Entries |
Document | Title | Date |
20080228251 | Suture Sleeve - A suture sleeve for securing an implantable lead to body tissue has a lumen that receives the lead and that includes a locking arrangement that secures the sleeve at a selected position along the lead. The locking arrangement provides the suture sleeve with three modes of operation. In the first mode, the size of the lumen exceeds the diameter of the lead, such that the suture sleeve is easily movable along the lead. In the second mode, the size of at least a portion of the lumen is reduced, causing the sleeve to apply pressure to the lead so that relative movement between the sleeve and the lead is prevented. In the third mode, the pressure is temporarily released, allowing the sleeve to again be movable along the lead. | 09-18-2008 |
20080243220 | LEAD ANCHOR FOR IMPLANTABLE STIMULATION DEVICES - Disclosed is a lead anchor comprising a body made of an elastomeric material and defining a first opening and a second opening through which a lead can pass, one or more fasteners disposed within the body, with the ends of the fasteners protruding from the body, wherein the ends are configured and arranged to be clamped down to secure a lead passing through the body. | 10-02-2008 |
20080249596 | MYOCARDIAL LEAD WITH FIXATION MECHANISM - The present invention is a myocardial lead attachment system for securing a distal end of a cardiac lead within a myocardium of a patient's heart and anchoring against an epicardium of the patient's heart. The system includes an anchor configured to advance in a first orientation and anchor against an epicardial surface in a second orientation and a tether having a proximal end and a distal end. The anchor is coupled to the distal end of the tether. The system includes a cardiac lead having a lead body, a lumen extending through the lead body, a conductive member, a proximal end, a distal end, and an electrode configured for stimulating the myocardium located at the distal end. The lead body and the lumen are configured such that the lead body can be threaded over the proximal end of the tether and slideably advanced over the tether toward the anchor during implantation. The system includes a fixation mechanism at the distal end of the cardiac lead. The fixation mechanism is adapted to collapse to a first configuration during implantation and deploy to a second configuration after implantation. | 10-09-2008 |
20080306578 | Attachment of Tubing in a Cardiac Lead - In a method for fixing tubing of a cardiac lead to a termination element, such as an electrode or a pin connector and in a cardiac lead formed according to such a method, an exterior of the termination element is provided with a thermoplastic fixation element, and thermoplastic tubing is provided with an end portion that coaxially surrounds a portion of the fixation element. A section of the end portion of the thermoplastic tubing is fused to the thermoplastic fixation element, so that the thermoplastic tubing is fixed to the termination element. | 12-11-2008 |
20090005846 | Methods, Devices and Systems for Cardiac Rhythm Management Using an Electrode Arrangement - Various embodiments of the present invention are directed to systems, methods and devices for cardiac applications. One such device is directed to a catheter, and uses thereof, for capturing myocardium of a heart by delivering pacing signals to a location in the heart. The location is near a His Bundle of the heart. The catheter has a proximal end for interfacing with an electrical pacing signal source and a distal end. The distal end includes a fixation mechanism that attaches the catheter to heart tissue. First and second electrodes are also located at the distal end. Each electrode is individually addressable for providing pacing signals to the heart tissue and also arranged to physically contact the heart tissue when the fixation mechanism is attached to the heart tissue. | 01-01-2009 |
20090082838 | LEFT-VENTRICULAR LEAD FIXATION DEVICE IN CORONARY VEINS - Methods for medical lead fixation in coronary veins according to embodiments of the present invention include advancing a lead body into a branch vessel of a coronary vein, inserting a fixation line and expandable anchor structure through the lead body, past a distal end of the lead body, and into the branch vessel, engaging a wall of the branch vessel with the expandable anchor structure, and coupling the fixation line with the lead body. Apparatus for medical lead fixation in a coronary vein according to embodiments of the present invention include a lead body having one or more electrodes, a fixation line, an expandable anchor structure coupled to the fixation line, the fixation line and anchor structure deployable through the lead body into the branch vessel, and a means for coupling the lead body to the fixation line. | 03-26-2009 |
20090187236 | MEDICAL ELECTRICAL ELECTRODES WITH CONDUCTIVE POLYMER - A medical electrical electrode includes an elongated conductive coil located over a lead body, and a conductive polymer material in contact with the lead body and located between individual coils of the elongated conductive coil. In certain embodiments, the conductive polymer is a polymer (e.g., silicone) implanted with a conductive filler (e.g., carbon black). In certain embodiments, the conductive polymer material is generally isodiametric with an outer diameter of the individual coils of the elongated conductive coil. A medical electrical electrode is fabricated by sliding an elongated conductive coil over a length of a lead body, dispersing a conductive polymer on the helical coil, inserting a tubing over the elongated conductive coil, distributing the polymer material between individual turns of the elongated conductive coil, heating the tubing so the tubing shrinks around the elongated conductive coil, and removing the tubing. | 07-23-2009 |
20090222074 | INTERCONNECTIONS OF IMPLANTABLE LEAD CONDUCTORS AND ELECTRODES AND REINFORCEMENT THEREFOR - An implantable lead comprises a lead body extending from a lead proximal end portion to a lead distal end portion. The lead body includes one or more longitudinally extending lumens. A conductor is received in, and extends along, a lumen. In varying examples, the implantable lead further comprises a tubular electrode co-axial with, and overlying portions of, the lead body. In one example, a lumen wall is sized and shaped to urge an electrically conductive interposer coupled with the conductor toward an inner surface of the electrode. In another example, a ring member is disposed within a lumen and the conductor is drawn and coupled thereto. In yet another example, an electrically conductive connector couples a first and a second conductor via grooves or threads. In a further example, an axial support member couples a distal end electrode and the lead body. Methods associated with the foregoing are also discussed. | 09-03-2009 |
20090270962 | PASSIVE FIXATION MEDICAL ELECTRICAL LEAD - An implantable passive fixation lead is disclosed. The passive fixation lead comprises an elongate lead body having at least one elongate conductive element. The lead body includes a proximal end and a distal end. A support member has a first surface and a second surface. The second surface is coupled to the distal end of the lead body. A linking material is coupled to the first surface of the support member. A bioadhesive material is coupled to the linking material. A removable cover is placed over the bioadhesive material. | 10-29-2009 |
20090276025 | TECHNIQUES FOR PLACING MEDICAL LEADS FOR ELECTRICAL STIMULATION OF NERVE TISSUE - This disclosure is directed to extra, intra, and transvascular medical lead placement techniques for arranging medical leads and electrical stimulation and/or sensing electrodes proximate nerve tissue within a patient. | 11-05-2009 |
20090287285 | LEAD ASSEMBLY AND RELATED METHODS - Defibrillator lead designs and methods for manufacturing a lead including attachment strength between a fibrosis-limiting material covering, a shocking coil electrode, and an implantable lead body are disclosed herein. The shocking coil electrode includes a close wound tri-filar or greater coil. | 11-19-2009 |
20090287286 | LEAD ASSEMBLY AND RELATED METHODS - Defibrillator lead designs and methods for manufacturing a lead including attachment between a fibrosis-limiting material covering, a shocking coil electrode, and an implantable lead body are disclosed herein. The shocking coil electrode includes at least one treated portion. The fibrosis limiting material includes a selectively modified portion that is disposed over the at least one treated portion. | 11-19-2009 |
20090319014 | LEAD ASSEMBLY AND RELATED METHODS - Defibrillator lead designs and methods for manufacturing a lead including a fibrosis-limiting material covering, a shocking coil electrode, and an implantable lead body are disclosed herein. The fibrosis limiting material includes one or more passages therein and bonding material, such as medical adhesive, is disposed over and under a portion of the coating and within the passage. | 12-24-2009 |
20100049289 | TISSUE ANCHOR - Embodiments of the invention generally relate to an anchor used to secure a position of a device or component relative to internal tissue of a patient and prevent migration of the component relative to the tissue of the patient. In one embodiment, the anchor is combined with an electrode lead that is configured for implantation in a patient. The electrode lead comprises a lead body having a proximal end and a distal end, a stimulating electrode and an anchor. The stimulating electrode is attached to the lead body at the distal end. The anchor is attached to the distal end of the lead body and comprises an anchor body and mesh attached to the anchor body. | 02-25-2010 |
20100082087 | IMPLANTABLE LEAD/ELECTRODE DELIVERY MEASUREMENT AND FEEDBACK SYSTEM - A lead implantation system with an introducer, a lead configured to engage with the introducer such that the introducer can convey the lead to a desired internal target location, and at least one sensor. The sensor is adapted to generate an indicator of desired engagement of the system with the desired target tissue location prior to engagement of the lead with the target tissue. Also a method of implanting an implantable patient lead including advancing a lead implantation assembly towards a desired target location along an introduction axis and monitoring at least one indicator of lead implantation assembly position along the lead introduction axis. At least one indicator can be generated by the lead implantation assembly. Advancing of the lead introduction assembly can be halted when the monitoring indicates contact with the desired target tissue. The patient lead can then be advanced towards the target tissue and fixed to the target tissue. | 04-01-2010 |
20100114286 | CORONARY SINUS LEAD FOR PACING THE LEFT ATRIUM - A pacing lead for implantation in a coronary sinus having an opening and a wall defining an interior and presenting a diameter dimension. The pacing lead includes an elongated lead body, a resilient fixation element, and at least one electrode on either the lead body or the fixation element. The fixation element extends from the pacing portion and defines a loop structure laterally adjacent the pacing portion. The loop structure presents a predetermined width dimension greater than the diameter dimension of the coronary sinus, wherein when the loop structure is inserted into the opening of the coronary sinus, the loop structure is laterally compressed by the wall of the coronary sinus and the electrode is biased against the wall of the coronary sinus. | 05-06-2010 |
20100179629 | MEDICAL IMPLANTABLE LEAD AND METHOD FOR MANUFACTURING THE SAME - In a medical implantable lead for monitoring and/or controlling of an organ inside a human or animal body, and a method for the manufacture thereof, two electrical conductors are each connected to a respective electrode for receiving or transmitting of electrical signals from or to the organ, and a tubular header is provided in a distal end of the lead. One electrode is positioned in the outermost distal end of the lead whereas the other is a ring electrode that is mounted by a coupling on the outside of the header. The coupling and the header are integrated into one unitary piece of an electrically insulating material having a coupling portion, and the coupling portion is adapted configured for quick fixing connection of the ring electrode to the header. | 07-15-2010 |
20100331940 | IMPLANTABLE MEDICAL LEAD CONFIGURED FOR IMPROVED MRI SAFETY AND HEATING REDUCTION PERFORMANCE - An implantable medical lead configured for improved MRI safety and heating reduction performance is disclosed herein. In one embodiment, the lead includes a tubular body having a proximal end and a distal end with a lead connector near the proximal end. In this embodiment the lead further includes a conductor extending longitudinally within the tubular body and having a proximal end that is electrically coupled to the connector and a distal end electrically coupled to a contact pin. The lead in this embodiment further includes a filter element electrically coupled to a distal end of the contact pin and a flange electrically coupled between a proximal end of the filter element and a proximal portion of an electrode. In this embodiment the flange and the proximal portion of the electrode form at least a first part of a hermetic chamber enclosing the filter element. | 12-30-2010 |
20100331941 | Implantable fine wire lead for electrostimulation and sensing - A cardiac pacemaker or other implantable electrostimulation device has one or more durable fine wire leads to the heart or other electrostimulation site. The lead is formed of a core of silica or glass fiber or similar material, with a protective coating preferably including a metal buffer for conduction. The lead can be unipolar or bipolar (or even with three or more conductors), of small diameter and preferably with an anchoring configuration at the distal end of the lead. The anchor feature can take any of several nonlinear forms such that once implanted in a constrained configuration, the anchor can be released to the expanded, nonlinear configuration. The electrostimulation leads of the invention are extremely durable, can be bent through small radii and can exhibit long life without fatigue failure. | 12-30-2010 |
20110015714 | Lead stabilization devices and methods - Devices and methods for stabilizing a lead in a cardiac vein. | 01-20-2011 |
20110251660 | Slidable Fixation Device for Securing a Medical Implant - A fixation device for retaining a leadless medical implant to tissue includes an annular collar and an array of self-expanding tines extending from the collar. When deployed, the annular collar encircles the implant and the tines are preset to splay outwardly from the implant to grab body tissue and anchor the implant at a treatment site. The implant and fixation device are contained within a sheath for delivery to the treatment site and a pushing force is applied to a pusher of the delivery system to distally advance the fixation device relative to the implant and deploy the tines. A distal end of the implant having an electrode may form a distal tip of the delivery system, and a potential implantation site may be tested prior to deployment of the fixation device to allow for easy repositioning of the implant if the potential implantation site is determined to be unacceptable. | 10-13-2011 |
20110251661 | LEAD FIXATION AND EXTRACTION - A device for implantation in the vasculature of a patient can include a fixation mechanism for anchoring the device in place while allowing for easy removal of the device. The fixation mechanism can include a detachable and/or biodegradable portion that can allow for removal from the bulk of the device in order to allow for the bulk to simply be pulled from the body without likelihood of injury. These devices also can include electrode assemblies that do not promote fibrous ingrowth, further reducing the likelihood for injury upon extraction of the device. | 10-13-2011 |
20110282423 | Implantable Biostimulator Delivery System - A delivery system for implanting a biostimulation device comprising a stylet extending along an axis from knob end to a threaded end configured to engage an internally threaded nut of the biostimulation device and a catheter tube configured to axially contain the stylet. The catheter tube comprises a feature that engages a corresponding feature on the biostimulation device whereby the stylet can be rotated relative to the catheter tube for disengagement of the stylet threaded end from the biostimulation device threaded end. | 11-17-2011 |
20120035699 | METHOD AND APPARATUS FOR FIXATING AN IMPLANTABLE MEDICAL DEVICE - A fixation mechanism coupled to an implantable device body extends from a proximal portion of the body to a distal portion of the body and includes a fixation element and a push tube segment. A push tube segment of the mechanism extends proximally from the fixation mechanism to the proximal portion of the body and is adapted to deploy the mechanism. | 02-09-2012 |
20120136423 | System for Stimulation and/or Defibrillation of the Left Ventricle Endocardially or From a Vein In the Coronary System - A system for stimulation/defibrillation of the left ventricle endocardially or from a vein in the coronary system including: a lead body ( | 05-31-2012 |
20120232633 | Medical Pacing Wires - A medical pacing wire comprising a clamp that is adapted to be moved between an open position and a closed position and further adapted to allow a user to attach an electrode to a living tissue. In particular embodiments, the medical pacing wire may include a memory shape alloy having a memory state, which is adapted to cause the clamp to move from the closed position toward the open position when the memory shape alloy is caused to move from a non-memory state to the memory state. Also, in some embodiments, the clamp may comprise a superelastic material, and the medical pacing wire may be adapted to allow a user to remotely cause the clamp to substantially release the living tissue that has been closed within the clamp without substantially damaging the living tissue. | 09-13-2012 |
20130079861 | IMD STABILITY MONITOR - Techniques for determining an attachment stability of leadless pacing device (LPD) implanted within a patient are described. For example, the LPD may detect one or more stability metrics from one or more electrodes of the LPD and/or an activity sensor within the LPD. Based on one or more of these stability metrics, e.g., a mechanical motion of the LPD, a stability module within the LPD may determine the attachment stability of the LPD within the patient. If the attachment stability is insufficient to provide efficacious therapy or indicates at least partial dislodgement of the LPD from tissue, the LPD may wirelessly transmit stability information to an external device. In some examples, the LPD may be implanted within a chamber of the heart. | 03-28-2013 |
20130231727 | LEAD WITH BIOABSORBABLE METALLIC FIXATION STRUCTURE - In one embodiment, an implantable medical lead includes a lead connector end, a tubular body, at least one electrode and at least one fixation structure. The lead connector end is configured to couple to the implantable pulse generator. The tubular body extends distally from the lead connector end and includes a distal portion distally terminating in a distal end. The at least one electrode is located on the distal portion. The at least one fixation structure is located on the distal portion and includes a bioabsorbable metal. For example, the bioabsorbable metal may be iron, an iron alloy with 35% manganese, or a magnesium alloy. The bioabsorbable metal is configured such that the at least one fixation structure will last long enough at an implantation site so as to secure the distal portion of the tubular body in place via fibrotic tissue. | 09-05-2013 |
20130238073 | AUTONOMOUS INTRACORPOREAL CAPSULE WITH DOUBLE ENERGY HARVESTING - A intracorporeal medical capsule is shown and described. The capsule includes an elastically deformable base having an anchor at one end and coupled to a capsule body at the opposite end. An energy harvesting element is elastically coupled to a seismic mass within the capsule body. The elastically deformable base increases energy harvested at the energy harvesting element due to elastic movement of the capsule body in the presence of blood flow around the capsule body. | 09-12-2013 |
20140039591 | CARDIAC STIMULATION SYSTEM - Some embodiments of pacing systems employ wireless electrode assemblies to provide pacing therapy. The wireless electrode assemblies may wirelessly receive energy via an inductive coupling so as to provide electrical stimulation to the surrounding heart tissue. In certain embodiments, the wireless electrode assembly may include one or more biased tines that shift from a first position to a second position to secure the wireless electrode assembly into the inner wall of the heart chamber. | 02-06-2014 |
20140067036 | HIS BUNDLE LEAD DELIVERY SYSTEM - Various embodiments concern implanting a lead to directly stimulate the bundle of His. Various embodiments can include introducing a curve of an outer guide catheter into the right ventricle, extending a curve of an inner guide catheter from a lumen of the outer guide catheter, extending a fixation element on a distal tip of an anchor wire from a lumen the inner guide catheter, and anchoring the anchor wire to target tissue within the right ventricle, the target tissue along the septal wall and proximate the tricuspid valve and the bundle of His. A distal tip of an implantable lead with a lumen can then be advanced over the anchor wire to the target tissue as the anchor wire guides the distal tip of the lead to the target tissue. | 03-06-2014 |
20140107754 | TERMINAL RING CONFIGURATION TO PREVENT IMPROPER IS4 LEAD CONNECTOR ELECTRICAL CONTACT WITH DF4 CONNECTOR PORT - An implantable lead includes a flexible lead body, a plurality of conductor wires and a plurality of electrodes. The implantable lead also includes a terminal connector assembly coupled with a proximal end of the lead body. The terminal connector assembly is sized to be inserted into and received by a connector port of a pulse generator header. The terminal connector assembly includes a plurality of axially spaced terminal ring elements each electrically coupled to at least one of the conductor wires. The terminal ring elements are separated from one another by an electrically insulating material. Each of the terminal ring elements includes an outer surface having a first portion and a second portion, the first portion being electrically conductive and the second portion being electrically non-conductive. | 04-17-2014 |
20140172060 | METHOD OF IMPLANTING A SINGLE-CHAMBER LEADLESS INTRA-CARDIAC MEDICAL DEVICE WITH DUAL-CHAMBER FUNCTIONALITY AND SHAPED STABILIZATION INTRA-CARDIAC EXTENSION - A leadless intra-cardiac medical device (LIMD) is configured to be implanted entirely within a heart of a patient. The LIMD comprises a housing configured to be securely attached to an interior wall portion of a chamber of the heart, and a stabilizing intra-cardiac (IC) device extension connected to the housing. The stabilizing IC device extension may include a stabilizer arm, and/or an appendage arm, or an elongated body or a loop member configured to be passively secured within the heart. | 06-19-2014 |
20150045868 | IMPLANTABLE MEDICAL DEVICE FIXATION - Various fixation techniques for implantable medical device (IMDs) are described. In one example, an assembly comprises an IMD; and a set of active fixation tines attached to the IMD. The active fixation tines in the set are deployable from a spring-loaded position in which distal ends of the active fixation tines point away from the IMD to a hooked position in which the active fixation tines bend back towards the IMD. The active fixation tines are configured to secure the IMD to a patient tissue when deployed while the distal ends of the active fixation tines are positioned adjacent to the patient tissue. | 02-12-2015 |
20150297899 | Leadless Cardiac Pacemaker with Secondary Fixation Capability - The invention relates to leadless cardiac pacemakers (LBS), and elements and methods by which they affix to the heart. The invention relates particularly to a secondary fixation of leadless pacemakers which also include a primary fixation. Secondary fixation elements for LBS's may passively engage structures within the heart. Some passive secondary fixation elements entangle or engage within intraventricular structure such as trabeculae carneae. Other passive secondary fixation elements may engage or snag heart structures at sites upstream from the chamber where the LBS is primarily affixed. Still other embodiments of passive secondary fixation elements may include expandable structures. | 10-22-2015 |
20160175583 | DELIVERY OF CARDIAC STIMULATION DEVICES | 06-23-2016 |