Entries |
Document | Title | Date |
20080275627 | Fuel Injection Control Device for Internal Combustion Engine - The invention provides a fuel injection control device for an internal combustion engine that can improve the accuracy of combustion control regarding smoke suppression. The fuel injection control device is applied to an engine provided with an EGR device for returning, as a part of an intake gas flown into the cylinder, an EGR gas, withdrawn from an exhaust passage, to an air intake passage. The amount of oxygen OXM contained in the intake gas and the concentration of oxygen OXC contained in the intake gas are detected (steps S | 11-06-2008 |
20090048765 | METHOD AND APPARATUS FOR MONITORING AN EGR VALVE IN AN INTERNAL COMBUSTION ENGINE - An internal combustion engine is selectively operative in a spark ignition combustion mode and a controlled auto-ignition combustion mode. An EGR valve operative to control flow of exhaust gas to an intake manifold is monitored, including commanding the EGR valve to a closed position and monitoring operation of the internal combustion engine. An intake manifold pressure due to a fresh air charge is estimated based upon the operation of the engine. The intake manifold pressure is measured, and the estimated intake manifold pressure is compared to the measured intake manifold pressure. | 02-19-2009 |
20090055086 | SYSTEM FOR CONTROLLING THE OPERATION OF A DIESEL ENGINE OF A MOTOR VEHICLE - The invention relates to a system for controlling the operation of a diesel engine of a motor vehicle, associated with means for supplying the cylinders with fuel and with means for recirculating waste gases at the admission. The control system comprises means for controlling the supply means according to the rotation speed of the engine and an effective torque control point and means for controlling the recirculating means according to the at least one effective torque control point. The system comprises means for determining a torque control point which is reconstructed from information provided by means for acquisition of the richness of the waste gas of the engine and air supply at the admission thereof and means for adjusting the means for controlling the recirculating means according to the effective torque control point and the reconstructed torque control point in order to minimize the emission of pollutants by the engine. | 02-26-2009 |
20090063023 | EXHAUST GAS CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINE - The ratio between the amount of exhaust gas recirculated by a high-pressure EGR device and the amount of exhaust gas recirculated by a low-pressure EGR device (mixture ratio) is controlled based on the operating state of an internal combustion engine and the correlation between the fuel consumption rate of the internal combustion engine and the mixture ratio. Thus, high-pressure EGR and low-pressure EGR are performed at the mixture ratio (optimum mixture ratio) at which the fuel consumption rate is at or around the minimum value. | 03-05-2009 |
20090099758 | APPARATUS, SYSTEM, AND METHOD FOR THERMAL MANAGEMENT OF AN ENGINE COMPRISING A CONTINUOUSLY VARIABLE TRANSMISSION - A method is disclosed for thermal management of an engine comprising a continuously variable transmission. The method includes an engine capability module storing a torque-speed map comprising a first region where the engine inefficiently regenerates an aftertreatment device, a second region where the engine efficiently regenerates the aftertreatment device, and a third region where the engine is not capable of regenerating the aftertreatment device. The method further includes an aftertreatment determination module determining a regeneration index, an operating conditions module determining an engine speed and an engine load, and a speed-load adjustment module adjusting a speed-load target. The method further includes the speed-load adjustment module adjusting the speed-load target to a preferred region along equal power curves of the torque-speed map based on the regeneration index. | 04-16-2009 |
20090112445 | System and Method for Estimating NOx Produced by an Internal Combustion Engine - A system and method are provided for estimating NOx produced by an internal combustion engine. The flow rate of fuel supplied to the engine and a plurality of engine operating parameters are monitored. NOx produced by the engine is estimated based on a product of the flow rate of fuel and a function of the plurality of engine operating parameters. The NOx estimate is stored in memory. | 04-30-2009 |
20090125217 | METHOD AND APPARATUS FOR CONTROLLING LOW PRESSURE EGR VALVE OF A TURBOCHARGED DIESEL ENGINE - A low pressure EGR valve is controlled by mixing EGR gas into an intake air. Steps of the method include detecting temperature and pressure of an intake air passing through an air cleaner, detecting temperature and pressure of the intake air at a downstream side of an intercooler, detecting temperature and pressure of an EGR gas at an upstream side of an EGR cooler, determining a control duty of the low pressure EGR valve on the basis of the detected temperature and pressure of the air passing through the air cleaner, the detected temperature and pressure at the downstream side of the intercooler, and the detected temperature and pressure at the upstream side of the EGR cooler, and controlling the low pressure EGR valve based on the determined control duty. An apparatus for executing the method is also provided. | 05-14-2009 |
20090132153 | CONTROLLING EXHAUST GAS RECIRCULATION IN A TURBOCHARGED COMPRESSION-IGNITION ENGINE SYSTEM - A method of controlling exhaust gas recirculation (EGR) in a turbocharged compression-ignition engine system including an engine, an induction subsystem in upstream communication with the engine, an exhaust subsystem in downstream communication with the engine, a high pressure EGR path between the exhaust and induction subsystems upstream of a turbocharger turbine and downstream of a turbocharger compressor, and a low pressure EGR path between the exhaust and induction subsystems downstream of the turbocharger turbine and upstream of the turbocharger compressor. A target total EGR fraction for compliance with exhaust emissions criteria is determined, then a target HP/LP EGR ratio is determined to optimize other engine system criteria within the constraints of the determined target total EGR fraction. | 05-21-2009 |
20090143959 | ENGINE CONTROL SYSTEM AND CONTROL METHOD THEREOF - An engine that re-circulates its exhaust gas suffers decreased accuracy in estimating an EGR rate real-time especially while the operating state of the engine is in a transitional state, which often results in torque fluctuations and deteriorated exhaust gas. | 06-04-2009 |
20090150056 | METHOD AND SYSTEM FOR CONTROLLING A FLOWRATE OF A RECIRCULATED EXHAUST GAS - A method and system for controlling an exhaust gas recirculation (EGR) system is provided. The EGR system recirculates a portion of an exhaust through an inlet portion of the turbomachine. The EGR system reduces the level of harmful constituents within the exhaust before the recirculation occurs. | 06-11-2009 |
20090171553 | SYSTEM FOR DETERMINING THE LEVEL OF SULPHUR POISONING OF DEPOLLUTION MEANS INTEGRATED INTO THE EXHAUST LINE OF A MOTOR VEHICLE ENGINE - The invention relates to a system for determining the level of sulphur poisoning of depollution means integrated into the exhaust line of a motor vehicle engine, said system being associated with means for controlling the operation thereof, for switching the system between a lean storage mode and a rich storage mode. The inventive system is characterised in that it comprises means ( | 07-02-2009 |
20090192699 | CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINE - A control system for an internal combustion engine having an exhaust gas recirculation device for recirculating a part of exhaust gases to an intake system of the engine is disclosed. An estimated exhaust gas recirculation amount is calculated using a neural network to which at least one engine operating parameter indicative of an operating condition of the engine is input. The neural network outputs an estimated value of an amount of exhaust gases recirculated by the exhaust gas recirculation device. At least one engine control parameter for controlling the engine is calculated based on the estimated exhaust gas recirculation amount. | 07-30-2009 |
20090240422 | INTERNAL EGR CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE - An internal EGR control device for an internal combustion engine, which is capable of properly controlling an internal EGR amount, while causing conditions of burned gases to be reflected thereon in controlling the internal EGR by changing valve-closing timing of an exhaust valve. An internal EGR control device sets a target internal EGR amount EGRINCMD as a target of the internal EGR amount according to detected operating conditions of an internal combustion engine, and a target internal EGR amount EGRINC is determined by correcting the target internal EGR amount based on a gas state equation, using obtained temperature and pressure of exhaust gases, and a calculated gas constant R. Then, according to the corrected target internal EGR amount EGRINC, the valve-closing timing of an exhaust valve is calculated, and a variable valve mechanism is controlled based on the calculated valve-closing timing of the exhaust valve. | 09-24-2009 |
20090271094 | ENGINE WITH CHARGE AIR RECIRCULATION AND METHOD - An engine comprises an intake and an exhaust, a compressor having an inlet and an outlet, a conduit between the compressor outlet and the engine intake, a recirculation conduit between the compressor outlet and the compressor inlet, and a valve for controlling flow through the recirculation conduit. A method for controlling an engine and a compressed gas are also disclosed. | 10-29-2009 |
20090299612 | METHOD OF IDENTIFYING ENGINE GAS COMPOSITION - A method and apparatus of identifying engine gas composition in an engine cylinder comprise obtaining a measure of cylinder pressure from a cylinder pressure sensor, deriving the polytropic index from said measure and obtaining a measure of the quantity of an engine gas component therefrom. | 12-03-2009 |
20090319159 | ACTIVE COMBUSTION CONTROL BASED ON RINGING INDEX FOR REDUCING HOMOGENOUS CHARGE COMPRESSION IGNITION (HCCI) COMBUSTION NOISE - An engine control system comprises a ringing index (RI) determination module and an exhaust gas recirculation (EGR) control module. The RI determination module determines at least one RI based on at least one pressure in at least one cylinder. The EGR control module actuates an EGR valve based on the RI. | 12-24-2009 |
20100010728 | SYSTEM AND METHOD FOR IMPROVING EXHAUST GAS RECIRCULATION FOR A TURBOCHARGED ENGINE - A system and method for delivering EGR to an internal combustion engine is presented. The system can reduce system cost and lower system complexity. | 01-14-2010 |
20100131181 | SYSTEM FOR CONTROLLING THE EXHAUST GAS RETURN RATE BY MEANS OF VIRTUAL NOX SENSORS WITH ADAPTATION VIA A NOX SENSOR - The present invention relates to a method for adjusting a mass flow of an exhaust gas return of an internal combustion engine, taking into consideration a NOx behavior, wherein a controlling system provides a coupling of a virtual NOx determination with a real NOx control. Furthermore, an internal combustion engine with appropriate controlling means is proposed. | 05-27-2010 |
20100145598 | APPARATUS FOR MEASURING EGR AND METHOD - An air breathing fuel consuming internal combustion engine with EGR and a control for the quantity of EGR. The total gas flow of the engine is calculated by measuring temperature and pressure at the intake to the engine. The fresh air flow is measured by an orifice or venturi at any point in the flow path for fresh air for combustion by the engine prior to the introduction of the EGR flow. The difference between the calculated total flow and fresh air flow is the actual EGR flow which is used to set the EGR relative to total flow according to one of a number of selected control algorithms. | 06-10-2010 |
20100174471 | FEEDBACK CONTROL SYSTEM - In a feedback control system in which a base gain having a constant value or a variable gain is set as a feedback gain in accordance with the state of the system and an input value is calculated based on a function having, as variables, a proportional term and an integral term, the integral term is recalculated when a discriminant value obtained by substituting a base proportional term calculated using the base gain for the proportional term and a normal integral term calculated using the feedback gain for the integral term in the function is larger than an upper limit value. The integral term is recalculated in such a way that a value obtained by substituting the base proportional term for the proportional term and the recalculated integral term for the integral term in the function becomes equal to or smaller than the upper limit value. | 07-08-2010 |
20100179745 | EXHAUST GAS RECIRCULATION DEVICE OF INTERNAL COMBUSTION ENGINE, AND CONTROL METHOD FOR THE DEVICE - An exhaust gas recirculation device of an internal combustion engine ( | 07-15-2010 |
20100179746 | Internal Combustion Engine and Method and Device for Operating an Internal Combustion Engine - An internal combustion engine includes at least two cylinders, an intake duct, an exhaust gas section and an exhaust gas recirculation line. The cylinders include a combustion chamber. The intake duct communicates with the combustion chambers via a cylinder inlet channel of the intake duct depending upon a switch position of a gas inlet valve. The exhaust gas section communicates with the combustion chambers depending upon a switch position of at least one gas outlet valve. Exhaust gas is guided back to the inlet channels via the exhaust gas recirculation line dependent upon a switch position of the exhaust gas recirculation valve. To detect a mixing air temperature in the inlet channels, a mixing air temperature sensor is provided. The determined mixing air temperatures are compared. Exhaust gas guided back due to uneven distribution is identified if a difference between the determined mixing air temperature is greater than a predetermined threshold value. | 07-15-2010 |
20100204907 | CONTROL APPARATUS AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE - A control apparatus for an internal combustion engine includes phase change means ( | 08-12-2010 |
20100211292 | ENGINE AND METHOD OF MAINTAINING ENGINE EXHAUST TEMPERATURE - In a method of maintaining temperature of engine exhaust gas from cylinders of a multi-cylinder engine ( | 08-19-2010 |
20100211293 | INTERNAL COMBUSTION ENGINE EXHAUST GAS SYSTEM AND CONTROL METHOD OF THE SAME - An internal combustion engine exhaust gas system includes a filter arranged in an exhaust passage of the internal combustion engine, a fuel adding valve which is arranged upstream of the filter and supplies fuel into the exhaust passage, and a low-pressure exhaust gas recirculation apparatus that removes some of the exhaust gas from downstream of the filter as EGR gas. An EGR rate is controlled taking into account the amount of fuel supplied by the fuel adding valve such that an oxygen concentration of intake gas, which is drawn into a cylinder of the internal combustion engine in a state in which the EGR gas that is introduced by the low-pressure exhaust gas recirculation apparatus is mixed with air introduced into an intake passage, is constant before and after fuel is supplied by the fuel adding valve. | 08-19-2010 |
20100211294 | CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE - The present invention provides a control device that is used with an internal combustion engine and capable of achieving a target torque with high accuracy and without being affected by EGR. A target torque setup device sets a target torque for the internal combustion engine. A target EGR rate setup device sets a target EGR rate. A target torque correction device and calculates a correction factor for correcting the influence of EGR on torque in accordance with the target EGR rate and an air amount, and corrects the target torque with the correction factor. A target air amount calculation device calculates a target air amount from the corrected target torque. A controller controls the operations of a plurality of actuators for adjusting an in-cylinder air amount and EGR rate in accordance with the target air amount calculated from the corrected target torque and with the target EGR rate. | 08-19-2010 |
20100211295 | FUEL ADMISSION CONTROL UNIT TO CONTROL A DIESEL ENGINE - This invention aims at providing a fuel admission control unit to control a diesel engine, with which ensuring compatibility between the exhaust gas performance and the engine speed response performance is achieved by a simple control with a consideration of the residual oxygen in the EGR gas. A control unit to control a diesel engine, the engine having an EGR system that returns a part of the engine exhaust gas into an intake air system of the engine wherein the control unit includes: an estimation excess air ratio λ | 08-19-2010 |
20100217505 | ENGINE CONTROL SYSTEM - An engine control system includes a unit which outputs a command for changing an air-fuel ratio of an exhaust gas, a unit which computes an in-cylinder oxygen concentration, a memory which stores a first value and a second value of parameters (ignition timing, injection pressure, pilot injection quantity). The first value is set in a case that the in-cylinder oxygen concentration is a first oxygen concentration. The second value is set in a case that the in-cylinder oxygen concentration is a second oxygen concentration which is higher than the first oxygen concentration. The values of the parameters are set in such a manner as to correlate to the in-cylinder oxygen concentration of during a transition period of the air-fuel ratio. The values of the parameters are obtained by an interpolation based on the first and the second value of the parameter and the in-cylinder oxygen concentration. | 08-26-2010 |
20100235074 | DEVICE AND METHOD FOR CONTROLLING INTERNAL COMBUSTION ENGINE - An internal combustion engine is provided in which a prescribed amount of fuel is injected over a predetermined period until an air-fuel ratio sensor is activated when fuel cut control of the internal combustion engine is stopped to resume normal engine operation. If an EGR gas is inducted immediately before the fuel cut control is started, the prescribed amount is reduced. | 09-16-2010 |
20100250103 | CONTROL OF INTERNAL COMBUSTION ENGINE - An exemplary method of controlling an internal combustion engine system is described herein. The internal combustion engine system includes an internal combustion engine, a valve driving mechanism which reciprocally drives an intake valve and an exhaust valve for a combustion chamber of the internal combustion engine, a turbocharger including a turbine and a compressor, and a first EGR passage which communicates an exhaust passage downstream of the emission control device and an intake passage upstream of the compressor. The exemplary method includes shutting off supplying fuel to the combustion chamber under a predetermined condition, and decreasing a lift of the intake or exhaust valve for the combustion chamber during the shutting off supplying fuel to the combustion chamber compared to in a case of supplying fuel to said combustion chamber. | 09-30-2010 |
20110010079 | CONTROLLING EXHAUST GAS RECIRCULATION IN A TURBOCHARGED ENGINE SYSTEM - Methods and products for controlling exhaust gas recirculation. | 01-13-2011 |
20110040476 | CONTROL APPARATUS FOR INTERNAL COMBUSTION ENGINE - A control apparatus for an internal combustion engine, which can generate exhaust pressure pulsation at an early period while suppressing the degradation of volumetric efficiency and can effectively utilize a scavenging effect while softening a torque difference, when a request to enhance the exhaust pressure pulsation is made in the internal combustion engine which includes a variable valve mechanism that makes a valve overlap period changeable, and a variable nozzle type turbocharger. | 02-17-2011 |
20110054762 | EXHAUST GAS RECIRCULATION APPARATUS FOR AN INTERNAL COMBUSTION ENGINE - A technique is provided which, in an exhaust gas recirculation apparatus for an internal combustion engine, can calculate a low-pressure EGR rate and a high-pressure EGR rate in an accurate manner, and control the flow rates of both a low pressure EGR passage and a high pressure EGR passage in a closed-loop control manner, thereby to make the temperature of intake air and a supercharging pressure stable and to suppress the deterioration of exhaust emissions as well as the deterioration of power performance. The low pressure EGR rate, representative of the proportion of an amount of low pressure EGR gas to an amount of intake air sucked into the internal combustion engine, and the high pressure EGR rate, representative of the proportion of an amount of high pressure EGR gas to the amount of intake air, are calculated by using a CO | 03-03-2011 |
20110054763 | Intake Manifold Oxygen Control - A method for controlling intake manifold oxygen for an engine having a fresh air inlet and an exhaust gas recirculation (EGR) circuit includes the steps of: establishing an ideal excess oxygen ratio for combustion in the engine; calculating a total mass flow of oxygen to be delivered to an intake manifold of the engine to maintain the ideal excess oxygen ratio; determining a mass flow of EGR oxygen in the mass flow of EGR gas; and controlling a desired mass flow of fresh oxygen to be delivered to the intake manifold such that the sum of the desired mass flow of fresh oxygen and the mass flow of EGR oxygen is equal to the desired total mass flow of oxygen, by re-adjusting the EGR valve. | 03-03-2011 |
20110071749 | METHOD AND DEVICE FOR OPERATING AN INTERNAL COMBUSTION ENGINE - In an internal combustion engine, at a first operating point using no exhaust gas recirculation, a first measured value of a load variable is detected. As a function of a further operating variable, a first model value of the load variable is determined using a suction pipe model. At least one parameter of the suction pipe model is adapted such that the first model value approaches or corresponds to the first measured value. A first value of the parameter adjustment is stored. At a second operating point, using exhaust gas recirculation a second value corresponding to the first value of the parameter adjustment, is determined and stored. The first and second values of the parameter adjustment are compared and a parameter value of an exhaust gas recirculation model is adapted such that the first and the second values of the parameter adjustment approach each other or correspond to each other. | 03-24-2011 |
20110093185 | METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE SYSTEM - A method for operating an internal combustion engine system includes, but is not limited to a combustion engine having intake manifold and exhaust manifold, a first EGR route for conveying exhaust gas from exhaust manifold to intake manifold, a second EGR route configured for conveying to the intake manifold exhaust gas having lower temperature than that conveyed through the first EGR route, and regulator for regulating the flow rate of exhaust gas through the first and the second EGR route. The method includes, but is not limited to determining a first setpoint value for the total amount of exhaust gas requested into the intake manifold, determining a second setpoint value for a parameter representative of the relationship between the total amount of exhaust gas requested into the intake manifold, the amount of exhaust gas from the first EGR route and from the second EGR route, applying said first and second set-point values to a control routine for adjusting the regulating means accordingly, determining a third setpoint value for the temperature in the intake manifold, determining the actual temperature in the intake manifold, calculating the error between said actual temperature and the third setpoint value, and using said error for generating a correction index to be applied to the second setpoint value, in order to minimize said error. | 04-21-2011 |
20110112745 | SYSTEM AND METHOD FOR CONTROLLING THE FRESH AIR AND BURNT GASES INTRODUCED INTO AN INTERNAL COMBUSTION ENGINE DURING TRANSITIONS BETWEEN THE PURGING OF A NITROGEN OXIDES TRAP AND THE REGENERATION OF A PARTICULATE FILTER - Method for controlling the power plant of a motor vehicle with partial exhaust gas recirculation in which the fresh air flow rate and the partially recirculated gases flow rate are regulated either on a rich mixture control structure or on a lean mixture control structure and in which the flow rates are set, on the rich mixture control structure, to the setpoint values equal to the flow rate setpoint values of the lean mixture control structure during a transition from a rich mixture control structure to a lean mixture control structure. | 05-12-2011 |
20110118959 | METHOD AND APPARATUS FOR DETERMINING AND REGULATING AN EXHAUST GAS RECIRCULATION RATE OF AN INTERNAL COMBUSTION ENGINE - The invention relates to a method and an apparatus for determining an exhaust gas recirculation rate in an internal combustion engine, in which the exhaust gas recirculation rate indicates a proportion of exhaust gas in a gas quantity delivered to a cylinder of the internal combustion engine, and combustion takes place in the cylinder of the engine cyclically during a combustion phase. The method includes the steps of ascertaining a combustion course statement over the course of combustion in the cylinder of the engine, and ascertaining an actual exhaust gas recirculation rate from the combustion course statement with the aid of a predetermined exhaust gas recirculation rate function. The invention further relates to a method and an apparatus for regulating an exhaust gas recirculation rate in an internal combustion engine, in which the exhaust gas recirculation rate indicates a proportion of exhaust gas in a gas quantity delivered to a cylinder of the internal combustion engine, and combustion takes place in the cylinder of the engine cyclically during a combustion phase. The method includes the steps of ascertaining a combustion course statement over the course of combustion in the cylinder of the engine, furnishing a set-point statement as a function of an operating point of the engine, and performing a regulation to compensate for a deviation that results from the set-point statement and the combustion course statement. | 05-19-2011 |
20110137542 | METHODS AND SYSTEMS FOR EXHAUST GAS MIXING - A method of operating an engine system is described in which a back-pressure valve of a low pressure EGR system can be modulated at a lower frequency during an EGR operation, and at a higher frequency when additional exhaust gas sensing is requested. Back-pressure valve modulation can therefore be used to promote exhaust gas mixing while providing EGR. Exhaust gas constituents in the mixed exhaust gas can then be sensed with higher accuracy by downstream exhaust gas sensors. | 06-09-2011 |
20110160984 | CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE - Disclosed is a control device for an internal combustion engine that is used with an internal combustion engine having an EGR catalyst and an EGR valve in an EGR path for connecting an exhaust path to an intake path, and capable of preventing the purification performance of the EGR catalyst from being degraded during EGR stoppage and purifying exhaust gas in a preferred manner upon EGR resumption. When EGR is stopped with the EGR valve closed, the control device judges whether an EGR path air-fuel ratio is richer than a threshold value. If the EGR path air-fuel ratio is judged to be richer than the threshold value, the control device sets a target air-fuel ratio for the internal combustion engine to be leaner than a stoichiometric air-fuel ratio. | 06-30-2011 |
20110184631 | NOx CONTROL DURING LOAD INCREASES - A method of controlling a diesel engine connected to a load, the method including the steps of detecting an increased torque requirement and matching a fuel flow with an airflow. The detecting an increased torque requirement step detects an increased torque requirement for the engine, the increased torque requirement taking place during a period of time. The matching a fuel flow step matches a fuel flow with an airflow going to the engine during the increased torque requirement, the matching step keeps the airflow and the fuel flow during the period of time at a substantially stoichiometric level enabling the use of a three-way catalyst to reduce NOx emissions during transients. | 07-28-2011 |
20110191010 | METHOD FOR CONTROLLING AN ENGINE - A method for operating an engine is disclosed. In one example, the method adjusts a torque limit of the engine in response to an amount of EGR in an engine cylinder. The approach may reduce the possibility of pre-ignition for boosted engines. | 08-04-2011 |
20120029794 | METHOD AND SYSTEM FOR CONTROLLING AN ENGINE VIA COMPRESSOR SPEED - An engine air estimation method is described. In one example, an amount of air entering an engine is determined in response to a speed of a compressor. The method may be especially useful for increasing engine reliability. | 02-02-2012 |
20120046854 | METHOD AND DEVICE FOR CONTROLLING DIESEL ENGINE - This disclosure provides a method of controlling a diesel engine. The method includes adjusting an EGR ratio according to an engine load so that a cylinder O | 02-23-2012 |
20120078492 | ENGINE SYSTEM AND METHOD - An engine system is provided. The engine system includes a plurality of cylinders including one or more donating cylinders and one or more non-donating cylinders. A control module controls an operation of the one or more donating cylinders relative to, or based on, the operation of the one or more non-donating cylinders. | 03-29-2012 |
20120166070 | CONTROL APPARATUS AND CONTROL METHOD OF MULTIPLE CYLINDER - With a control apparatus of a multiple cylinder internal combustion engine, external EGR that circulates exhaust gas in an exhaust passage to an intake passage is executed, and an air-fuel ratio is feedback-controlled such that an air-fuel ratio of the exhaust gas comes to match a predetermined target air-fuel ratio. When a rich deviation in which the air-fuel ratio of a portion of cylinders is off to a rich side from the target air-fuel ratio is detected, a parameter indicative of an amount of the rich deviation is calculated. The target air-fuel ratio is corrected to the rich side according to the calculated parameter. A value of a parameter at which the rich correction is started is changed according to whether external EGR is being executed. | 06-28-2012 |
20120215426 | APPARATUS FOR CONTROLLING INTERNAL COMBUSTION ENGINE - An apparatus for controlling an internal combustion engine executes air-fuel ratio feedback control based on a detection result of an exhaust gas sensor and when the engine is shut down, stops energization of a heater of the exhaust gas sensor at a predetermined timing after shutdown of the engine, heater control of the exhaust gas sensor is executed, which is suitable for a case in which shutdown time of the engine is set long, and thus the exhaust gas sensor is protected from thermal shock. The control apparatus sets timing for stopping energization of a heater of an exhaust gas sensor after shutdown of the engine, to a point in time when a predetermined time set based on outside air temperature has elapsed, or a point in time when cooling water temperature of the engine has dropped to a predetermined temperature. | 08-23-2012 |
20120215427 | INTER-CYLINDER AIR-FUEL RATIO IMBALANCE DETERMINATION APPARATUS FOR INTERNAL COMBUSTION ENGINE - An inter-cylinder air-fuel ratio imbalance determination apparatus (determination apparatus) according to the present invention obtains, as an “EGR supplying state imbalance determination parameter”, a value corresponding to a differential value d(abyfs)dt of a detected air-fuel ratio abyfs represented by an output value of an air-fuel ratio sensor when an EGR gas is being supplied, and obtains, as an “EGR stop state imbalance determination parameter”, a value corresponding to a differential value d(abyfs)dt when an EGR gas supply is being stopped. The determination apparatus obtains an “EGR-causing imbalance determination parameter Pegr” by subtracting the EGR stop state imbalance determination parameter Poff from the EGR supplying state imbalance determination parameter Pon, and determines that an inter-cylinder air-fuel ratio imbalance state has occurred due to the supply of the EGR gas when the parameter Pegr is larger than a threshold Pegrth. | 08-23-2012 |
20120265426 | METHOD OF AND APPARATUS FOR IN-SITU MEASUREMENT OF SOOT BY ELECTRON SPIN RESONANCE (ESR) SPECTROMETRY - An instrument and method using electron spin resonance spectrometry for measuring the concentration of airborne soot particles, and the like, that includes continuously passing a sample of exhaust gas through a resonating RF microwave cavity resonator during the application therethrough of a uniform slowly varying uniform magnetic field that is rapidly modulated and measuring the resulting phase modulation or amplitude modulation thereof to derive an electron spin resonance signal that directly senses the concentration of carbon free radicals produced as a result of inefficient combustion of hydrocarbons during operation of the vehicle or boiler. A further invention is the use of this signal for feedback control of the engine or boiler operating parameters to minimize or substantially eliminate particulate matter emissions. | 10-18-2012 |
20120271534 | CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE - A control device for an internal combustion engine with a catalyst includes: an air-fuel ratio control unit varying a fuel amount supplied to the engine in accordance with a first variation amount set such that an air-fuel ratio of air-fuel mixture coincides with a target ratio; and an exhaust gas temperature control unit varying a fuel amount supplied to the engine in accordance with a second variation amount set to decrease an exhaust gas temperature. When air-fuel ratio control is being executed at a first time point and at least exhaust gas temperature control is executed during a period from the first time point or later to a third time point thereafter, the first and second variation amounts at a fourth time point in the period are set so as to be larger than or equal to the first variation amount at the first time point. | 10-25-2012 |
20120310512 | ABNORMALITY DETERMINING APPARATUS FOR AIR-FUEL RATIO SENSOR - An abnormality determining apparatus includes an air-fuel ratio controller, an output change period parameter calculator, an output change amount extremum calculator, and an abnormality determining device. The abnormality determining device is configured to determine an abnormality of an air-fuel ratio sensor based on a relationship between an output change period parameter and an output change amount extremum. | 12-06-2012 |
20120316760 | METHOD FOR OPERATING AN APPLIED-IGNITION INTERNAL COMBUSTION ENGINE WITH DIRECT INJECTION - Embodiments for operating an engine with direct injection are provided. In one example, a method for operating an applied-ignition internal combustion engine having at least one cylinder and direct injection comprises raising a component temperature of an injection device of the at least one cylinder at least locally in a region of a catalytic coating in order to initiate and assist oxidation of coking residues. Thus, deposits of coking residues may be counteracted even in part-load operation. | 12-13-2012 |
20120323469 | SYSTEM AND METHOD FOR CONTROLLING EXHAUST GAS RECIRCULATION - A control system for an engine includes first and second modules. The first module estimates a total amount of exhaust gas recirculation (EGR) in the engine, wherein the total amount of EGR includes (i) EGR within cylinders of the engine and (ii) EGR flowing through an EGR system of the engine. The second module selectively controls an overlap of intake and exhaust valve timing in the engine based on (i) a position of an EGR valve in the EGR system and (ii) a comparison of the estimated total amount of EGR in the engine and an EGR threshold. | 12-20-2012 |
20120323470 | METHODS AND SYSTEMS FOR EXHAUST GAS RECIRCULATION COOLER REGENERATION - Various methods and systems are provided for regenerating an exhaust gas recirculation cooler. One example method includes, routing exhaust gas from a donor cylinder group of an engine to an intake passage of the engine through the exhaust gas recirculation cooler, routing exhaust gas from a non-donor cylinder group of the engine to an exhaust passage of the engine, and adjusting fuel distribution among the donor cylinder group and the non-donor cylinder group responsive to a temperature of the exhaust gas recirculation cooler. | 12-20-2012 |
20130006504 | COMPRESSION-IGNITION ENGINE WITH EXHAUST SYSTEM - A compression-ignition engine ( | 01-03-2013 |
20130006505 | DIAGNOSTIC APPARATUS FOR INTERNAL COMBUSTION ENGINE - A diagnostic apparatus for a multicylinder internal combustion engine includes: an EGR portion capable of executing an individual-cylinder EGR in which EGR gas is distributed and supplied individually to cylinders of the engine; a knock detection portion that detects a knock index value that represents degree of knocking, separately for each of the cylinders; an abnormality detection portion that determines presence or absence of a variation abnormality of air/fuel ratios of the cylinders during execution of the individual-cylinder EGR, and that pinpoints an abnormal cylinder after determining that the variation abnormality is present, and that calculates an imbalance index value that represents the degree of variation regarding the abnormal cylinder; and an abnormality location pinpointing portion that pinpoints an abnormality location in the abnormal cylinder based on the imbalance index value and the knock index value of the abnormal cylinder. | 01-03-2013 |
20130006506 | CONTROL APPARATUS FOR INTERNAL COMBUSTION ENGINE - A control apparatus for a multicylinder internal combustion engine includes: a detection portion that detects a parameter that represents degree of variation in air/fuel ratio among cylinders; a measurement portion that measures stored oxygen amount of a catalyst provided in an exhaust passageway of the internal combustion engine; and a rich-control portion that switches between execution and stop of a rich control for enriching the air/fuel ratio according to the stored oxygen amount measured by the measurement portion when the parameter detected by the detection portion is greater than or equal to a predetermined value. | 01-03-2013 |
20130080034 | SYSTEM FOR CONTROLLING AN AIR HANDLING SYSTEM INCLUDING AN ELECTRIC PUMP-ASSISTED EXHAUST GAS RECIRCULATION - A system controlling an air handling system for an internal combustion engine. An EGR valve in-line with an EGR passageway fluidly coupled between exhaust and intake manifolds of the engine is controllable between fully closed open positions to control a flow rate of exhaust gas through the EGR passageway. A control circuit determines a pump enable value as a function of at least one of a target engine speed and a total fueling target, determines a maximum achievable flow rate of recirculated exhaust gas through the EGR passageway with the EGR valve in the fully open position, and activates an electric gas pump to increase the flow rate of exhaust gas through the EGR passageway if the pump enable value exceeds a threshold pump enable value and a target flow rate of recirculated exhaust gas through the EGR passageway is less than the maximum achievable flow rate. | 03-28-2013 |
20130090839 | CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINE - A control system for an internal combustion engine where when the engine is decelerating the amount of intake air supplied to a combustion chamber is controlled. A target auxiliary intake air amount SAIRCMD necessary for preventing misfiring of the engine by supplying only an auxiliary intake air amount to a combustion chamber and a target intake air amount GAIRCMD which is a target value of the amount of intake air supplied to the combustion chamber are calculated according to the state NE, AP of the engine. When the engine is decelerating, and misfires, misfire avoidance control is executed controlling an auxiliary intake air amount control valve to be more opened such that the auxiliary intake air amount becomes the target auxiliary intake air amount SAIRCMD and a throttle valve to be more closed such that the amount of intake air supplied to the combustion chamber becomes the target intake air amount GAIRCMD. | 04-11-2013 |
20130096806 | METHOD OF CONTROLLING AN EGR VALVE INTEGRATED IN AN EGR CIRCUIT OF A COMBUSTION ENGINE - The invention relates to a method of controlling a combustion engine ( | 04-18-2013 |
20130096807 | METHOD OF CONTROLLING A COMBUSTION ENGINE FROM ESTIMATION OF THE BURNT GAS MASS FRACTION IN THE INTAKE MANIFOLD - In a method of controlling the combustion of a combustion engine from an estimation of the burnt gas mass fraction in the intake manifold, a measurement relative to a fresh air flow rate or to a burnt gas flow rate is performed upstream from the mixing space where fresh air and burnt gas mix. The burnt gas mass fraction present in the mixing space is then estimated from the measurement and from a model of the mixing dynamics in this space. A transport delay between the space and the intake manifold is estimated. The mass fraction of burnt gas in the intake manifold is then deduced in real time. Finally, combustion is controlled from the burnt gas mass fraction in the intake manifold. | 04-18-2013 |
20130151124 | ENGINE EMISSION CONTROL STRATEGY FOR SMOKE AND NOx - An engine control system ( | 06-13-2013 |
20130173140 | CONTROL APPARATUS AND METHOD FOR AN INTERNAL COMBUSTION ENGINE - The present invention is intended to provide a technique of improving exhaust emissions at the time of starting up of an internal combustion engine, without decreasing the performance of a catalyst at the time of the engine starting up. The present invention is provided with the catalyst that is arranged in an exhaust passage of the internal combustion engine in which a plurality of kinds of fuels are able to be used, and serves to adsorb and remove exhaust gas components discharged from the internal combustion engine, wherein in cases where among the plurality of kinds of fuels, a first fuel is used in which unburnt fuel components thereof are easily adsorbed to the catalyst, at the time when a request is made for stopping the internal combustion engine, said first fuel is changed to a second fuel thereby to operate said internal combustion engine until said internal combustion engine is stopped. | 07-04-2013 |
20130197786 | CONTROL APPARATUS AND CONTROL METHOD FOR MULTI-CYLINDER INTERNAL COMBUSTION ENGINE - A control apparatus is provided for a multi-cylinder internal combustion engine that includes a plurality of cylinders, an exhaust passage, and an exhaust gas recirculation device including passages through which a part of exhaust gas discharged into the exhaust passage is recirculated individually to the respective cylinders. The control apparatus includes a control unit configured to execute an air-fuel ratio feedback control for controlling an exhaust gas air-fuel ratio to a target air-fuel ratio through feedback using a feedback correction amount. The control unit is configured to identify the cylinder corresponding to the passage in which a clogging occurs, among the plurality of passages, in a case where the clogging occurs in the passage among the plurality of passages, and to set the target air-fuel ratio according to a deviation of the feedback correction amount, the deviation corresponding to the identified cylinder. | 08-01-2013 |
20130218442 | CONTROL DEVICE AND CONTROL METHOD FOR HYBRID VEHICLE - When an engine is being cranked, a maximum slope value is set on the basis of a slope value of an output voltage of an air-fuel ratio sensor, a normalized maximum slope value is set by normalizing the set maximum slope value, and a learned value of a responsiveness of the air-fuel ratio sensor is calculated using the set normalized maximum slope value. | 08-22-2013 |
20130231846 | POST CATALYST DYNAMIC SCHEDULING AND CONTROL - A method is provided for controlling an engine exhaust with an upstream sensor and a downstream sensor. The method comprises adjusting a set-point for the downstream sensor based on a rate of change of air mass flow upstream of the engine and adjusting fuel injection to control exhaust fuel-air ratio (FAR) at the downstream sensor to the adjusted set-point, and to control exhaust FAR at the upstream sensor to an upstream sensor set-point. | 09-05-2013 |
20130231847 | NON-INTRUSIVE EXHAUST GAS SENSOR MONITORING - Systems and methods for monitoring an exhaust gas sensor coupled in an engine exhaust are provided. In one example approach, a method comprises indicating exhaust gas sensor degradation based on a downstream exhaust gas sensor responding before the upstream exhaust gas sensor during a commanded change in air-fuel ratio. | 09-05-2013 |
20130245922 | CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINE - A control system for an internal combustion engine having a throttle valve disposed in an intake passage of the engine is provided. A wide-open intake air amount, which is an intake air amount corresponding to a state where the throttle valve is fully opened, is calculated according to the engine rotational speed, and a theoretical intake air amount, which is an intake air amount corresponding to a state where no exhaust gas of the engine is recirculated to a combustion chamber of the engine, is calculated according to the wide-open intake air amount and the intake pressure. An intake air amount of the engine is detected or estimated, and an amount of the evaporative fuel/air mixture supplied through the evaporative fuel passage to the intake passage is calculated. An intake gas amount is calculated by correcting the intake air amount using the evaporative fuel/air mixture amount, and an exhaust gas recirculation ratio is calculated using the theoretical intake air amount and the intake gas amount. The engine is controlled using the calculated exhaust gas recirculation ratio. | 09-19-2013 |
20130275030 | METHOD FOR ESTIMATING INTAKE AIR HUMIDITY - Embodiments for estimating intake air humidity in an engine are provided. In one example, an engine method comprises adjusting an engine parameter in response to intake air humidity estimated based on a concentration of one or more engine-out emissions. In this way, one or more exhaust emission sensors may be used to estimate intake air humidity. | 10-17-2013 |
20130289852 | SYSTEM AND METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE FOR A MOTOR VEHICLE IN TRANSIT - A system for controlling a diesel internal combustion engine including a circuit for partially recirculating exhaust gases, including a mechanism estimating set values of intake-air parameters; a mechanism estimating richness of the exhaust gas; a mechanism determining a set value of the intake richness according to set values of the intake-air parameters; and a mechanism correcting at least one of the set values of the intake-air parameters according to the estimation of the richness of the exhaust gas and the richness set value. | 10-31-2013 |
20130304357 | Diesel Engine Operation for Fast Transient Response and Low Emissions - A method for controlling emissions in the exhaust gas of a diesel engine, the engine having an exhaust gas recirculation (EGR) system. The engine's exhaust aftertreatment system need have only an oxidation catalyst and a particulate filter (with no NOx reduction or adsorption device). In “normal” engine conditions, the engine is operated with a lean air-fuel ratio, with “normal” engine conditions being engine conditions other than transient load increase engine conditions. Also, during normal engine conditions, the EGR system is used to reduce engine-out NOx. During transient load increase engine conditions, the engine is operated stoichiometrically or near stoichiometrically and the use of EGR is interrupted. | 11-14-2013 |
20130311070 | CONTROLLER FOR INTERNAL COMBUSTION ENGINE - A controller includes an exhaust gas recirculation (EGR) system for performing EGR control, the system including an EGR passage for recirculating exhaust gas per cylinder and an EGR device for controlling a flow rate of the exhaust gas to be recirculated. The controller is arranged to perform internal combustion engine by learning control of an air-fuel ratio (A/F) during the EGR control. This controller includes a blocking determination section including first and second determination sections to determine blocking of the EGR passage in a specified cylinder. The blocking determination section is configured so that the first determination section makes preliminary determination of blocking of the EGR passage and the second determination section makes main determination of blocking of the EGR passage. | 11-21-2013 |
20130311071 | Charging-Pressure-Guided Control Method for an Internal Combustion Engine - A method of controlling a charging pressure of an internal combustion engine having a particle filter for the treatment of exhaust gases, wherein the charging pressure is controlled to achieve a nominal charging pressure value and wherein the nominal charging pressure value is set as a function of operating parameters, wherein there is determined a first value for a charging pressure minimising a fuel consumption, taking into account a direct influence of the charging pressure on the fuel consumption of an internal combustion engine; as well as an internal combustion engine having a particle filter for the treatment of exhaust gases, using such a control method. | 11-21-2013 |
20130338907 | Device and Method for Regulating an Internal Combustion Engine - A method for the adaptive lambda control of an internal combustion engine involves a controller limiting lambda control by a maximum control stroke. A lambda variable is a controlled variable, a metering variable of a metering device is a manipulated variable, and a lambda setpoint variable is a setpoint variable. In addition, an adapter carries out a lambda adaptation, which is limited by a maximum adaptation speed. A control speed of the lambda control is greater than the maximum adaptation speed. The maximum control stroke and/or the maximum adaptation speed is/are a function of a deviation of the lambda variable from the lambda setpoint value. | 12-19-2013 |
20140025280 | SYSTEM AND METHOD TO DETERMINE RESTRICTION OF INDIVIDUAL EXHAUST GAS RECIRCULATION RUNNERS - An engine control system and method for determining if an exhaust gas recirculation EGR runner between an EGR valve and a cylinder inlet is obstructed using a single exhaust gas sensor and individual cylinder fuel control (ICFC). A controller determines an off-state value based on an off-state air/fuel combustion ratio of a particular cylinder indicated by the single exhaust gas sensor while the EGR valve is operated to the off-state and while the engine is operating at a first speed-load condition, and determines an on-state value based on an on-state air/fuel combustion ratio of the particular cylinder indicated by the single exhaust gas sensor while the EGR valve is operated to the on-state and while the engine is operating at a second speed-load condition. The controller then determines if the EGR runner associated with the particular cylinder is obstructed based on the off-state value and the on-state value. | 01-23-2014 |
20140046575 | METHOD FOR CONTROLLING OPERATION OF INTERNAL COMBUSTION ENGINE - In a method for controlling operation of an engine in which an EGR system is incorporated therein, when the engine is in a pressure-accumulable operational state in which EGR gas can be pressure-accumulated in an EGR passage between an EGR control valve and an on-off valve, these valves are brought into a full closed state, respectively. In addition, when an intake pressure transmitted from an air intake passage to the engine becomes more than or equal to a target value of the intake pressure set based on an operational state of the engine, the on-off valve is switched to a full open state, and then the on-off valve is switched to the full closed state again after elapse of a predetermined time, and high-pressure EGR gas of a low oxygen concentration is temporarily stored in the EGR passage. | 02-13-2014 |
20140046576 | METHOD AND SYSTEM FOR ENGINE UNBURNED HYDROCARBON CONTROL - Methods and systems are provided for detecting hydrocarbon ingestion into an engine based on the simultaneous monitoring of cylinder imbalance and an elevated exhaust exotherm. Crankshaft acceleration data is monitored during steady-state and transient engine conditions while exhaust temperatures are estimated during non-regeneration conditions. Engine speed and load is limited to reduce further hydrocarbon ingestion. | 02-13-2014 |
20140081558 | DIESEL ENGINE WATER IN FUEL SEPARATOR AND RESERVOIR AUTOMATIC DRAIN SYSTEM AND CONTROL STRATEGY - Methods and systems are provided for draining water separated from diesel fuel into an EGR system. In response to the water volume in the fuel system and EGR flow at pre-determined levels, water may be introduced into the EGR system. EGR flow may also be controlled in response to introducing water into the EGR system and engine operating conditions. | 03-20-2014 |
20140107909 | VEHICLE AND CONTROL METHOD OF VEHICLE - A vehicle includes an internal combustion engine, an air-fuel ratio sensor provided in an exhaust passage of the internal combustion engine, and a controller. The controller is configured to diagnose a responsiveness of the air-fuel ratio sensor on the basis of an output voltage of the air-fuel ratio sensor in a predefined period. The period is a period over which exhaust gas goes through the air-fuel ratio sensor during the internal combustion engine is rotating without fuel injection. | 04-17-2014 |
20140172278 | INTERNAL EGR AMOUNT CALCULATION DEVICE FOR INTERNAL COMBUSTION ENGINE - An internal EGR amount calculation device for an internal combustion engine, which is capable of improving calculation accuracy of an internal EGR amount in a case where a valve overlap time period is changed. The internal EGR amount calculation device for an internal combustion engine of which the internal EGR amount is changed according to the valve overlap time period calculates an in-cylinder volume at a blow-back occurrence timing, which is a timing in which blow-back of exhaust gases from an exhaust passage into a cylinder occurs after the intake valve is opened, during the valve overlap time period, according to engine speed and an intake cam phase, calculates a remaining gas amount according to the in-cylinder volume, and calculates the internal EGR amount by adding a blown-back gas amount to the remaining gas amount. | 06-19-2014 |
20140222318 | EXTERNAL EGR RATE FEEDBACK - An engine control system for a vehicle includes an exhaust gas recirculation (EGR) rate-estimation module and a control module. The EGR rate-estimation module receives a first signal indicating a first relative humidity of a flow of air and a second signal indicating a second relative humidity of a mixed flow of air and exhaust gas. The EGR rate-estimation module determines an estimated EGR rate based on the first relative humidity and the second relative humidity, wherein the estimated EGR rate corresponds to a flow rate of a flow of exhaust gas to an engine. The control module selectively adjusts an engine operating parameter based on the estimated EGR rate. | 08-07-2014 |
20140278011 | ADVANCED EXHAUST GAS RECIRCULATION FUELING CONTROL - For exhaust gas recirculation (EGR) fueling control, at least one donor cylinder of a plurality of cylinders in an engine provides exhaust gas to an air intake for the plurality of cylinders. A fuel variable restriction initially provides fuel concurrent with an intake stroke for the at least one donor cylinder in response to a transition from withholding the fuel to the plurality of cylinders. | 09-18-2014 |
20140278012 | SYSTEM AND METHOD FOR SAMPLING AND PROCESSING MASS AIR FLOW SENSOR DATA - A vehicle includes an engine having cylinders in fluid communication with an intake air flow, a mass air flow (MAF) sensor positioned with respect to the intake air flow which outputs a pulse train signal describing the frequency of the intake air flow, and a controller. The controller includes a calibrated non-linear conversion curve recorded in memory. The controller executes a method to convert the frequency data into a corresponding mass air flow using the calibrated non-linear conversion curve, determines the instantaneous mass air flow value at each leading or trailing edge of the pulse train signal, and accumulates the instantaneous mass air flow values over a calibrated duration. A time-weighted average of the accumulated mass air flow values is then used to execute a control action. The controller includes a host computer device and memory storing the curve and instructions for executing the method. | 09-18-2014 |
20140278013 | FAULT DIAGNOSTIC SYSTEMS AND METHODS USING OXYGEN SENSOR IMPEDANCE - A diagnostic system of a vehicle includes an impedance module and a diagnostic module. The impedance module determines an impedance of a sensing element of an exhaust gas oxygen sensor based on a response of the sensing element to a change in current through the sensing element. The diagnostic module selectively diagnoses a fault associated with the exhaust gas oxygen sensor based on the impedance of the sensing element. | 09-18-2014 |
20140297163 | SYSTEM AND METHOD FOR GAS PURGE CONTROL - A method for operating an engine system is provided. The method includes maintaining an intake volume positioned upstream of a throttle and downstream of air cleaner within a selected operating pressure range through adjustment of a balance purge valve positioned upstream of the intake volume and a gas discharge source. | 10-02-2014 |
20140316681 | AIRFLOW CONTROL SYSTEMS AND METHODS USING MODEL PREDICTIVE CONTROL - A torque requesting module generates a first torque request for a spark ignition engine based on driver input. A torque conversion module converts the first torque request into a second torque request. A setpoint control module, based on the second torque request, generates a mass of air per cylinder (APC) setpoint, an exhaust gas recirculation (EGR) setpoint, an intake valve phasing setpoint, and an exhaust valve phasing setpoint. A model predictive control (MPC) module: identifies sets of possible target values based on the APC, EGR, intake valve phasing, and exhaust valve phasing setpoints; generates predicted parameters based on a model of the spark ignition engine and the sets of possible target values, respectively; selects one of the sets of possible target values based on the predicted parameters; and sets target values based on the possible target values of the selected one of the sets. | 10-23-2014 |
20140316682 | AIRFLOW CONTROL SYSTEMS AND METHODS USING MODEL PREDICTIVE CONTROL - A torque requesting module generates a first torque request for a spark ignition engine based on driver input. A torque conversion module converts the first torque request into a second torque request. A setpoint control module generates setpoints for the spark ignition engine based on the second torque request. A vacuum requesting module requests an amount of vacuum within an intake manifold of the engine. The setpoint module selectively adjusts at least one of the setpoints based on the amount of vacuum requested. A model predictive control (MPC) module: identifies sets of possible target values based on the setpoints; generates predicted parameters based on a model of the spark ignition engine and the sets of possible target values, respectively; selects one of the sets of possible target values based on the predicted parameters; and sets target values based on the possible target values of the selected one of the sets. | 10-23-2014 |
20140316683 | AIRFLOW CONTROL SYSTEMS AND METHODS USING MODEL PREDICTIVE CONTROL - A torque requesting module generates a first torque request for a spark ignition engine based on driver input. A torque conversion module converts the first torque request into a second torque request. A setpoint control module generates air and exhaust setpoints for the spark ignition engine based on the second torque request. A model predictive control (MPC) module identifies sets of possible target values based on the air and exhaust setpoints, generates predicted parameters based on a model of the spark ignition engine and the sets of possible target values, respectively, selects one of the sets of possible target values based on the predicted parameters, and sets target values based on the possible target values of the selected one of the sets. A throttle actuator module controls opening of a throttle valve based on a first one of the target values. | 10-23-2014 |
20140324323 | AUTOMOTIVE COMBINATION SENSOR - Systems are provided for EGR mass and air mass estimation during steady state and transient operations. By utilizing a combination sensor comprising of a manifold absolute pressure sensing element and a differential pressure sensing element sharing a common pressure chamber with connections to the intake manifold, errors in EGR mass estimation may be reduced. | 10-30-2014 |
20140336903 | MASS AIRFLOW SENSOR CALIBRATION EVALUATION - An engine has a controller for causing an EGR system to disallow EGR while concurrently executing a strategy for evaluating calibration of a mass airflow sensor in an intake system by operating the engine at each of different combinations of engine speed and engine load, and for each combination of engine speed and engine load, recording a corresponding output signal of the sensor and also calculating mass flow passing through an intake manifold as a function of intake manifold pressure, intake manifold temperature, speed of the engine, and volumetric efficiency of the engine. The output signal of the MAF sensor and the calculated mass flow passing through the intake manifold at least one combination of engine speed and engine load are used to evaluate the calibration the MAF sensor. | 11-13-2014 |
20140343827 | VARIABLE DISPLACEMENT ENGINE CONTROL SYSTEM AND METHOD - Methods and systems are provided for adjusting an ignition energy provided to an engine cylinder upon reactivation from a VDE mode of operation. Ignition energy is increased by increasing an ignition coil dwell time and/or an ignition coil strike frequency. The increased ignition energy improves combustion stability during the transition out of the VDE mode of operation. | 11-20-2014 |
20140343828 | Method and device for operating an exhaust gas recirculation of a self-ignition internal combustion engine, in particular of a motor vehicle - A method and a device for operating an exhaust gas recirculation of a self-ignition internal combustion engine, in particular of a motor vehicle, the internal combustion engine including an air system for controlling the air supply into at least one combustion chamber of the internal combustion engine, and it being provided in particular that a dynamic operating state of the internal combustion engine is detected and, in the event of a detected dynamic operating state, a corrective intervention in the air system of the internal combustion engine is carried out. | 11-20-2014 |
20140372009 | INTAKE TEMPERATURE CONTROL SYSTEMS AND METHODS FOR INTAKE MANIFOLD PROTECTION - An engine control system of a vehicle includes a first temperature module, a second temperature module, and an exhaust gas recirculation (EGR) control module. The first temperature module determines a temperature of gas within an intake manifold of an engine. The second temperature module determines a temperature of an EGR conduit that is coupled to the intake manifold. The EGR control module reduces opening of an EGR valve when the temperature of the gas and the temperature of the conduit is greater than a predetermined temperature. | 12-18-2014 |
20140372010 | METHOD FOR DIAGNOSING EGR SYSTEM - A method for diagnosing an exhaust gas recirculation (EGR) system includes: a setting step of setting a temperature map with respect to a temperature at an outlet side of an EGR line for an output value reflecting a driving state of a vehicle in a state in which an EGR valve is closed; a measuring step of measuring the temperature at the outlet side of the EGR line at the time of an operation of the EGR system; and a diagnosing step of diagnosing that a fault has been generated in an EGR system when the measured temperature at the outlet side of the EGR line is equal to or less than a reference value set in the temperature map. | 12-18-2014 |
20140372011 | METHOD FOR DIAGNOSING EGR SYSTEM AND METHOD FOR CONTROLLING FUEL INJECTION USING THE SAME - A method for diagnosing an EGR system, includes: a first measuring step of measuring a pressure in an intake manifold; a second measuring step of measuring a pressure and a temperature between an EGR cooler and an EGR valve; a determining step of calculating and determining an opening area of the EGR valve for satisfying a target flow of EGR using a function of the target flow of EGR, the pressure in the intake manifold, and the temperature and the pressure between the EGR cooler and the EGR valve; and a diagnosing step of diagnosing whether the EGR cooler is abnormal by comparing the temperature measured between the EGR cooler and the EGR valve and a reference temperature with each other at the time of exhausting EGR gas at the determined opening area of the EGR valve. | 12-18-2014 |
20150051816 | VARIABLE DISPLACEMENT ENGINE CONTROL SYSTEM AND METHOD - Methods and systems are provided for improving the performance of a variable displacement engine. Split injection and spark retard may be used in active cylinders during a VDE mode to heat an exhaust catalyst and extend the duration of VDE mode operation. Split injection and spark retard may also be used in reactivated cylinders at a time of cylinder reactivation to improve restart combsution stability. | 02-19-2015 |
20150057910 | METHODS AND SYSTEMS FOR INDICATING WATER AT AN OXYGEN SENSOR BASED ON SENSOR HEATER POWER CONSUMPTION - Methods and systems are provided for indicating water at an oxygen sensor based on power consumption of a heating element of the oxygen sensor. In one example, water may be indicated at an oxygen sensor positioned in an intake of an engine responsive to power consumption of the heating element of the oxygen sensor increasing above a baseline level. Engine operating parameters may then be adjusted based on the water indication and the power consumption. | 02-26-2015 |
20150057911 | METHOD AND SYSTEM FOR IMPROVED DILUTION TOLERANCE - Methods and systems are provided for improving combustion stability, in particular during transient operations such as tip-out to lower load conditions, when EGR is being purged. Until a desired LP-EGR rate is achieved, fuel may be delivered as a split injection with at least an intake stroke injection and a compression stroke injection. Subsequently, single fuel injection may be resumed. | 02-26-2015 |
20150292429 | METHODS AND SYSTEMS FOR ADJUSTING EGR BASED ON AN IMPACT OF PCV HYDROCARBONS ON AN INTAKE OXYGEN SENSOR - Methods and systems are provided for estimating an impact of PCV hydrocarbons on an output of an intake oxygen sensor. In one example, a method may include disabling EGR flow when the impact of PCV hydrocarbons on the output of the intake oxygen sensor is above a threshold. The impact of the PCV hydrocarbons on the output of the intake oxygen sensor may be based on a difference between the output of the intake oxygen sensor and a DPOV sensor when EGR is flow and a difference between the output of the intake oxygen sensor and expected blow-by when EGR is not flowing. | 10-15-2015 |
20150337746 | REDUCING CONDENSATION IN AN INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE WITH AN EXHAUST GAS RECIRCULATION SYSTEM - The present disclosure relates to a method and system for reducing condensation in an internal combustion engine of a motor vehicle including an exhaust gas recirculation system for recirculating exhaust gas of the internal combustion engine. A value of a humidity parameter is first determined, and then exhaust gas recirculation is controlled or regulated as a function of this humidity parameter value. | 11-26-2015 |
20160040615 | SYSTEM AND METHOD OF DPF PASSIVE ENHANCEMENT THROUGH POWERTRAIN TORQUE-SPEED MANAGEMENT - This disclosure provides a method and system for determining recommendations for vehicle operation that reduce soot production in view of a diesel particulate filter (DPF) of an exhaust aftertreatment system. Recommendations generated can reduce excessive particulate matter (PM) production during transient engine events and provide for operating conditions favorable for passive regeneration. In this way, less frequent active regeneration of the DPF is needed and/or more opportunities are provided for passive regeneration. The system and method can utilize location and terrain information to anticipate and project a window of operation in view of reducing soot production and soot loading of the DPF, or provide the operator with instruction when such opportunities are present or will soon be encountered. | 02-11-2016 |
20160069285 | INTERNAL COMBUSTION ENGINE EGR FLOW RATE ESTIMATION APPARATUS AND INTERNAL COMBUSTION ENGINE CONTROL APPARATUS - Based on an internal EGR ratio and desired external and internal EGR ratios, an EGR valve opening degree is feedback-controlled based on a desired EGR ratio, calculated in such a way as to perform correction so that a total EGR ratio becomes constant, and an EGR effective opening area obtained through learning of the relationship between an EGR valve opening degree and an effective opening area; thus, a correct characteristic of EGR valve opening degree vs. effective opening area can be maintained and hence it is made possible to absorb variations, changes with time, and even environmental conditions, while making an EGR valve and an intake/exhaust VVT collaborate with each other; therefore, an EGR flow rate can accurately be estimated. | 03-10-2016 |
20160076473 | DISCRETE TIME RATE-BASED MODEL PREDICTIVE CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE AIR PATH CONTROL - A discrete time rate-based model predictive controller for air path control for a diesel engine regulates VGT position and EGR valve position to specified set points by coordinated control of intake manifold air pressure and EGR rate. The controller may be configured to measure or estimate at least one of the intake manifold pressure and EGR rate. A non-linear discrete time rate-based predictive model may be used, as developed by the controller. | 03-17-2016 |
20160115885 | METHOD AND SYSTEM FOR BINARY FLOW TURBINE CONTROL - Methods and systems are provided for adjusting the opening of a scroll valve of a binary flow turbine. Scroll valve adjustments are used at different engine operating conditions to improve engine performance and boost response. Scroll valve adjustments are coordinated with wastegate and EGR valve adjustments for improved engine control. | 04-28-2016 |
20160131061 | Throttle Control Systems And Methods Based On Pressure Ratio - A torque requesting module generates a torque request for an engine based on driver input. A model predictive control (MPC) module: identifies sets of possible target values based on the torque request, each of the sets of possible target values including target pressure ratios across a throttle valve; determines predicted operating parameters for the sets of possible target values, respectively; determines cost values for the sets of possible target values, respectively; selects one of the sets of possible target values based on the cost values; and sets target values based on the possible target values of the selected one of the sets, respectively, the target values including a target pressure ratio across the throttle valve. A target area module determines a target opening area of the throttle valve based on the target pressure ratio. A throttle actuator module controls the throttle valve based on the target opening. | 05-12-2016 |
20160138495 | METHOD AND SYSTEM FOR CONTROLLING A TURBOCHARGED ENGINE DURING AN UPSHIFT - A method for propulsion of a vehicle ( | 05-19-2016 |
20160138527 | INTAKE OXYGEN SENSOR RATIONALITY DIAGNOSTICS - Rationality diagnostic techniques for an intake oxygen sensor are utilized to detect sensor malfunction. A non-intrusive diagnostic technique includes passively detecting when an exhaust gas recirculation (EGR) valve position crosses low/high position thresholds, whereas an intrusive diagnostic technique includes actively commanding the EGR valve to predetermined low/high positions. During a period after the EGR valve position reaches/crosses at least one of the low/high positions/position thresholds, respectively, maximum and minimum intake oxygen concentration is monitored. When the EGR valve position has crossed both the low/high positions/position thresholds and a difference between the maximum and minimum oxygen concentrations is less than a respective difference threshold, a malfunction of the intake oxygen sensor is detected. A malfunction indicator lamp (MIL) could be set to indicate the malfunction. The intrusive technique is additionally or alternatively implemented, such as part of a verification or backup to the non-intrusive technique. | 05-19-2016 |
20160146130 | METHOD OF FEEDFORWARD TURBOCHARGER CONTROL FOR BOOSTED ENGINES WITH MULTI-ROUTE EGR - An engine includes an exhaust gas recirculation system with a high pressure exhaust gas recirculation loop and a low pressure exhaust gas recirculation loop, and an air charging system. A method of controlling the air charging system includes monitoring an actual exhaust gas recirculation rate, operating conditions of a compressor and turbine in the air charging system. A compressor flow is determined based on a target exhaust gas recirculation rate, a target intake manifold pressure and the actual exhaust gas recirculation rate. A power requested by the compressor is determined based on the compressor flow, the target intake manifold pressure, and the monitored operating conditions of the compressor. A power to be generated by the turbine is determined based upon the power requested by the compressor. A turbine flow is determined based upon the power to be generated by the turbine and the monitored operating conditions of the turbine. A system control command is determined based on the turbine flow and the monitored operating conditions of the turbine. The air charging system is controlled based on the system control command. | 05-26-2016 |
20160146134 | METHOD OF MODEL-BASED MULTIVARIABLE CONTROL OF EGR, FRESH MASS AIR FLOW, AND BOOST PRESSURE FOR DOWNSIZE BOOSTED ENGINES - An engine includes an exhaust gas recirculation system, an air throttle system, and a charging system. A method to control the engine includes monitoring desired operating target commands for each of the systems; monitoring operating parameters of the air charging system; and determining a feedback control signal for each of the systems based upon the respective desired operating target commands and the operating parameters of the air charging system. Exhaust gas recirculation flow in the exhaust gas recirculation system, air flow in the air throttle system and a turbine power parameter in the air charging system are determined based upon the respective feedback control signals for each of the systems. A system control command is determined for each of the systems based upon the respective exhaust gas recirculation flow, air flow and turbine power parameters. The air charging system is controlled based upon the system control commands for each of the systems. | 05-26-2016 |
20160160772 | METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE EMPLOYING A DEDICATED-CYLINDER EGR SYSTEM - A multi-cylinder spark-ignition internal combustion engine (engine) that includes a dedicated-cylinder exhaust gas recirculation (EGR) system is described. The dedicated-cylinder EGR system includes a controllable exhaust gas diverter valve that selectively diverts all exhaust gas produced by one of the cylinders to an air intake system of the engine. A method for controlling the engine includes monitoring a parameter associated with operation of the dedicated-cylinder EGR system. Upon detecting a change in the parameter that indicates a change in operation of the dedicated-cylinder EGR system, a controller controls operation of the internal combustion engine to reduce an effective cylinder compression ratio. | 06-09-2016 |
20160160786 | APPARATUS AND METHOD FOR ENGINE OF VEHICLE - A method of improving fuel efficiency and an apparatus for operating a vehicle that performs the method are provided. The apparatus includes a storing unit that stores control plans for a fuel injection system and an intake/exhaust system that optimize responsiveness of an engine for a plurality of driving modes. A catalyst temperature obtaining unit obtains a catalyst temperature and an operation period determining unit determines an operation period of an engine based on rpm of the engine and an amount of fuel consumption. A driving mode determining unit determines any one of the driving modes as a current driving mode based on the catalyst temperature, the operation period, and present time. Additionally, a controller is configured to access a control plan that corresponds to the current driving mode and operate the fuel injection system and the intake/exhaust system based on the control plan corresponding to the current driving mode. | 06-09-2016 |
20160169092 | METHODS AND SYSTEM FOR DETERMINING COMPRESSOR RECIRCULATION VALVE SLUDGE | 06-16-2016 |
20160177847 | METHODS AND SYSTEMS FOR DIAGNOSING AN INTAKE OXYGEN SENSOR BASED ON PRESSURE | 06-23-2016 |
20160177852 | ON-LINE ADAPTIVE PID CONTROL OF AIR CHARGING SYSTEM | 06-23-2016 |
20160186658 | SYSTEMS AND METHODS OF ESTIMATING A COMBUSTION EQUIVALENCE RATIO IN A GAS TURBINE WITH EXHAUST GAS RECIRCULATION - A system includes an exhaust gas recirculation (EGR) gas turbine system which includes a combustor configured to receive and combust a fuel with an oxidant and a turbine driven by combustion products from the combustor and a turbine driven by combustion products from the combustor. The EGR gas turbine system further includes an exhaust gas recirculation section fluidly coupled to the turbine and to the combustor, wherein the exhaust gas recirculation section is configured to intake an exhaust gas from the turbine and to recirculate at least a portion of the exhaust gas to the combustor as a diluent. The EGR gas turbine system additionally includes a control system, comprising one or more processors configured to receive a first signal representative of an exhaust flow composition of the exhaust gas and to receive a second signal representative of a diluent flow composition of the diluent. | 06-30-2016 |
20160201589 | CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE | 07-14-2016 |