Class / Patent application number | Description | Number of patent applications / Date published |
701074000 | Having particular means to determine a reference value for wheel slippage or pseudo-vehicle speed | 51 |
20080221768 | SYSTEM AND METHOD FOR ADAPTIVE BRAKE APPLICATION AND INITIAL SKID DETECTION - The adaptive brake application and initial skid detection system allows rapid brake application and prevents deep initial skids. Brake pressure is compared with a predetermined threshold brake pressure. Wheel velocity error signals are also generated to indicated the difference between the wheel velocity and a reference velocity signal. A pressure bias modulator integrator responsive to brake pressure signals adjusts the wheel velocity error signals to provide an anti-skid control signal. The pressure bias modulator integrator can also be initialized to the value of the measured brake pressure when the wheel velocity error signals indicate the beginning of a skid. Brake pressure difference signals are generated to indicate the difference between brake pressure and a commanded brake pressure, and an adjusted brake pressure error signal is generated in response to the brake pressure difference signals. | 09-11-2008 |
20090018743 | Mobile Unit and Control Method of Mobile Unit - In an inverted pendulum type mobile unit that performs inverted pendulum stabilization control and traveling control based on a velocity target value as an input variable, a change in tilt angle of a vehicle body occurring during traveling is smoothed. The target value generating portion in the inverted pendulum type mobile unit generates the velocity target value V | 01-15-2009 |
20090088940 | Travel Control Device and Travel Control Method - In brake liquid pressure control, a time wasted after the control is started until brake application is actually started is reduced and pulsation noise of brake liquid pressure is reduced. When automatic following control of a vehicle is being operated, a motor for pressure increase is set to idle if a predetermined condition at which the vehicle starts deceleration is reached before an automatic brake command is issued from an automatic following control device. Further, when the throttle of an engine is at predetermined condition at which rapid acceleration does not occur, brake liquid pressure is increased to a level at which the vehicle does not decelerate. | 04-02-2009 |
20090192689 | OUTPUT SHAFT SPEED SENSOR BASED ANTI-LOCK BRAKING SYSTEM - An anti-lock braking system (ABS) calculates driven wheel speed without any sensors on the driven axle assembly. A powertrain control module (PCM) receives signals from an output shaft speed (OSS) sensor and adds the speed and axle ratio information to a control network bus. Access to the CAN bus is provided to enable calculation of the rear wheel speed based on such information so that ABS may implement anti-lock braking functionality by taking into account such information. | 07-30-2009 |
20090248269 | MOTION CONTROL DEVICE FOR VEHICLE - A motion control device for a vehicle includes a controlling means for maintaining a traveling stability of the vehicle by controlling a braking force of a wheel of the vehicle, a friction coefficient obtaining means for obtaining a friction coefficient of a road surface on which the vehicle travels, a lateral force reference value calculating means for calculating a lateral force reference value acting on the wheel on the basis of the friction coefficient of the road surface and a lateral force actual value obtaining means for obtaining a lateral force actual value acting on the wheel, wherein the controlling means controls the braking force on the basis of a comparison result between the lateral force reference value and the lateral force actual value. | 10-01-2009 |
20100017089 | Method for preventing drive wheels from spinning - A method for preventing spinning of at least one drive wheel in a motor vehicle that has a dual clutch transmission, including the process steps of: a vehicle placed in a first gear unit of the dual clutch transmission; placement of a higher gear for the vehicle in a second gear unit of the dual clutch transmission; detecting whether the at least one drive wheel is spinning; disengaging the clutch that is assigned to the first gear unit, depending on whether spinning was detected; and engaging the clutch that is assigned to the second gear unit, depending on whether spinning was detected. | 01-21-2010 |
20100114447 | AUTOMOBILE AND CONTROL DEVICE FOR AUTOMOBILE - The invention is to provide an automobile and a control device for the automobile, which permits to obtain a driving performance or a braking performance close to their limits achievable on the concerned road face even such as on a compacted snow road and a frozen road. | 05-06-2010 |
20100168977 | Vehicle motion control apparatus - A front/rear driving/braking force control unit | 07-01-2010 |
20100198475 | METHOD FOR OPERATING A VEHICLE BRAKE SYSTEM AND VEHICLE BRAKE SYSTEM - A method for operating a vehicle braking system for motor vehicles including a hybrid or electric drive and hydraulically actutable wheel brakes on the front axle, wherein the wheels associated with the rear axle are driven at least partially by an electric motor that can be operated as a generator to recover braking energy and, in generator mode, exerts a braking force on the vehicle wheel associated with the respective axle, thereby generating a drag torque including the braking torque and the regeneration torque of the electric drive, the drag torque being separately regulatable on the front and rear axles. To prevent overbraking of the rear axle and a loss of driving stability of the vehicle, a regeneration torque acting on the rear axle is controlled or regulated such that the drag torque acting on the rear axle does not exceed a maximum drag torque value associated with that axle. | 08-05-2010 |
20110040466 | DECENTRALIZED ELECTRIC BRAKE SYSTEM - An electric aircraft brake control system has a plurality of wheel and brake assemblies, each having a wheel, wheel speed transducer, brake assembly and a brake actuator. Electromechanical control units are uniquely associated with and connected to certain of the wheel and brake assemblies, and each of the electromechanical control units is provided with an antiskid system as an integral portion thereof. Brake data concentrators are provided for receiving data corresponding to various aircraft operational parameters, including brake pedal position, and provide operational signals to the electromechanical control unit as a function thereof. A controller for emergency and park braking is connected to the electromechanical actuator controllers through one of the brake data concentrators to effect emergency braking action on the brake assemblies, such emergency braking action having incident antiskid control. The system allows for a redundency in brake control circuitry and operation, which increases the dispatchability of an associated aircraft by ensuring continued effective operation of the aircraft even in view of a failure of one of the redundant circuits or systems. A reduction in weight is also achieve by reducing lengthy cable runs. | 02-17-2011 |
20110060511 | CONTROL METHOD OF ELECTRONIC BRAKE - Disclosed herein is a method of controlling an Anti-lock Brake system (ABS) of an electronic brake, which is driven using an electric motor. In ABS braking in which braking and braking-release motions are repeated according to a wheel slip value, the electric motor is controlled in a re-braking section to link a position of a brake pad with a change in wheel speed, to enhance ABS control responsiveness and to reduce stopping distance with maximized brake force. | 03-10-2011 |
20110066346 | APPARATUS AND METHOD OF ADJUSTING CLEARANCE OF ELECTRONIC BRAKE - Disclosed herein are an apparatus and method of adjusting a clearance of an electronic brake, in which a clearance between a pad and a rotor is appropriately adjusted according to a vehicle traveling situation. If the entry condition of a clearance adjustment section during stoppage is satisfied, clearance adjustment is performed to move pads of an electronic brake away from a rotor by a rearward-movement adjustment distance during stoppage, enabling rapid braking-release so as not to prevent a driver from starting a vehicle due to brake failure. In addition, if the entry condition of a clearance adjustment section during traveling is satisfied, clearance adjustment is performed to move the pads forward or rearward according to a wheel slip value. The clearance adjustment during traveling is limited to the case of straight traveling, to prevent misjudgment due to wheel slip caused during cornering. | 03-17-2011 |
20110130937 | BRAKING TORQUE ADJUSTMENTS BASED ON WHEEL SLIP - A method for adjusting braking in a vehicle having wheels and a regenerative braking system is provided. The method comprises the steps of providing regenerative braking torque for the vehicle via the regenerative braking system at a first level if a wheel slip of the vehicle is not present, and providing regenerative braking torque for the vehicle via the regenerative braking system at one of a plurality of modulated levels if the wheel slip is present. Each of the plurality of modulated levels is dependent on a magnitude, a location, or both, of the wheel slip. Each of the modulated levels is less than the first level. | 06-02-2011 |
20110320100 | METHOD OF MAINTAINING OPTIMAL BRAKING AND SKID PROTECTION FOR A TWO-WHEELED VEHICLE HAVING A SPEED SENSOR FAILURE ON A SINGLE WHEEL - The method of maintaining optimal braking and skid protection for a two-wheeled vehicle wheel with a wheel speed sensor failure involves providing pulsed braking pressure to the affected wheel with the wheel speed sensor failure. If an incipient or initial skid on another wheel with a functioning wheel speed sensor has occurred, the pulsed braking pressure to the affected wheel is limited to the brake pressure command that caused the last incipient or initial skid on the other wheel, scaled by a factor for safety. Otherwise the pulsed braking pressure to the affected wheel is limited to be no greater than the greatest commanded brake pressure to the other wheel. The pulsed braking pressure is also limited to be less than the brake pressure commanded to the affected wheel. | 12-29-2011 |
20110320101 | METHOD OF MAINTAINING OPTIMAL BRAKING AND SKID PROTECTION FOR A TWO-WHEELED VEHICLE HAVING A SPEED SENSOR FAILURE ON A SINGLE WHEEL - The method of maintaining optimal braking and skid protection for a two-wheeled vehicle wheel with a wheel speed sensor failure involves providing pulsed braking pressure to the affected wheel with the wheel speed sensor failure. If an incipient or initial skid on another wheel with a functioning wheel speed sensor has occurred, the pulsed braking pressure to the affected wheel is limited to the brake pressure command that caused the last incipient or initial skid on the other wheel, scaled by a factor for safety. Otherwise the pulsed braking pressure to the affected wheel is limited to be no greater than the greatest commanded brake pressure to the other wheel. The pulsed braking pressure is also limited to be less than the brake pressure commanded to the affected wheel. | 12-29-2011 |
20120203439 | METHOD FOR CONTROLLING A VEHICLE HAVING ONLY A BRAKED REAR AXLE AND BRAKE SLIP CONTROL - A method is described for controlling a vehicle having a pressure-medium-activated brake device which includes wheel brakes and brake circuits on each side, on only at least one rear axle, and having a drive engine which drives the rear wheels of the at least one rear axle, in which the rear wheels can be optionally or automatically coupled to or decoupled from front wheels of a front axle in order to transmit driving and/or braking power. Also described is a vehicle having a brake device which includes wheel brakes and brake circuits on each side on only at least one rear axle, and having a drive engine which drives the rear wheels of the at least one rear axle, in which the rear wheels can be optionally or automatically coupled to or decoupled from the front wheels of a front axle in order to transmit driving and/or braking power. | 08-09-2012 |
20120277966 | VEHICLE HAVING A BRAKE DEVICE WHICH TRANSFERS A BRAKING TORQUE FROM REAR WHEELS TO THE FRONT WHEELS, WITH BRAKE SLIP CONTROL - A control unit for brake-slip-controlled operation of the brake device in a state in which braking torque is transferred from the rear to the front wheels by the coupling arrangement, at least one rotational speed sensor in a drive train of the vehicle for inputting into the control unit rotational speed signals representing the rotational behavior of the coupled front wheels and rear wheels, at least one acceleration sensor for inputting into the control unit acceleration signals representing the vehicle longitudinal acceleration, and/or a vehicle GPS device for inputting into the control unit position signals representing positions of the vehicle, the control unit determining at least one first variable, which is characteristic of a vehicle reference speed and/or a vehicle reference acceleration, based on the acceleration and/or position signals, and so as to determine a second variable, which is characteristic of the rotational behavior of the coupled front and rear wheels, based on the rotational speed signals, and to calculate the brake slip of the coupled front and rear wheels based on the first and second variables. | 11-01-2012 |
20120323459 | VEHICLE CONTROL DEVICE - Control to inhibit a slip of a wheel by controlling braking/driving force generated at the wheel is performed when a slip ratio of the wheel of a vehicle according to a running state of the vehicle becomes larger than a slip ratio threshold value set in advance or when a ratio between wheel acceleration of the wheel and a vehicle speed of the vehicle according to the running state of the vehicle becomes larger than a ratio threshold value. Therefore, it is possible to improve control accuracy when controlling a slip state of the wheel by decreasing an effect of operation by a driver and a road surface and the like, for example. | 12-20-2012 |
20120323460 | VEHICLE STATE CALCULATING DEVICE AND VEHICLE CONTROL DEVICE - An actual slip ratio of a wheel is estimated from a slip ratio speed of a wheel calculated according to a running state of a vehicle based on relationship between a slip ratio of the wheel of the vehicle and the slip ratio speed of the wheel set in advance. Typically, the actual slip ratio is estimated supposing that the slip ratio of the wheel calculated according to the running state of the vehicle, when a change rate of the slip ratio speed becomes larger than a predetermined value set in advance, is a reference slip ratio determined in advance according to the relationship between the slip ratio and the slip ratio speed set in advance. Therefore, it is possible to improve control accuracy when controlling a state of the vehicle by decreasing an effect of operation by a driver and a road surface, for example. | 12-20-2012 |
20130103280 | Method for Determining a Vehicle Reference Speed and Brake System - A method for determining a vehicle reference speed (VREF) in a brake system of amotorized single-track vehicle ( | 04-25-2013 |
20130173134 | BRAKING CONTROL DEVICE FOR VEHICLE AND BRAKING CONTROL METHOD FOR VEHICLE - A vehicle braking control device includes first and second deceleration calculation units, an assist control unit, and a termination determination unit. The first deceleration calculation unit calculates a first estimated vehicle body deceleration using a wheel speed sensor detection signal. The second deceleration calculation unit calculates a second estimated vehicle body deceleration using a vehicle body acceleration sensor detection signal. The assist control unit initiates assist control, which assists increasing a braking force when the first estimated vehicle body deceleration exceeds a first deceleration determination value and the second estimated vehicle body deceleration exceeds a second deceleration determination value. The termination determination unit determines whether or not a termination condition of the assist control is satisfied based on at least one of the first and the second estimated vehicle body decelerations. The assist control unit terminates the assist control when it is determined that the termination condition is satisfied. | 07-04-2013 |
20130218436 | ELECTRIC MOTOR - An electric motor for rotating a wheel of a vehicle, the electric motor having a rotor, a stator and coil windings, a first sensor arranged to output a first signal indicative of a position of the rotor relative to the stator, a second sensor arranged to output a second signal indicative of a position of the rotor relative to the stator; wherein the first sensor and second sensor are offset with respect to each other such that upon rotation of the rotor relative to the stator the first output signal and second output signal allow the direction of the rotor to be determined; wherein the first output signal and second output signal are used for controlling current in the coil windings and at least one of the first output signal and second output signal are provided to a vehicle braking system to allow the vehicle braking system to determine a wheel lock condition or an onset of a wheel lock condition, wherein the onset of a wheel lock condition is determined based on predetermined criteria. | 08-22-2013 |
20130325279 | DISPLAY APPARATUS FOR VEHICLES - A vehicular display apparatus on a vehicle includes a display device which displays a magnitude of an acceleration which is being detected by an acceleration sensor on a display unit, and also displays a magnitude of an acceleration detected by the acceleration sensor when an ESC controller generated a braking force on road wheels on the display unit. | 12-05-2013 |
20130325280 | VEHICLE BRAKING CONTROL DEVICE AND VEHICLE BRAKING CONTROL METHOD - A brake ECU acquires the vehicle load (WW) (step S | 12-05-2013 |
20140081546 | MOTION CONTROL DEVICE FOR VEHICLE - A motion control device for a vehicle includes a braking means for applying a brake torque to each of a plurality of wheels of the vehicle, an avoidance control means for calculating a first target quantity, used for an avoidance control for applying the brake torque to each wheel via the braking means in order to avoid an emergency state of the vehicle, a stabilization control means for determining a target wheel, to which the brake torque is applied, out of the wheels and calculating a second target quantity used for a stabilization control for applying the brake torque to the target wheel in order to ensure a vehicle stability, and a brake control means for controlling the brake torque applied to a non-target wheel based on the first target quantity and controlling the brake torque applied to the target wheel based on the first and second target quantities. | 03-20-2014 |
20140200786 | Method of and Apparatus for Braking a Tractor-Trailer Combination - A method of controlling the braking of a tractor-trailer combination ( | 07-17-2014 |
20140244128 | VEHICLE BRAKING CONTROL DEVICE - A vehicle braking control device includes a braking force simultaneous control mode executing unit capable of executing a braking force simultaneous control mode for simultaneously controlling right/left wheels cylinders by a brake hydraulic pressure circuit according to slip ratios of right/left wheels, a braking force independent control mode executing unit capable of executing a braking force independent control mode for independently controlling the right/left wheels cylinders, and a switching controller capable of switching the braking force simultaneous control mode and the braking force independent control mode, wherein the switching controller switches to the braking force independent control mode at the time a slip ratio difference of the right/left rear wheels becomes equal to or less than a preset and predetermined value during switching from the braking force simultaneous control mode to the braking force independent control mode. | 08-28-2014 |
20140350818 | CONTROLLER FOR A MOTOR VEHICLE, MOTOR VEHICLE, AND METHOD FOR CONFIGURING THE CONTROLLER - A central control entity controls all actuators of a chassis control system of a motor vehicle. To select a combination of actuator operations best suited for influencing the handling of the motor vehicle, the effect of a change of settings of motor vehicle actuators on the handling is predicted by an observer device configured to receive at least one sensor signal from a sensor via a signal input and, depending on the sensor signal, to determine at least one estimated value for a slip resistance of the motor vehicle. The controller is configured by operating the controller in a test motor vehicle that has a sensor for a measured variable, for which the observer device determines an estimated value. The estimated values from the controller are then compared with corresponding measured values. | 11-27-2014 |
20140379236 | VEHICLE BRAKE HYDRAULIC CONTROLLER - One embodiment provides a vehicle brake hydraulic controller including a wheel speed acquiring section; a wheel deceleration calculator; a vehicle velocity calculator; and a locking tendency determination section. The vehicle velocity calculator calculates a vehicle deceleration based on a temporary vehicle deceleration corresponding to an acceleration sensor value and calculates a vehicle velocity based on the calculated vehicle deceleration. The vehicle velocity calculator calculates the temporary vehicle deceleration by offsetting a first correction amount to a deceleration side in relation to the acceleration sensor value. When a brake pedal operation amount by a driver is equal to or smaller than a first threshold and that an absolute value of the wheel deceleration is equal to or larger than an absolute value of a second threshold are met, the first correction amount is set to be smaller than when the conditions are not met. | 12-25-2014 |
20150120164 | WHEEL SPEED SENSOR INTERFACE, OPERATION METHOD THEREOF, AND ELECTRONIC CONTROL SYSTEM INCLUDING THE SAME - Provided is a wheel speed sensor interface. The wheel speed sensor interface includes: a speed pulse detection circuit configured to receive a plurality of sensor signals including wheel speed information of a vehicle, detect a plurality of speed pulses on the basis of the plurality of the received sensor signals, and transmit the plurality of the detected speed pulses to an external device; and a comparison speed detection circuit configured to generate a plurality of counting values by counting each of the detected speed pulses, generate comparison speed information by multiplexing the plurality of the generated counting values through a time division method, and transmit the generated comparison speed information to the external device. | 04-30-2015 |
20150291138 | INCREASED VEHICLE BRAKING GRADIENT - Exemplary illustrations of a method are disclosed, including determining a baseline gradient and an increased gradient for a brake application force for a vehicle. Exemplary methods may further include actuating the baseline gradient in response to a first braking event for the vehicle, and actuating the increased gradient in response to a second braking event for the vehicle. Exemplary illustrations of a vehicle may include a braking system configured to apply braking force to at least one wheel of the vehicle, and a controller. The controller may be configured to determine a baseline gradient and an increased gradient for a brake application force for a vehicle. The controller may be configured to actuate the baseline gradient in response to a first braking event for the vehicle, and actuate the increased gradient in response to a second braking event for the vehicle. | 10-15-2015 |
20150298666 | Engine Assisted Brake Control on Wheel Slip - Wheel slippage of a machine may be controlled using brake control and engine torque control. In some examples, the present disclosure describes a method of controlling a wheel. Example methods may include sensing a rotational speed of the wheel, and sensing an acceleration of the machine. The method may also include estimating a target speed of the wheel based at least in part on the rotational speed of the wheel and the acceleration of the machine. The method may continue with calculating a speed error, the speed error being a difference between the rotational speed and the target speed. The method may also include controlling a brake of the wheel based on the speed error and/or a torque of an engine of the machine based on the speed error. | 10-22-2015 |
20150329093 | SYSTEMS AND METHODS FOR WHEEL SLIP CONTROL IN A VEHICLE - Methods for controlling wheel slip of a motor vehicle include braking the wheel by supplying a first measured quantity of brake fluid from a modulation cylinder to a brake device of the wheel, determining the wheel slip of the wheel, and moving a second measured quantity of brake fluid between the modulation cylinder and the brake device. When the wheel slip is too small or too large, a change in a volume of the brake fluid in the modulation cylinder is measured and a change in a measure of a braking effect is determined. The second measured quantity of brake fluid is determined on the basis of the measured change in the volume of the brake fluid in the modulation cylinder and the change in the measure of the braking effect. Braking systems configured to carry out the methods, as well as vehicles including the braking systems, are further contemplated. | 11-19-2015 |
20160039397 | METHOD FOR DETERMINING THE CONDITIONS OF AN UNDERLYING SURFACE DURING UNBRAKED OR BRAKED TRAVEL OF A VEHICLE - A method for determining the conditions of an underlying surface during unbraked or braked travel of a vehicle by a wheel-specific characteristic variable which is derived from a change over time in the wheel speed detected at at least one vehicle wheel. According to invention there is provision that a) a jolt signal is formed by double differentiation of the wheel speed, b) in order to form the characteristic variable the difference between the absolute value of the jolt signal and a tolerance value is summed or integrated over time, and c) the condition of the underlying surface is determined by comparing the characteristic variable with an oscillation signal threshold value. | 02-11-2016 |
20160053839 | METHOD FOR ACTUATING AN ELECTRICALLY ACTUATED FRICTION BRAKE - To be able to selectively influence the braking effect of a friction brake ( | 02-25-2016 |
20160129894 | TIRE SENSOR-BASED VEHICLE CONTROL SYSTEM OPTIMIZATION AND METHOD - A system and method of adjusting a vehicle anti-lock brake or collision mitigation system includes multiple tire-based sensors mounted to a vehicle tire to generate tire-derivative information. An adaptive tire model processes the tire-derivative information to continuously generate in real-time revisions to multiple tire-specific performance parameters affecting the performance of a vehicle control system. The vehicle control system receives and applies in real-time the tire-sensor based revisions to the tire-specific performance parameters optimize control system performance. | 05-12-2016 |
20160185327 | VEHICLE CONTROL DEVICE - To enable control of vehicle speed according to the intentions of a driver by a simpler operation. When a vehicle body speed rapidly decreases and becomes lower than a brake target threshold speed, the brake target threshold speed is decreased in conformity with the vehicle body speed. This prevents the increase of the vehicle body speed toward the brake target threshold speed such that a vehicle accelerates regardless of a brake being in operation because the brake target threshold speed is set at a higher value than the vehicle body speed. Accordingly, the vehicle body speed decelerates by a simpler operation while being able to prevent the vehicle from accelerating against the intentions of a driver and being able to control the speed of the vehicle according to the intentions of the driver. | 06-30-2016 |
20160375882 | USING AN ACCELEROMETER TO DETECT TIRE SKID - A technique involves operating a vehicle. The technique includes receiving, by processing circuitry, an accelerometer signal from an accelerometer. The technique further includes processing, by the processing circuitry, the accelerometer signal to determine whether the vehicle is currently experiencing tire skid. The technique further includes controlling, by the processing circuitry, the vehicle based on whether the vehicle is currently experiencing tire skid. | 12-29-2016 |
701075000 | Correction or modification | 13 |
20080300764 | Vehicle motion control apparatus - A vehicle motion control apparatus includes a first means applying a first braking force to an outer wheel, relative to a turning direction, for suppressing oversteer when the vehicle is judged to be skidding in vehicle turning movement, a second means obtaining a state of a driver's steering operation in the vehicle turning movement, a third means applying a second braking force, set to be smaller than the first braking force, to a wheel located at a horizontally opposite side of the outer wheel to which the first braking force is applied, when the state of the driver's steering operation is judged to be in a steering turning back state, in which a steering wheel is turned from a turning direction to a reverse direction of the turning direction, based on the state of the driver's steering operation obtained by the second means. | 12-04-2008 |
20090063000 | VEHICLE CONTROL SYSTEM - When a vehicle is started on an uphill road, slip may easily occur between vehicle wheels and a sloping road surface. When vehicle condition is changed from its stopping condition to its traveling condition on the uphill road, vehicle acceleration is controlled in a feed-back operation in such a manner that a target acceleration is made smaller as road gradient becomes larger or coefficient of friction becomes smaller. | 03-05-2009 |
20090112434 | ELECTRONIC HYDRAULIC PRESSURE CONTROL SYSTEM AND CONTROL METHOD THEREOF - Disclosed are an electronic hydraulic pressure control system and a control method thereof, capable of detecting an error in differential pressure between a master cylinder and a wheel cylinder. The control method includes the steps of acquiring pressure of a master cylinder and pedal pressure according to a stroke distance of a pedal, detecting a time point at which the pressure of the master cylinder and the pedal pressure reach predetermined reference pressure, and determining that an error occurs if the time point exceeds a predetermined reference time point. | 04-30-2009 |
20090210127 | Closed-Loop Control of Brake Pressure Using a Pressure-Limiting Valve - A device for controlling the brake pressure in a hydraulic brake system with the aid of a pressure-limiting valve that limits the brake pressure to a predefined threshold value, and to that end is driven by an electronic device in accordance with a valve characteristic curve. The setting accuracy can be improved considerably if an estimating unit for estimating the brake pressure, a sensor system for measuring the brake pressure, a unit for determining a pressure difference between the measured brake pressure and the estimated brake pressure, as well as a controller unit which drives the pressure-limiting valve as a function of the pressure difference are provided. | 08-20-2009 |
20090276132 | Method and system for determining a brake pressure predefined by a vehicle control system - A method and system for determining a brake pressure which is predefined by a vehicle control system involve effecting a vehicle braking process initiated by an electronic braking system and/or the vehicle driver, determining a vehicle deceleration a, and a brake pressure p | 11-05-2009 |
20090276133 | AIRCRAFT BRAKE CONTROL SYSTEM AND METHOD - A method includes receiving an input brake command that indicates a desired amount of braking for a vehicle. A brake control signal is then derived from the input brake command to facilitate applying a braking force to a wheel of the vehicle, and the braking force facilitates achieving the desired amount of braking for the vehicle. The method further comprises determining that data from a sensor associated with the wheel is unavailable, and then modifying the brake control signal in response to determining that the data is unavailable. The modification may be based on sensor data or controller output associated with a second wheel where data is available. Such modification facilitates the desired amount of braking for the vehicle. | 11-05-2009 |
20100106388 | HEAVY VEHICLE TRAILER ABS MODULE - A heavy vehicle trailer antilock braking system module includes a module control port receiving a pressure signal, a module exhaust port fluidly communicating with atmosphere, a first switching valve, a second switching valve, a relay valve, and control logic. The first switching valve includes an input port and an output port. The first switching valve input port fluidly communicates with the module control port. The second switching valve includes an input port and an output port. The second switching valve output port fluidly communicates with the module exhaust port. A relay valve includes a supply port, a delivery port, an exhaust port, and a control port. The relay valve control port fluidly communicates with the first switching valve output port and the second switching valve input port. The delivery port fluidly communicates with the supply port and the exhaust port as a function of a pressure signal at the relay valve control port. Control logic causes the second switching valve input port to fluidly communicate with the second switching valve output port for a predetermined time after electrical power is no longer supplied to a vehicle service brake stop lamp. | 04-29-2010 |
20100131166 | Method for Adjusting a Braking Pressure for a Disk Brake - A method for adjusting a braking pressure for at least one disk brake includes setting a target frictional torque of the disk brake, determining a temperature of at least a part of the disk brake, determining a nominal target braking pressure from a known relation between the nominal braking pressure and the nominal frictional torque, and determining a correction factor from a known characteristic line describing a deviation of a friction coefficient between a brake disk and at least one brake pad as a function of the temperature. The braking pressure is adjusted by applying the correction factor to the nominal target braking pressure. | 05-27-2010 |
20110029214 | DEVICE AND METHOD FOR MONITORING VEHICLE TIRES - A method for monitoring vehicle tires by: 1) determining that a complete deflation or blow-out occurs if speed variation of one wheel of a vehicle is larger than or equal to a threshold value, and wheel speeds of other wheels of the vehicle are approximately constant, 2) associating a blow-out or complete deflation speed increment ratio ΔV | 02-03-2011 |
20110071744 | VEHICULAR ABS CONTROL SYSTEM WITH INTERNAL PARAMETER AUTOMATIC CALIBRATION FUNCTION - To provide an ABS control system and software with an automatic parameter calibration function. An ABS control system according to the present invention includes an electronic control unit (ECU), a wheel speed sensor, and a brake pressure sensor. The wheel speed sensor and the brake pressure sensor measure wheel speed and brake pressure during ABS braking, and the ABS control system automatically calibrates an internal parameter used in ABS control in response to the wheel speed and brake pressure measurement results. | 03-24-2011 |
20130325281 | BRAKING CONTROL DEVICE FOR VEHICLE AND BRAKING CONTROL METHOD FOR VEHICLE - A brake ECU determines whether or not interference-based vibration components are included in a vehicle body deceleration (DV) (steps S | 12-05-2013 |
20160016564 | TRAVEL RESISTANCE ARITHMETIC DEVICE - A driving assistance device | 01-21-2016 |
20160059859 | QUICK MINI-SPARE DETECTION - A vehicle stability control system operates by detecting a wheel speed potentially indicative of the presence of a mini-spare wheel at a wheel location of a vehicle with a wheel speed sensor and determines that a mini-spare tire is present responsive to the wheel speed remaining within a predefined band for predefined time. A threshold value that triggers action by a vehicle stability control system is adjusted to provide the mini-spare wheel with a value different than a wheel speed threshold value indicative of wheel slipping for a standard wheel. | 03-03-2016 |