the local coordinate system are estimated based on such highly accurate speed vectors, so that the estimated positions may also have high accuracy. Based on a line connecting these highly accurate positions of the GPS antennas, an inclination of the longitudinal axis of the vehicle is estimated. Use of the high-accuracy speed vectors enables high-accuracy estimation on the positions of the GPS antennas and the vehicle direction on the local coordinate system. | 04-21-2011 |
20110098925 | Method of surveying a railroad track under load - A method of inspecting or surveying a railroad track under load is described wherein a GPS receiver is mounted on top of the track vehicle such as a locomotive, high-rail vehicle or cargo car with data being collected at predetermined intervals to provide horizontal and vertical data for each location. | 04-28-2011 |