Class / Patent application number | Description | Number of patent applications / Date published |
607129000 | Patch or epicardial (on heart surface) type | 25 |
20080269863 | LEAD OR LEAD EXTENSION HAVING A CONDUCTIVE BODY AND CONDUCTIVE BODY CONTACT - An implantable medical device that includes a body that includes a proximal end portion configured to be at least partially received by an apparatus, and a distal end portion; a stimulating electrical element at the distal end portion of the body; a stimulating contact at the proximal end portion of the body, wherein the stimulating contact is positioned such that, when received by the apparatus, at least a portion of the apparatus is capable of electrically coupling to the stimulating contact; a stimulating conductor that electrically couples the stimulating electrical element to the stimulating contact; a conductive body, wherein the conductive body is not utilized for application of stimulation; a conductive body contact, wherein the conductive body is electrically connected to the conductive body contact. Systems that include devices are also disclosed. | 10-30-2008 |
20090192582 | Sensor Guided Epicardial Lead - Implantable cardiac monitoring and stimulation methods and devices with epicardial leads having sensor feedback. A fixed or extendable/retractable sensor may be displaceable within the lead's lumen and configured to sense the presence of an anatomical feature or physiological parameter of cardiac tissue in proximity with the lead body's distal end. The sensor may include an ultrasonic sensing element, a perfusion sensor, a photoplethysmographic sensor, or a blood oximetry sensor. Methods of determining suitability for implanting a lead involve the steps of accessing an epicardial surface of the heart, and moving the cardiac lead to an implant site at the epicardial surface. A transmitted signal is directed at the implant site. A reflected signal is received, indicative of the presence of a blood vessel at the implant site. A determination may be made to determine whether the implant site is suitable or unsuitable based on the reflected signal. | 07-30-2009 |
20100152826 | MYOCARDIAL ELECTRODE - Two through holes are formed in a first electrode part | 06-17-2010 |
20100161021 | MYOCARDIAL PAD - This invention relates to a myocardial pad used in cardioversion, pacing, or the like and to a myocardial lead and a therapeutic apparatus for cardiac disease comprising the same. The myocardial pad of this invention is bondable to epicardia and has conductivity, biocompatibility, and biodegradability. Using this pad, the myocardial lead can be immobilized onto the atrium without suture. Thus, bleeding from the atrium, which is a lethal complication, caused by lead removal can be prevented. | 06-24-2010 |
20120089215 | METHODS AND APPARATUS FOR LEAD PLACEMENT ON A SURFACE OF THE HEART - The methods and apparatus for lead placement on a surface of the heart are employed using an elongated body having proximal and distal end portions. The body defines a lead receiving passageway extending between a proximal inlet and a distal outlet for receiving a lead therethrough for contact with the heart surface. The elongated body is adapted for insertion between a pericardium and an epicardial surface. At least a portion of the body may have a non-circular cross-sectional shape adapted to retain the body orientation between the pericardium and the epicardial surface. | 04-12-2012 |
20130150942 | SUBCUTANEOUS DEFIBRILLATOR IMPLANTATION - A subcutaneous cardiac device includes a subcutaneous electrode and a housing coupled to the subcutaneous electrode by a lead with a lead wire. The subcutaneous electrode is adapted to be implanted in a frontal region of the patient so as to overlap a portion of the patient's heart. The subcutaneous electrode is configured for therapy delivery in combination with one or both of the housing or a second subcutaneous electrode. | 06-13-2013 |
20130184802 | CURRENT WAVEFORMS FOR ANTI-TACHYCARDIA PACING FOR A SUBCUTANEOUS IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR - A power supply for an implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-tachycardia pacing energy to the heart, comprising a capacitor subsystem for storing the anti-tachycardia pacing energy for delivery to the patient's heart; and a battery subsystem electrically coupled to the capacitor subsystem for providing the anti-tachycardia pacing energy to the capacitor subsystem. | 07-18-2013 |
20130289687 | Nanowired Three Dimensional Tissue Scaffolds - Electrically conductive nanowires incorporated within scaffolds enhance tissue growth, bridge the electrically resistant pore walls and markedly improve electrical communication between adjacent cardiac cell bundles. Integration of conducting nanowires within 3D scaffolds should improve the therapeutic value of cardiac patches. Examples demonstrate efficacy of gold nanowires in alginate matrices seeded with cardiomyocytes. | 10-31-2013 |
20130325095 | MULTIZONE EPICARDIAL PACING LEAD - A multizone epicardial pacing lead ( | 12-05-2013 |
20140088676 | NEURAL STIMULATION SYSTEM FOR CARDIAC FAT PADS - Various aspects relate to a device which, in various embodiments, comprises a header, a neural stimulator, a detector and a controller. The header includes at least one port to connect to at least one lead, and includes first and second channels for use to provide neural stimulation to first and second neural stimulation sites for a heart. The controller is connected to the detector and the neural stimulator to selectively deliver a therapy based on the feedback signal. A first therapy signal is delivered to the first neural stimulation site to selectively control contractility and a second therapy signal is delivered to the second neural stimulation site to selectively control one of a sinus rate and an AV conduction. Other aspects and embodiments are provided herein. | 03-27-2014 |
20140371832 | IMPLANTABLE ELECTRODE LOCATION SELECTION - Systems, methods, and interfaces are described herein for assisting in noninvasive location selection for an implantable electrode for use in cardiac therapy. Mechanical motion information and surrogate electrical activation times may be used to identify one or more candidate site regions. | 12-18-2014 |
20140371833 | IMPLANTABLE ELECTRODE LOCATION SELECTION - Systems, methods, and interfaces are described herein for assisting in noninvasive location selection for an implantable electrode for use in cardiac therapy. Mechanical motion information and surrogate electrical activation times may be used to identify one or more candidate site regions. | 12-18-2014 |
20150134042 | MULTIZONE EPICARDIAL PACING LEAD - An epicardial stimulation lead includes a lead body having a connector at a proximal end for coupling the lead to a generator of an active implantable medical device. The lead also includes a distributor housing at a distal end of the lead body and means for anchoring the distal end of the lead body to the epicardium. The lead also includes an active part having a plurality of microcable conductors, the proximal ends being coupled to the distributor housing, the distal ends being free. Each microcable has a diameter of at most equal to 2 French. Each microcable includes at least one denuded area in the insulating coating forming a stimulation electrode adapted to contact or penetrate an epicardium wall. Each microcable also includes a transverse elongated member extending at an angle relative to the main direction of the microcable for penetrating into the epicardial wall. | 05-14-2015 |
20150148880 | IMPLANTABLE MEDICAL DEVICE - A device comprising: a lead extending between a proximal end and a distal end, the lead comprising, at its distal end portion, an electrode element configured for fixing in a first body tissue, the lead further comprising: an anchoring element disposed between the proximal and the distal end for anchoring the device to a second tissue; and an elastic element disposed between the anchoring element and the distal end and configured so as to permit the pulling of the distal end away from the anchoring element against the biasing force of the elastic element. | 05-28-2015 |
20150366585 | TENSION-LIMITING TEMPORARY EPICARDIAL PACING WIRE EXTRACTION DEVICE - A tension-limiting temporary epicardial pacing wire extraction system provides an alternative to current temporary epicardial pacing wire extraction methods in order to reduce the risk of severe complications that may result from variable and excessive tension being applied to the wire during manual extraction. The epicardial pacing wire extraction system includes a housing that houses a motor, a handle for holding the device, a cartridge containing a spool driven by the motor through a coupling for extracting an epicardial pacing wire from a patient, a start/stop button to operate the motor to drive the spool and a cartridge-release mechanism that selectively releases the cartridge from the housing. | 12-24-2015 |
20160030733 | MYOCARDIAL HEART PACEMAKER ELECTRODE - The invention relates to a bipolar myocardial pacemaker electrode ( | 02-04-2016 |
607130000 | With anchor other than a suture | 9 |
20080228252 | LEAD AND APPARATUS FOR STIMULATION OF THE CARDIAC PLEXUS - A medical electrical lead adapted to stimulate a patient's cardiac plexus includes a flexible distal portion having a surface adapted to conform to an outer surface of an aortic region generally associated with the cardiac plexus. The distal portion can have one or more elongate members. Alternatively, the distal portion can have a generally planar portion. The distal portion is flexible such that it can be furled or otherwise compacted such that it can be delivered to a target stimulation site using a guide catheter or other delivery tool, such as a cannula. | 09-18-2008 |
20090299447 | DEPLOYABLE EPICARDIAL ELECTRODE AND SENSOR ARRAY - Minimally invasive deployable epicardial array devices are provided. The devices include deployable platform comprising two or more effectors, such as sensors and actuators, where the devices are configured to be deployed at an epicardial location via a minimally invasive, e.g., sub-xiphoid approach. In embodiments of the present invention, at least one area of the electrode patch is an electrical control area that comprises a series of effectors, e.g., sensors and/or electrodes. Other embodiments provide localized physical constraint and dynamic mechanical stimulation of the heart to effectuate physical and biological responses. Still other embodiments provide both of these functions. Also provided are methods of using the devices, as well as systems and kits that include the devices. | 12-03-2009 |
20100114287 | IMPLANTABLE TISSUE MARKER ELECTRODE - The present application discloses a tissue marker that may be permanently applied to cardiac (or other) tissue by means such as, but not limited to, a minimally-invasive procedure to allow for pre- and post-op lesion site testing, with the marker also preferably being radiopaque to facilitate post-op imaging. More specifically, the marker may preferably comprise or include an electrode as part of an integrated assembly. The marker may be mounted on the tissue with a suitable tissue retention member for securing the marker in place. The disclosed examples include one or more tissue retention members, and in an exemplary embodiment comprises a pair of clips for securing the assembly to a target tissue. Each retention member or clip has a conductive lead with an electrically conductive surface in the form of a patch associated therewith. Each clip is preferably associated with a discrete electrically conductive area on the surface of the patch so that the assembly may function as a bi-polar electrode, with a voltage applied between the discrete conductive areas. | 05-06-2010 |
20130053937 | Medical Pacing Wires - A medical pacing wire comprising a clamp that is adapted to be moved between an open position and a closed position and further adapted to allow a user to attach an electrode to a living tissue. In particular embodiments, the medical pacing wire may include a memory shape alloy having a memory state, which is adapted to cause the clamp to move from the closed position toward the open position when the memory shape alloy is caused to move from a non-memory state to the memory state. Also, in some embodiments, the clamp may comprise a superelastic material, and the medical pacing wire may be adapted to allow a user to remotely cause the clamp to substantially release the living tissue that has been closed within the clamp without substantially damaging the living tissue. | 02-28-2013 |
20130116767 | IMPLANTABLE MEDICAL DEVICE - A device comprising: a lead extending between a proximal end and a distal end, the lead comprising, at its distal end portion, an electrode element configured for fixing in a first body tissue, the lead further comprising: an anchoring element disposed between the proximal and the distal end for anchoring the device to a second tissue; and an elastic element disposed between the anchoring element and the distal end and configured so as to permit the pulling of the distal end away from the anchoring element against the biasing force of the elastic element. | 05-09-2013 |
20140194965 | IMPLANTABLE EPICARDIAL ELECTRODE ASSEMBLY - An implantable epicardial electrode assembly comprises electrode poles fixed on the heart having a large surface area and being multipolar and can at the same time be used as sensing and stimulating electrodes, wherein the electrode assembly has the shape of a tennis racket or is circular, elliptical, hexagonal, rectangular, oakleaf-shaped, star-shaped or cloverleaf-shaped and comprises at least two electrode poles which are arranged over a large surface area, and a further electrode arrangement which comprises at least one electrode pole and which is arranged between the large surface area electrode poles and further comprises a fixing element, wherein the defibrillation can take place between the mutually insulated poles of the electrodes, and wherein the stimulation of the heart can take place between one of the electrode poles and a pole of the electrode arrangement. | 07-10-2014 |
20150066125 | TEMPORARILY IMPLANTABLE ELECTRODE ASSEMBLY FOR THE STIMULATION AND INTRACARDIAC CARDIOVERSION/DEFIBRILLATION OF THE HEART FOLLOWING SURGERY - The invention relates to an electrode assembly for temporary cardioversion/defibrillation and/or for temporary stimulation of the heart after open heart surgery consisting of two defibrillation electrodes with at least one indifferent pole each and an elastic section, where each defibrillation electrode in the operating position is positioned on the right and left atrium, which means the defibrillation electrodes together include the right and left atrium. The defibrillation electrodes each distally comprise a fixation member and each proximally end into a protective tube to protect the epicardium. The fixation members are elastic and enable reversible fastening of the defibrillation electrodes in the pericardium on the right and left side. The protective tubes are preferably fed together into a guide tube, where the guide tube is slidable along the longitudinal axis. The stimulation electrodes (different electrode poles) for stimulation of the atria are designed appropriately together with the defibrillation electrode in one piece. | 03-05-2015 |
20160121102 | IMPLANTABLE MEDICAL DEVICES AND METHODS FOR MAKING AND DELIVERING IMPLANTABLE MEDICAL DEVICES - Medical devices and methods for making and using medical devices are disclosed. An example medical device may include an implantable medical device. The implantable medical device may include an implantable pacing member having a housing and a lead input. A lead may be coupled to the lead input. The lead may be designed to extend along a pericardial space, epicardium, or both and engage a heart chamber. A passageway may be defined along a portion of the length of the lead. | 05-05-2016 |
607131000 | Helical | 1 |
20090319015 | EXPANDABLE ASSEMBLY FOR CARDIAC LEAD FIXATION - A cardiac lead includes a lead body that defines a passage, a conductive element that extends through the passage, and a fixation assembly. The fixation assembly includes a threaded member threadably engaged with the conductive element such that rotation of the threaded member causes the threaded member to translate longitudinally relative to the conductive element. A fixation element has a first end coupled to the threaded member and a second end coupled to a fixed location. A resilient membrane extends over the fixation element such that rotation of the threaded member affects the resilient membrane radially with respect to the conductive element. | 12-24-2009 |