Class / Patent application number | Description | Number of patent applications / Date published |
623200310 | Including lateral and medial condyles | 48 |
20090210066 | ANTERIOR CRUCIATE LIGAMENT SUBSTITUTING KNEE REPLACEMENT PROSTHESIS - There is disclosed a total knee replacement prosthesis, which can substitute the function of an anterior and/or a posterior cruciate ligament. A femoral component containing two intercondylar surfaces and an intercondylar region, a tibial component having a tibial platform and a bearing component, and a protrusion from the bearing component also are disclosed. | 08-20-2009 |
20090306786 | SYSTEMS AND METHODS FOR PROVIDING DEEPER KNEE FLEXION CAPABILITIES FOR KNEE PROSTHESIS PATIENTS - Systems and methods for providing deeper knee flexion capabilities, more physiologic load bearing and improved patellar tracking for knee prosthesis patients. Such systems and methods include (i) adding more articular surface to the antero-proximal posterior condyles of a femoral component, including methods to achieve that result, (ii) modifications to the internal geometry of the femoral component and the associated femoral bone cuts with methods of implantation, (iii) asymmetrical tibial components that have an unique articular surface that allows for deeper knee flexion than has previously been available, (iv) asymmetrical femoral condyles that result in more physiologic loading of the joint and improved patellar tracking and (v) modifying an articulation surface of the tibial component to include an articulation feature whereby the articulation pathway of the femoral component is directed or guided by articulation feature. | 12-10-2009 |
20090319049 | Total Knee Replacement Prosthesis With High Order NURBS Surfaces - A knee replacement prosthesis comprising a femoral component and a tibial component that enable anterior-posterior translation of the femur relative to the tibia and enable the tibia to rotate about its longitudinal axis during flexion of the knee. The femoral component connects to the distal end of a resected femur and includes medial and lateral condyles having distal, articulating surfaces, and a patellar flange having a patellar articulating surface. The tibial component connects to the proximal end of a resected tibia and includes a proximal bearing surface with medial and lateral concavities that articulate with the medial and lateral condyles. The condylar articulating surfaces and the said concavities are substantially defined by non-uniform, rational B-spline surfaces (NURBS). | 12-24-2009 |
20090326667 | ORTHOPAEDIC FEMORAL COMPONENT HAVING CONTROLLED CONDYLAR CURVATURE - An orthopaedic knee prosthesis includes a femoral component having a condyle surface. The condyle surface is defined by one or more radii of curvatures, which are controlled to reduce or delay the onset of anterior translation of the femoral component relative to a tibial bearing. | 12-31-2009 |
20100036499 | KNEE PROSTHESIS - A knee prosthesis comprising a femoral component and a tibial component. The femoral component comprises a medial femoral condyle having a medial femoral condylar surface and a lateral femoral condyle having a lateral femoral condylar surface. The tibial component comprises a medial tibial condyle having a medial tibial condylar surface and a lateral tibial condyle having a lateral tibial condylar surface. The medial femoral condylar surface comprises a part-spherical convex surface and the medial tibial condylar surface comprises a part-spherical concave surface, the part-spherical surfaces being arranged to enable the medial femoral condyle to engage in sphere-in-sphere engagement with the medial tibial condyle. The sphere-in-sphere engagement provides anterior-posterior stability of the femoral component relative to the tibial component. The lateral tibial condylar surface comprises a track surface for the lateral femoral condyle to move across as the medial condyle pivots around the sphere-in-sphere engagement. The track surface is posteriorly unrestricted to permit the lateral femoral condylar surface to contact the track surface at a range of contact positions as the medial femoral condyle pivots relative to the medial tibial condyle around the sphere-in-sphere engagement. | 02-11-2010 |
20100036500 | ORTHOPAEDIC KNEE PROSTHESIS HAVING CONTROLLED CONDYLAR CURVATURE - An orthopaedic knee prosthesis includes a femoral component having a condyle surface. The condyle surface is defined by one or more radii of curvatures, which are controlled to reduce or delay the onset of anterior translation of the femoral component relative to a tibial bearing. | 02-11-2010 |
20100161067 | KNEE PROSTHESIS - A knee prosthesis having a femoral component with two condyles and an opening disposed between the two condyles. The prosthesis includes a cam extending between the condyles forming a posterior boundary to the opening. Also included is a tibial component having bearing surfaces to support each of the femoral component condyles, and a post disposed between the bearing surfaces and extending superior from the tibial component. The femoral component and tibial component are engageable by contact between the femoral condyles and tibial bearing surfaces, and by contact between the cam and post during at least a portion of flexion between the femoral and tibial components. Moving the femoral and tibial components in flexion from about 45° to about 145° causes a contact region between the cam and post to move inferiorly from a first contact region to a second contact region while also causing rotation between the tibial and femoral components. | 06-24-2010 |
20100305710 | Knee Prosthesis - A knee joint prosthesis assembly can include a femoral component that has a medial and a lateral condyle portion connected by a patellar track portion. The femoral component can form an opening between the medial and lateral condyles. A tibial component can have a medial portion that includes a first engagement structure and a lateral portion that includes a second engagement structure. A medial bearing can have a third engagement structure formed thereon that selectively engages the first engagement structure. A lateral bearing separately formed and independent from the medial bearing can have a fourth engagement structure formed thereon that selectively engages the second engagement structure. | 12-02-2010 |
20110082558 | ARTIFICIAL KNEE JOINT - An artificial knee joint comprise a femoral component and tibial component. The posterior side of the femoral component comprises medial and lateral condyles, wherein the width and offset of the posteromedial condyle is greater than the width and offset of the posterolateral condyle. At the posterior the tibial bearing component comprises medial and lateral articulating surface geometries, wherein the posterior slope of the lateral articulating geometry is greater than the posterior slope of the medial articulating geometry. The medial articulating surface geometry of the tibial bearing component supports the medial condyle of the femoral component and the lateral articulating surface geometry of the tibial bearing component supports the lateral condyle of the femoral component. The greater slope of the lateral articulating geometry allows the femoral component condyle to roll down to the posterior during knee flexion. This invention of an artificial knee joint for a prosthetic knee implant system facilitates deep knee flexes beyond 130 degrees. | 04-07-2011 |
20110125281 | HIGH PERFORMANCE KNEE PROSTHESES - Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes. Other surfaces can also be specially shaped to achieve similar results, preferably using iterative automated techniques that allow testing and iterative design taking into account a manageable set of major forces acting on the knee during normal functioning, together with information that is known about natural knee joint kinetics and kinematics. | 05-26-2011 |
20110125282 | High Performance Knee Prostheses - Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes. Other surfaces can also be specially shaped to achieve similar results, preferably using iterative automated techniques that allow testing and iterative design taking into account a manageable set of major forces acting on the knee during normal functioning, together with information that is known about natural knee joint kinetics and kinematics. | 05-26-2011 |
20110130841 | High Performance Knee Prostheses - Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes. Other surfaces can also be specially shaped to achieve similar results, preferably using iterative automated techniques that allow testing and iterative design taking into account a manageable set of major forces acting on the knee during normal functioning, together with information that is known about natural knee joint kinetics and kinematics. | 06-02-2011 |
20110130842 | HIGH PERFORMANCE KNEE PROSTHESES - Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes. Other surfaces can also be specially shaped to achieve similar results, preferably using iterative automated techniques that allow testing and iterative design taking into account a manageable set of major forces acting on the knee during normal functioning, together with information that is known about natural knee joint kinetics and kinematics. | 06-02-2011 |
20110137427 | High Performance Knee Prostheses - Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes. Other surfaces can also be specially shaped to achieve similar results, preferably using iterative automated techniques that allow testing and iterative design taking into account a manageable set of major forces acting on the knee during normal functioning, together with information that is known about natural knee joint kinetics and kinematics. | 06-09-2011 |
20120101586 | HIGH FLEXION ARTICULAR INSERT - A knee prosthesis is provided that allows for increased flexion. The knee prosthesis includes (a) a femoral component adapted to fit on a distal end of the femur which includes a lateral condylar structure and a medial condylar structure and (b) an intermediate structure configured to cooperate with a femoral component of a knee prosthesis. The intermediate structure includes at least one surface for contacting the femoral component and a transition of a sagittal curvature of the at least one contact surface from a concave surface into a convex surface at the contact interface of the femoral component and the intermediate structure when the knee is flexed at approximately 120° to 140°. The knee prosthesis minimizes impingement on the femoral posterior cortex in deep flexion, increases the dislocation safety factor and allows for easier reengagement of the articular surface should the femoral component externally rotate off of the tibial plateau. | 04-26-2012 |
20120101587 | KNEE JOINT DEVICE AND METHOD - A medical device for implantation in a knee joint of a human patient is provided. The medical device comprises: an inner surface and an outer surface. The inner surface comprises: a first point, a second point, a third point, a fourth point, a fifth point, and a sixth point, all points located on different places along a length axis of said inner surface. A first straight line, reaching from the first point to the second point is parallel to a second straight line reaching from the third point to the fourth point, which in turn is parallel to a third straight line reaching from the fifth point to the sixth point. The first and third straight lines are of equal length and the second straight line is longer than the first, furthermore the third straight line is positioned between the first and third straight lines. | 04-26-2012 |
20120185055 | KNEE IMPLANT SYSTEM - Knee prosthesis includes a femoral component adapted to fit on a distal end of the femur and a tibial insert component. The femoral component includes a measured anterior/posterior dimension defined by the posterior condyle surface and the interior surface of the anterior flange and a distal peg provided on a distal bone facing surface of each of the lateral and medial condylar structures, wherein the distal pegs are positioned at a midpoint of the measured anterior/posterior dimension. The implant system provides two distinct sizing segments and the tibial insert has a medial tibial aspect ratio of 0.74 and a lateral tibial aspect ratio of 0.65 to 0.68 for all sizes. | 07-19-2012 |
20120191204 | ARTHROPLASTY SYSTEMS AND METHODS - Systems for joint arthroplasty include prostheses which are secured to bone with sliding anchors. Examples include unicondylar and bicondylar knee prostheses for hemi-arthroplasty and total arthroplasty. Instruments guide the anchors into proper engagement with the prosthetic components. Methods of using the prostheses and instruments are disclosed. | 07-26-2012 |
20120271428 | ORTHOPAEDIC KNEE PROSTHESIS HAVING CONTROLLED CONDYLAR CURVATURE - An orthopaedic knee prosthesis includes a femoral component having a condyle surface. The condyle surface is defined by one or more radii of curvatures, which are controlled to reduce or delay the onset of anterior translation of the femoral component relative to a tibial bearing. | 10-25-2012 |
20120277881 | TIBIAL COMPONENT - Methods, systems, and apparatuses are disclosed for a tibial component having shock absorbing features. | 11-01-2012 |
20130006375 | KNEE PROSTHESIS - A knee joint prosthesis assembly according to the present disclosure can include a femoral component, a unitary tibial component, a medial bearing, and a lateral bearing. The femoral component can have a medial and a lateral condyle portion connected by a patellar track portion. The femoral component can form an opening between the medial and lateral condyles. The unitary tibial component can have a medial portion that includes a first posterior engagement lip and a first outer securing lip. The tibial component can further include a lateral portion that includes a second posterior engagement lip and a second outer securing lip. The medial bearing can have a first posterior groove formed thereon that selectively engages the first posterior engagement lip and a first outer groove that selectively engages the first outer securing lip. | 01-03-2013 |
20130035765 | TOTAL KNEE ARTHROPLASTY WITH SYMMETRIC FEMORAL IMPLANT HAVING DOUBLE Q-ANGLE TROCHLEAR GROOVE - A total knee arthroplasty includes a symmetric femoral prosthesis for articulating with a tibial prosthesis in the left or right leg of a patient. The symmetric femoral prosthesis includes an anterior flange having a symmetric and upwardly diverging, generally V-shaped, double Q-angle trochlear groove formed in an anterior side thereof for accommodating natural Q-angle tracking of a natural or prosthetic patella when the symmetric femoral component is surgically implanted in either the left or right leg of a patient. In a preferred form, the double Q-angle trochlear groove is formed with an angle of + or − about 10°, for a total groove angle of about 20°. | 02-07-2013 |
20130066434 | FEMORAL COMPONENT OF A KNEE PROSTHESIS HAVING AN ANGLED CEMENT POCKET - An implantable orthopaedic knee prosthesis includes a component that is configured to be coupled to a surgically-prepared bone. A fixation side of the component includes a fixation surface that has an angled cement pocket formed therein. | 03-14-2013 |
20130131818 | TIBIAL BEARING COMPONENT FOR A KNEE PROSTHESIS WITH IMPROVED ARTICULAR CHARACTERISTICS - An orthopaedic knee prosthesis includes a tibial bearing component with articular features which operate to protect adjacent soft tissues of the natural knee, promote and/or accommodate desired articulation with an abutting femoral component, and facilitate expedient and effective implantation by a surgeon. | 05-23-2013 |
20130144396 | METHOD OF DESIGNING ORTHOPEDIC IMPLANTS USING IN VIVO DATA - A reconfigurable orthopedic implant trial comprising: (a) a first orthopedic component; (b) a second orthopedic component that includes a second sensor on a second articulating surface thereof, the second orthopedic component configured to removably mount to the first orthopedic component; (c) a third orthopedic component that includes a third sensor on a third articulating; surface thereof, the third orthopedic component configured to removably mount to the first orthopedic component, where the second sensor and the third sensor are configured to generate kinematic data. | 06-06-2013 |
20130178945 | SYSTEMS AND METHODS FOR PROVIDING A FEMORAL FULL FLEXION ARTICULATION - Systems and methods for providing deeper knee flexion capabilities, more physiologic load bearing and improved patellar tracking for knee prosthesis patients. Such systems and methods include (i) adding more articular surface to the antero-proximal posterior condyles of a femoral component, including methods to achieve that result, (ii) modifications to the internal geometry of the femoral component and the associated femoral bone cuts with methods of implantation, (iii) asymmetrical tibial components that have an unique articular surface that allows for deeper knee flexion than has previously been available, (iv) asymmetrical femoral condyles that result in more physiologic loading of the joint and improved patellar tracking and (v) modifying an articulation surface of the tibial component to include an articulation feature whereby the articulation pathway of the femoral component is directed or guided by articulation feature. | 07-11-2013 |
20130204381 | SYSTEMS AND METHODS FOR PROVIDING AN ASYMMETRICAL FEMORAL COMPONENT - Systems and methods for providing deeper knee flexion capabilities. In some instances, such systems and methods include an asymmetrical femoral component that includes a femoral prosthesis that is configured to attach to a distal portion of a femur. In some such instances, the prosthesis includes a medial condyle and a lateral condyle, wherein a medial-lateral width of an articulation surface of the lateral condyle is approximately 75% or less of a medial-lateral width of an articulation surface of the medial condyle. Other implementations are also discussed. | 08-08-2013 |
20130204382 | Total Knee Replacement Implant Based on Normal Anatomy and Kinematics - A total knee replacement prosthesis is presented whose bearing surfaces are derived from an anatomically representative femur and a modified baseline tibial surface. The contacting femoral and tibial bearing surfaces comprise the inter-condylar as well as condylar regions. | 08-08-2013 |
20130245777 | KNEE SYSTEM - A knee system includes a knee prosthesis having a tibial arrangement including a tibial tray configured for attachment to a surgically-prepared surface of a proximal end of the tibia. The tibial arrangement also includes a tibial insert system including a lateral tibial insert and a medial tibial insert. One of the inserts is configured to move in a generally anterior-posterior direction relative to the tibial tray, and the other insert is configured for fixed attachment to the tibial tray. The knee prosthesis also includes a femoral component configured for attachment to a surgically-prepared surface of a distal end of a femur. The femoral component and tibial inserts each have articular surfaces configured to contact and articulate relative to each other during extension and flexion of the knee. | 09-19-2013 |
20130317621 | Knee Prosthesis Assembly With Ligament Link - A prosthetic knee joint assembly includes a femoral component and a bearing that supports articulation of the femoral component. The assembly further includes a tibial tray. Furthermore, the assembly includes a ligament link operably coupled to the tibial tray or the femoral component via a coupling component. The ligament link extending through the other of the tibial tray or the femoral component to couple to the respective one of the femur or tibia. The ligament link extends between first and second ends and includes an outer wall defining an interior longitudinal passage portion. First and second apertures extend through the wall. The first end extends through the first and second apertures and the longitudinal passage portion to define a first adjustable loop, and the second end extends through the first and second apertures and the longitudinal passage portion to define a second adjustable loop. | 11-28-2013 |
20130331945 | ANATOMICAL MOTION HINGED PROSTHESIS - A hinged knee prosthesis comprises a tibial component and a femoral component. The tibial component is configured to attach to a tibia. The tibial component has a bearing surface. The femoral component is configured to hingedly attach to the tibial component and rotate relative to the tibial component. The femoral component comprises a medial condyle and a lateral condyle. The medial and lateral condyles have an eccentric sagittal curvature surface configured to rotate and translate on the bearing surface of the tibial component. A method of rotating a hinged knee through a range of flexion is provided. The method fixedly attaches a femoral component to a tibial component. Axial rotation of the femoral component is induced relative to the tibial component when the hinged knee is flexed. | 12-12-2013 |
20130345820 | KNEE IMPLANT SYSTEM - Knee prosthesis includes a femoral component adapted to fit on a distal end of the femur and a tibial insert component. The femoral component includes a measured anterior/posterior dimension defined by the posterior condyle surface and the interior surface of the anterior flange and a distal peg provided on a distal bone facing surface of each of the lateral and medial condylar structures, wherein the distal pegs are positioned at a midpoint of the measured anterior/posterior dimension. The implant system provides two distinct sizing segments and the tibial insert has a medial tibial aspect ratio of 0.74 and a lateral tibial aspect ratio of 0.65 to 0.68 for all sizes. | 12-26-2013 |
20140135938 | LOW FRICTION RESURFACING IMPLANT - A low friction resurfacing implant system including a first implant component having a first bearing surface and a first engagement surface. The first engagement surface is located opposite the first bearing surface. The first implant component has a leading edge and a trailing edge. The first implant component includes teeth that extend from the first engagement surface. The teeth are arranged in a plurality of rows. The teeth in adjacent rows are offset from each other. | 05-15-2014 |
20140142714 | KNEE PROSTHESIS ASSEMBLY HAVING PROPORTIONAL CORONAL GEOMETRY - An orthopaedic knee prosthesis assembly includes a plurality of femoral components. Each component includes a medial condyle and a lateral condyle. When each component is viewed in a coronal plane extending through a distal-most point of the medial condyle and a distal-most point of the lateral condyle, the medial condyle has a medial curved distal-most surface that includes the distal-most point, and a width is defined between the distal-most points of the medial condyle and the lateral condyle. The coronal radius of the distal-most surface of a first component is proportionally greater than the coronal radius of a second component. The coronal radius of the second component is proportionally greater than the coronal radius of a third component. The first component width is proportionally greater than the second component width, and the second component is proportionally greater than the width of the third component. | 05-22-2014 |
20140257503 | MULTI-COMPONENT KNEE IMPLANT ASSEMBLY WITH COMBINED ARTICULATING AND BELT SUPPORT AND TRAVELING SURFACES - A joint assembly incorporated into reconditioned end surfaces established between an upper bone and an opposing lower bone. The assembly includes a pair of first components anchored into reconditioned bone end surfaces of a first joint defining bone and exhibiting a flexible and band-shaped loop displace-ably supported along exposed undersides established between outer portions which are assembled around the bands. A second component anchored into a second reconditioned end surface of a second joint defining bone exhibits a planar support surface upon which said bands are in contact with and displace during articulating motion of the bones. Entrapment pockets are formed within the first components for collecting wear particles and debris resulting from displacement of the belt. | 09-11-2014 |
20140277536 | ORTHOPAEDIC KNEE PROSTHESIS HAVING STEM COMPONENTS WITH A VARYING NUMBER OF SLOTS - A knee prosthesis for use during performance of a knee replacement procedure includes a plurality of stem components in a range of various sizes, a plurality of femoral components in a range of various sizes, and a plurality of tibial trays in a range of various sizes. Each of the stem components is compatible with each of the femoral components and the tibal trays. Some of the stem components have a single slot formed therein, with other stem components having a pair of slots formed therein. | 09-18-2014 |
20140277537 | PROSTHETIC KNEE IMPLANT - Knee implant systems and methods for implantation or use in a knee joint, are disclosed. A knee implant system can include at femoral component having a femur-contacting surface and an opposing articulation surface, and proximal, distal, anterior and posterior portion. The femoral component can include a medial condyle and a lateral condyle, where each of the condyles define respective distal-most points and have substantially equal widths. The width of each of the condyles can define respective condyle midpoints, where the distal-most points can be located laterally from the midpoints. The femoral component can include a trochlear groove that can define a distal-most sulcus point located halfway between the distal-most point of the medial condyle and the distal-most point of the lateral condyle. | 09-18-2014 |
20140288659 | TWO-COMPONENT KNEE SPACER WITH RECESSES - The invention relates to a knee spacer for temporary replacement of an artificial knee joint, whereby the knee spacer comprises a tibial component and a femoral component as separate components, which can be moved with respect to each other when inserted in a patient, and whereby the tibial component and the femoral component each comprise at least one running surface by means of which the tibial component and the femoral component can be placed against each other such as to be mobile in their patient-inserted state, and the tibial component comprises an anchoring surface that is arranged opposite to the running surface side and is provided for connecting the tibial component to the tibia by means of a bone cement, and the femoral component to comprise an anchoring surface that is arranged opposite to the running surface side and is provided for connecting the femoral component to the femur, whereby the tibial component and the femoral component each comprise at least two recesses that extend from the anchoring surface towards the running surface side into the running surface side, whereby the openings of the recesses are arranged appropriately in the running surface side of the components such that they do not slide over the running surface of the respective other component during articulation of the knee spacer. | 09-25-2014 |
20140296991 | HIP & KNEE JOINT ASSEMBLIES INCORPORATING DEBRIS COLLECTION ARCHITECTURE BETWEEN THE BALL AND SEAT INTERFACE - A joint implant assembly including a spherical shaped component adapted to securing to an end of a first joint defining bone and a recess shaped component adapted to securing to an end of a second joint defining bone. Each of the components establishes an opposing wear surface, at which microscopic sized particles build up over time resulting from prolonged use of the joint. At least one of the spherical and recess shaped components exhibits a plurality of interior entrapment chambers, each of which including a narrow-most entranceway location communicating with the wear surface. The entrapment chambers further exhibit outwardly widening capture profiles extending within the associated component for securing volumes of the microscopic particles away from a zone defined between the wear surfaces. | 10-02-2014 |
20140303740 | ORTHOPAEDIC KNEE PROSTHESIS HAVING CONTROLLED CONDYLAR CURVATURE - An orthopaedic knee prosthesis includes a femoral component having a condyle surface. The condyle surface is defined by one or more radii of curvatures, which are controlled to reduce or delay the onset of anterior translation of the femoral component relative to a tibial bearing. | 10-09-2014 |
20140316527 | TIBIAL COMPONENT - Methods, systems, and apparatuses are disclosed for a tibial component having shock absorbing features. | 10-23-2014 |
20140324177 | PROSTHETIC JOINT - A joint prosthesis comprising, e.g., a femoral component and a tibial component. The medial and lateral condylar articular surfaces may have substantially uniform and equal radii from full extension to about 90° of flexion. From 90°, the lateral condylar articular surface has a smaller radius than the medial condylar articular surface such that the medial condyle gradually becomes increasingly more proud than the lateral condyle to facilitate internal rotation of the tibia at deep flexion. Also, the tibial articular component may include a post intermediate the medial and lateral compartments that engages a cam on the femoral articular component between the medial and the lateral condylar articular surfaces. The cam and post become congruent at flexion angles of approximately 70° flexion and mate symmetrically during the first 20°-30° of further flexion, and then mate asymmetrically at greater degrees of flexion to force internal rotation of the tibia. | 10-30-2014 |
20140350686 | ORTHOPAEDIC FEMORAL COMPONENT HAVING CONTROLLED CONDYLAR CURVATURE - An orthopaedic knee prosthesis includes a femoral component having a condyle surface. The condyle surface is defined by one or more radii of curvatures, which are controlled to reduce or delay the onset of anterior translation of the femoral component relative to a tibial bearing. | 11-27-2014 |
20150305873 | ANTERIOR CRUCIATE LIGAMENT SUBSTITUTING KNEE IMPLANTS - The present disclosure provides knee prostheses that replicate at least a portion of the function of an individual patient's anterior cruciate ligament (ACL). An exemplary knee prosthesis includes a femoral component configured to be implanted on the distal end of the patient's femur and a tibial component configured to be implanted on the proximal end of the patient's tibia. In extension, the femoral component and the tibial component may cooperate to limit anterior movement of the tibial component relative to the femoral component. In flexion, the femoral component may be free to rotate relative to the tibial component. | 10-29-2015 |
20160151162 | KNEE PROSTHESIS | 06-02-2016 |
20160175100 | TIBIAL COMPONENT | 06-23-2016 |
20160184106 | ORTHOPAEDIC FEMORAL COMPONENT HAVING CONTROLLED CONDYLAR CURVATURE - An orthopaedic knee prosthesis includes a femoral component having a condyle surface. The condyle surface is defined by one or more radii of curvatures, which are controlled to reduce or delay the onset of anterior translation of the femoral component relative to a tibial bearing. | 06-30-2016 |
20170231772 | TOTAL KNEE REPLACEMENT IMPLANT BASED ON NORMAL ANATOMY AND KINEMATICS | 08-17-2017 |