Class / Patent application number | Description | Number of patent applications / Date published |
607030000 | Remotely changing, (e.g., programming, pacer) parameters or operation | 65 |
20080221637 | IMPLANTABLE PULSE GENERATOR HAVING CURRENT STEERING MEANS - An implantable pulse generator includes a current steering capability that allows a clinician or patient to quickly determine a desired electrode stimulation pattern, including which electrodes of a group of electrodes within an electrode array should receive a stimulation current, including the amplitude, width and pulse repetition rate of such current. Movement of the selected group of electrodes is facilitated through the use of remotely generated directional signals, generated by a pointing device, such as a joystick. As movement of the selected group of electrodes occurs, current redistribution amongst the various electrode contacts takes place. The redistribution of stimulus amplitudes utilizes re-normalization of amplitudes so that the perceptual level remains fairly constant. This prevents the resulting paresthesia from falling below the perceptual threshold or above the comfort threshold. | 09-11-2008 |
20080228236 | ACTIVE DISCHARGE SYSTEMS AND METHODS - To avoid charge accumulation on capacitive connections to implanted electrodes during delivery of stimulation pulses, stimulation pulses are followed by active discharge pulses having opposite polarity of the stimulation pulses. The active discharge pulses preferably have at least one pulse attribute magnitude (e.g., duration, voltage, and/or current) different than a corresponding stimulation pulse and are preferably programmable. Approximately the same total net current flow is delivered during active discharge pulses as during the stimulation pulses, but in the opposite direction and optionally at a lower amplitude. In addition, by reducing the driving voltage and a variable load within the electrical path for delivery of the pulses, power dissipation during active discharge is preferably reduced. | 09-18-2008 |
20080262561 | Programmer For Cardiac Implantable Medical Devices, Having An Accelerated Test Mode Of The Parameters - A programmer for cardiac implantable medical devices, including an accelerated test mode of the operating parameters. The programmer includes a user interface ( | 10-23-2008 |
20080269826 | IMPLANTABLE CARDIAC DEVICE - A heart stimulator is adapted to adapt an atrioventricular delay interval or an interventricular delay interval or both during night time by adding a delay interval to a respective daytime interval, and the device statistics for day and night are calculated, stored, and can be displayed separately. | 10-30-2008 |
20080294218 | Automated Optimization of Multi-Electrode Pacing for Cardiac Resynchronization - One embodiment of the present invention provides a system for automatically optimizing CRT procedures using a multi-electrode pacing lead. During operation, the system performs a first set of iterations to select one or more satellites on one or more pacing leads inserted in a patient. A pacing lead includes a plurality of pacing satellites, and a pacing satellite includes a plurality of electrodes that can be individually addressed and used for transmitting or detecting electric signals. The system then performs a second set of iterations to select one or more electrodes on the selected satellites. The system further performs a third set of iterations to select one or more timing configurations for pacing signals transmitted through one or more of the selected electrodes. | 11-27-2008 |
20080319502 | CARDIAC PACING SYSTEM AND DISTRIBUTED CARDIAC PACING SYSTEM - A micro integrated cardiac pacemaker includes a control unit for outputting a control signal according to cardiograph information, heart stimulating means for stimulating heart tissue in response to the control signal, cardiograph information extracting means for extracting cardiograph information and outputting it to the control unit, and a power supply unit for supplying drive power. The power supply unit is a biological fuel cell that takes out electrons by oxidation of a biological fuel. The biological fuel cell includes an anode and a cathode. An oxidase of a biological fuel and a mediator are immobilized on the cathode. Blood and/or body fluid are used as an electrolytic solution, and a biological fuel and oxygen in the blood and/or the fluid are used. The biological fuel cell is attached to the end of a catheter and implanted into the heart, and the catheter is withdrawn, without incising the breast. | 12-25-2008 |
20090012575 | ACTIVE MEDICAL IMPLANT - The invention consists of a system for remote programming of an implantable medical device such as a heart pacemaker, defibrillator or the like, wherein the system includes a programmable personal device (e.g., an implant) and a service center. The service center has a programming monitoring unit which determines a programming time endpoint which depends on the point in time at which a programming order was sent to the implant, and which cancels or deletes the programming order if the service center has not received a programming confirmation confirming successful receipt, execution, and/or forwarding of the programming order by the implant by the programming time endpoint. | 01-08-2009 |
20090018598 | SYSTEM FOR THE REMOTE PROGRAMMING OF A PERSONAL MEDICAL DEVICE - The invention comprises a system and a method for secure remote programming of an implant. For this purpose, a TAN list is generated on the part of the programming device and both stored in the implant ( | 01-15-2009 |
20090024178 | SYSTEM AND METHOD FOR THE REMOTE PROGRAMMING OF A PROGRAMMABLE PERSONAL MEDICAL DEVICE - The invention relates to a system and a method for the remote programming of a programmable personal medical device ( | 01-22-2009 |
20090030472 | SYSTEM AND METHOD FOR THE REMOTE PROGRAMMING OF A PERSONAL MEDICAL DEVICE - The invention comprises a system for the secure remote programming of an implant. A TAN server is provided for this purpose, in which a user is first accredited and which then generates a TAN upon a request and provides it to the user on one hand and to a patient intermediate device assigned to the implant to be reprogrammed on the other hand. | 01-29-2009 |
20090043353 | REMOTELY PROGRAMMABLE PERSONAL DEVICE AND SYSTEM AND METHOD FOR REMOTE PROGRAMMING OF A PERSONAL DEVICE - The invention relates to a remotely programmable personal device, in particular a programmable implantable medical device, e.g., a cardiac pacemaker, a defibrillator, a cardioverter or the like. In addition, the invention relates to a system for remote programming of such a personal medical device and a method for remote programming of a programmable personal device. | 02-12-2009 |
20090054947 | ELECTRODE CONFIGURATIONS FOR DIRECTIONAL LEADS - A system includes an implantable electrical stimulation lead configured for intravenous introduction into a vessel proximate to a heart and an electrical stimulator. The lead comprises a lead body and at least three electrode segments. The electrical stimulator is coupled to the electrode segments and configures a first of the electrode segments as a first anode, a second of the electrode segments as a cathode, and a third of the electrode segments as a second anode, and delivers electrical stimulation to the heart via the cathode and first and second anodes. Additional techniques for delivering electrical stimulation include using multiple electrode segments as cathodes and electrically isolating other electrode segments. Other examples are directed to techniques for directing electrical therapy to a vagus nerve of a patient. | 02-26-2009 |
20090062878 | HEART MONITORING SYSTEM - Heart monitoring system includes implantable medical device and service center. Implantable medical device includes stimulation pulse generator, ventricular sensing stage, activity sensor, impedance determination unit with a constant current or voltage source to generate sub-threshold measuring current pulses having constant current strength or constant voltage, measuring unit for measuring a voltage corresponding to a current fed through a body, impedance value determination unit connected with measuring unit adapted to determine impedance value for each measuring current pulse, and perform intrathoracic impedance measurement, a control unit adapted to collect data representing values of changes, and initiate data transmission, implant transceiver unit communicating with the service center with a data evaluation module including data trending of stored data with a user interface and said data evaluation module adapted to allow a physician to set for each data trend trigger criteria for decompensation detection and generate a decompensation indicator signal. | 03-05-2009 |
20090069859 | Apparatus and Method for Programming a Pacemaker - A pacemaker optimising apparatus comprising: a component ( | 03-12-2009 |
20090069860 | REMOTELY-PROGRAMMABLE PERSONAL DEVICE AND CONFIGURATION AND METHOD FOR REMOTELY PROGRAMMING A PERSONAL DEVICE - The invention relates to a remotely-programmable personal device, in particular a programmable implantable medical device, such as a cardiac pacemaker, a defibrillator, a cardioverter, or the like. In addition, the invention relates to a configuration for the remote programming of such a personal medical device and a method for remotely programming a programmable personal device. | 03-12-2009 |
20090069861 | SYSTEMS AND METHODS FOR MONITORING AND MANAGING POWER CONSUMPTION OF AN IMPLANTABLE MEDICAL DEVICE - In one embodiment, an external programming device is operable to determine and graphically display power consumption of an implantable medical device (“IMD”). In accordance with this particular embodiment, the external programming device includes a graphical user interface display and a communication interface operable to receive information from an IMD. In this embodiment, the external programming device is operable to receive IMD parameter settings and/or battery parameter values from the IMD, calculate a power consumption rate for the IMD, and then display the power consumption on the graphical user interface display using a graphical visual indicator. | 03-12-2009 |
20090088815 | PROACTIVE INTERACTIVE LIMITS OVERRIDE FOR IMPLANTABLE MEDICAL DEVICE USER INTERFACE - This document discusses, among other things, an external device that includes a communication circuit, a programming interface including a display, and a processor. The processor includes a parameter analyzer to apply a rule to a combination of operating parameter values of the IMD to determine operating parameter interaction. The display includes a first warning that is displayed when the parameter analyzer determines that a combination of operating parameter values entered via the programming interface is not allowed, and a second warning that is displayed when the parameter analyzer determines that a combination of operating parameters values entered via the programming interface is allowable but not recommended. The processor is configured to program the operating parameter values associated with the second warning into the IMD only after a user acknowledgement of the second warning is received from a user via the programming interface. | 04-02-2009 |
20090210025 | MODEL REFERENCE IDENTIFICATION AND CANCELLATION OF MAGNETICALLY-INDUCED VOLTAGES IN A GRADIENT MAGNETIC FIELD - Systems and methods of dynamically controlling an implanted medical device located within a patient's body in the presence of a gradient magnetic field or other external interference are disclosed. The system can include a reference model of the implanted medical device and of body tissue within the patient's body in the absence of a gradient magnetic field, and a control unit configured to dynamically control voltages or currents applied to a lead of the implanted medical device based on predicted parameters determined by the reference model. | 08-20-2009 |
20090222056 | SYSTEM AND METHOD FOR DETERMINING ATRIAL ARRHYTHMIA BURDEN - A system and method for determining atrial arrhythmia burden is provided. Consecutive sets of parametric data regularly obtained from an implantable medical device through remote interrogation are centrally maintained. An atrial arrhythmia burden is determined. A cumulative atrial tachyarrhythmia (AT) duration is identified for each atrial arrhythmia episode recorded in the parametric data over a fixed look back period. One of an AT mode switch time and maximum atrial tachyarrhythmia AT duration are evaluated respectively subject to the duration between the consecutive sets being of sufficient length and a change having occurred to the maximum AT duration. | 09-03-2009 |
20090248104 | AUTOMATIC SELECTION OF STIMULATION CHAMBER FOR VENTRICULAR RESYNCHRONIZATION THERAPY - A device and method for programming an implantable pulse generator. In one embodiment, commands are entered designating implantable pulse generator programming variables into programmer memory. At least some of the commands are transformed into an executable macro. The macro is stored in the programmer memory. The macro is executed to transmit the programming variables to the implantable pulse generator. | 10-01-2009 |
20090270939 | DEVICE AND METHOD FOR DETECTING ATRIAL FIBRILLATION - Detection of atrial fibrillation involves detecting a plurality of ventricular events and obtaining a series of probabilities of AF, each corresponding to a probability of AF for a different beat window having a plurality of ventricular events. AF onset is detected when one or each of a plurality of consecutive AF probabilities satisfies an AF trigger threshold. AF termination is detected when one or each of a plurality of consecutive AF probabilities does not satisfy the AF trigger threshold. Upon detection of AF onset, ventricular events are processed to detect for a sudden onset of irregularity of the ventricular events. AF onset is confirmed when sudden onset is detected and overturned when sudden onset is not detected. | 10-29-2009 |
20090306738 | ELONGATED IMPLANT HAVING AN EXTERNAL ENERGY COUPLING - Electrotherapeutic implant for stimulation of body tissue, comprising at least two electrode poles ( | 12-10-2009 |
20100023085 | ADAPTABLE COMMUNICATION SENSITIVITY FOR AN IMPLANTABLE MEDICAL DEVICE - A wireless communication threshold for an implantable medical device is automatically adapted in an attempt to maintain optimum signal detection sensitivity. In some aspects, a threshold level may be adapted to account for current environmental conditions, implant conditions, device conditions, or other conditions that may affect the reception of wireless signals at the device. In some aspects, the determination of an optimum level for the threshold involves a tradeoff relating to effectively detecting target signals while avoiding detection of noise and/or interference. In some aspects, adaptation of a threshold may be based on maximum energy levels associated with one or more sets of RF energy sample data. In some aspects, adaptation of a threshold may be based on the number of false wakeups that occur during a period of time. | 01-28-2010 |
20100030294 | IMPLANTABLE CARDIAC DEVICE WITH SATELLITE REFRESH - In one embodiment an implantable cardiac device is provided that includes an implantable cardiac stimulation device with an implantable satellite device coupled to it. The implantable satellite device has a charge storage device. The implantable stimulation device having a refresh generator configured to generate a charge and voltage balanced multi-phasic refresh signal with a duration less than a capacitive time constant of an electro-electrolyte interface of the implantable cardiac device and transmit the charge and voltage balanced multi-phasic refresh signal to the implantable satellite device for charging the charge storage device. In various embodiments, the charge and voltage balanced multi-phasic refresh signal having alternating phase signs and null durations between the alternating phases. In some embodiments, the refresh generator is configured to modulate the multi-phasic waveform refresh signal. The multi-phasic waveform refresh signal may be modulated to contain configuration information, status information, or other information. | 02-04-2010 |
20100030295 | Apparatus and method for programming a pacemaker - A pacemaker programming apparatus for programming a pacemaker in an individual. The apparatus comprises means for determining the sensed-paced difference of the pacemaker in the individual: first testing means for determining the optimum AV delay while the pacemaker is atrially pacing at a raised at a heart rate; and calculation means for calculating the optimum AV delay determined by the first testing means minus the sensed-paced difference. | 02-04-2010 |
20100069991 | SYSTEMS AND METHODS FOR HIGHLY SAFE ADJUSTMENT OF DEVICE PARAMETERS - A system and method of programming a cardiac rhythm management device (CRM device) using an external programming device are described, where the user is presented with a list of highly-safe parameter adjustments. Input is received from the user selecting one or more of the highly-safe parameter adjustments. A programming session is initiated wherein the programming device establishes communication with the CRM device, and transmits the selected one or more highly-safe parameter adjustment to the CRM device. | 03-18-2010 |
20100145406 | IMPLANTABLE CARDIAC MONITOR UPGRADEABLE TO PACEMAKER OR CARDIAC RESYNCHRONIZATION DEVICE - An implantable cardiac monitor upgradeable to an implantable pacemaker or an implantable cardiac resynchronization device allows the use of a single implantable medical device for monitoring cardiac conditions and later, if needed, for cardiac pacing. The implantable medical device includes a circuit that can be configured, by programming through an external programmer, to either the implantable cardiac monitor or the implantable pacemaker. The implantable medical device is first configured to and used as the implantable cardiac monitor for acquisition of physiological data indicative of a need for a pacing therapy. If the pacing therapy is to follow, the implantable medical device is reconfigured from the implantable cardiac monitor to the implantable pacemaker, thus eliminating the need of using two implantable medical devices. | 06-10-2010 |
20100152806 | SYSTEMS AND METHODS FOR OPERATING AN IMPLANTABLE DEVICE FOR MEDICAL PROCEDURES - When a medical procedure is performed on a patient in whom an implantable medical device is implanted, the medical procedure may have undesired effects on the medical device, such as triggering a response that initiates therapy by the device that is unnecessary and potentially dangerous to the patient. Systems and methods may facilitate performing of such medical procedures on such patients by temporarily reprogramming the medical device, monitoring for one or more detectable characteristics associated with the medical procedure to be performed, and restoring normal programming of the device based on detection and/or lack of detection of the detectable characteristic(s). | 06-17-2010 |
20100174338 | METHOD AND APPARATUS FOR QUESTION-BASED PROGRAMMING OF CARDIAC RHYTHM MANAGEMENT DEVICES - A cardiac rhythm management (CRM) system includes a programming device that identifies the device type of an implantable medical device, selects a predetermined questioning sequence based on the device type, and interacts with a user through a user interface screen by conducting a question-and-answer session according to the predetermined questioning sequence. After displaying a question and receiving an answer to the question, the programming device sets one or more programmable parameter values and/or displays a follow-up question in response to the answer. The programming device also allows the user to enter one or more programmable parameter values directly during or after the question-and-answer session. The implantable medical device is programmed to operate in one or more operational modes based on at least the answers received from the user during the question-and-answer session and the parameter values entered by the user, if any. | 07-08-2010 |
20100234916 | System and method for ventricular pace timing based on isochrones - The present invention provides a system and method for displaying ventricular timing events and for determining optimal ventricular pace timing based on ventricular synchrony and loading conditions in order to improve the hemodynamic performance of patients. | 09-16-2010 |
20100249868 | IMPLANTABLE MEDICAL DEVICE PROGRAMMING APPARATUS HAVING A GRAPHICAL USER INTERFACE - Systems and methods for a configurable programmer for an implantable cardiovascular medical device are disclosed. A preferred embodiment comprises a graphical user interface to visualize programming processes to alert a clinician to potential problems with the patient's condition or the therapy provided by the device, or the device itself. The programmer is further adapted to minimize the risk of programming potentially dangerous changes to the implantable device's parameter settings by requiring the clinician to first review new value changes before initiating the programming step. The programmer also allows the clinician to view how a change to one or more parameter settings affect other settings before the implantable device is programmed or re-programmed. | 09-30-2010 |
20100305652 | System for Provisional Radio Frequency Cardiac Stimulation for Replacement of the Pacemaker - The present invention relates to a device for provisional cardiac stimulation during replacement of pacemakers (PMs). Said device enables fitting on an electrode catheter separated from the pocket of the PM of a radio-frequency coil ( | 12-02-2010 |
20100318155 | SYSTEMS AND METHODS FOR PROGRAMMING IMPLANTABLE MEDICAL DEVICES - Embodiments of the invention are directed to systems and methods for programming implantable medical devices, amongst other things. In an embodiment, the invention includes a method of programming an implantable medical device. The method can include gathering parameter data representing a set of previously programmed parameter values from a plurality of implanted medical devices. The method can further include performing association analysis on the parameter data to form a set of association rules. The method can further include suggesting parameter choices to a system user regarding a specific patient based on the set of association rules. In an embodiment, the invention can include a medical system including a server configured to perform association analysis on a set of data representing previously programmed parameter values from a plurality of implanted medical devices to derive a set of association rules. Other embodiments are also included herein. | 12-16-2010 |
20110015693 | Enhanced Patient Programming Security for Remote Programming via Paired Communication / IMD Access via Custom Hardware - A system and method for enhanced patient programming security for remote programming via paired communication/implantable medical device access via custom hardware. The system comprises an implantable medical device capable of telemetric communication with an external device. The implantable medical device may be paired to a remote monitoring device. The implantable medical device and/or the remote monitoring device challenge other devices to provide information for authentication and/or authorization. The information may be information about the implantable medical device, information about the remote monitoring device, information about the patient, or heuristic information. The information may be stored in an electronic medical records system. | 01-20-2011 |
20110022113 | Analyzer Compatible Communication Protocol - Methods and systems for programming a plurality of leads under at least two distinct modalities are provided. The leads may be grouped within satellites and multiple satellites may be configured within a single lead. Each lead includes a power and communications bus providing commands, and information and pulses to the satellites. The leads may be connected to at least two different command and pulse sources, optionally a cardiac pacemaker and/or a cardiac pulse analyzer system. A command may include or be preceded by a wake-up pulse that facilitates identification of a modality applicable to the associated command and data. A command may further optionally include a reference pulse or series of reference pulses, whereby the satellite references data pulses in relation to one or more aspects of the associated reference pulse. A data pulse may deliver two bits of information. | 01-27-2011 |
20110040347 | INTEGRATED LEAD FOR APPLYING CARDIAC RESYNCHRONIZATION THERAPY AND NEURAL STIMULATION THERAPY - An embodiment includes a main lead assembly having a proximal portion adapted for connection to a device and a distal portion adapted for placement in a coronary sinus, the distal portion terminating in a distal end for placement proximal a left ventricle. Additionally, the main lead assembly includes a left ventricular electrode located at its distal end which is adapted to deliver cardiac resynchronization therapy to reduce ventricular wall stress. The main lead assembly also includes a fat pad electrode disposed along the main lead assembly a distance from the distal end to position the fat pad electrode proximal to at least one parasympathetic ganglia located in a fat pad bounded by an inferior vena cava and a left atrium. The fat pad electrode is adapted to stimulate the parasympathetic ganglia to reduce ventricular wall stress. | 02-17-2011 |
20110106204 | CONFIGURING OPERATING PARAMETERS OF A MEDICAL DEVICE BASED ON A TYPE OF SOURCE OF A DISRUPTIVE ENERGY FIELD - An implantable medical device (IMD) configures one or more operating parameters of the IMD based on a type of source of a disruptive energy field to which the IMD is exposed. The disruptive energy field may, in one example, include magnetic and/or radio frequency (RF) fields generated by an MRI scanner. In one aspect, the IMD may distinguish between different types of MRI scanners and select an exposure operating mode tailored to reduce the effects of the particular type of MRI scanner. In another aspect, the IMD may adjust one or more operating parameters that will be used when the IMD returns to a normal operating mode after exposure to the MRI scanner based on the type of MRI scanner to which the IMD is exposed. | 05-05-2011 |
20110202104 | METHOD AND SYSTEM FOR AUTOMATICALLY SWITCHING BETWEEN MODES OF AN IMPLANTABLE MEDICAL DEVICE BASED ON AN EXTERNAL MAGNETIC FIELD - An implantable medical device that is configured to be exposed to magnetic fields includes a lead, a detection module, a field measurement sensor, and a control module. The lead includes electrodes that are positioned within a heart to sense cardiac signals of the heart. The detection module monitors the cardiac signals to identify cardiac events based on the cardiac signals. The field measurement sensor measures a magnetic field. The sensor generates a field measurement based on the measured magnetic field. The sensor remains in an unsaturated state when exposed to the magnetic field of at least 0.2 Tesla. The control module identifies a presence of the magnetic field based on the field measurement of the sensor and switches operation of the detection module to an MR safe mode based on the field measurement. | 08-18-2011 |
20110218587 | Programmer for Biostimulator System - A biostimulator system comprises one or more implantable devices and an external programmer configured for communicating with the implantable device or devices via bidirectional communication pathways comprising a receiving pathway that decodes information encoded on stimulation pulses generated by ones of the implantable device or devices and conducted through body tissue to the external programmer. | 09-08-2011 |
20110264160 | Apparatus for use on a Person's Lap - An apparatus having at least one of electrical, electronic, pneumatic or hydraulic functions and adapted for use on a person's lap, the apparatus having a front side and a rear side generally opposite to said front side there being a wedge at said rear side generally in a central portion thereof and adapted to fit between the upper sides of a person's thighs when in a seated position and wherein the wedge has a surface spaced from said front side and inclined relative thereto such that, when the apparatus is placed on top of a substantially horizontal surface, said front side being parallel to or preferably inclined relative to the substantially horizontal surface. | 10-27-2011 |
20120203298 | IMPLANTABLE CARDIAC MONITOR UPGRADEABLE TO PACEMAKER OR CARDIAC RESYNCHRONIZATION DEVICE - An implantable cardiac monitor upgradeable to an implantable pacemaker or an implantable cardiac resynchronization device allows the use of a single implantable medical device for monitoring cardiac conditions and later, if needed, for cardiac pacing. The implantable medical device includes a circuit that can be configured, by programming through an external programmer, to either the implantable cardiac monitor or the implantable pacemaker. The implantable medical device is first configured to and used as the implantable cardiac monitor for acquisition of physiological data indicative of a need for a pacing therapy if the pacing therapy is to follow, the implantable medical device is reconfigured from the implantable cardiac monitor to the implantable pacemaker, thus eliminating the need of using two implantable medical devices. | 08-09-2012 |
20120245651 | Sensing Vector Selection in a Cardiac Stimulus Device with Postural Assessment - Methods, implantable medical devices and systems configured to perform analysis of captured signals from implanted electrodes to identify cardiac arrhythmias. In an illustrative embodiment, signals captured from two or more sensing vectors are analyzed, where the signals are captured with a patient in at least first and second body positions. Analysis is performed to identify primary or default sensing vectors and/or templates for event detection. | 09-27-2012 |
20120316614 | METHOD AND APPARATUS FOR QUESTION-BASED PROGRAMMING OF CARDIAC RHYTHM MANAGEMENT DEVICES - A cardiac rhythm management (CRM) system includes a programming device that identifies the device type of an implantable medical device, selects a predetermined questioning sequence based on the device type, and interacts with a user through a user interface screen by conducting a question-and-answer session according to the predetermined questioning sequence. After displaying a question and receiving an answer to the question, the programming device sets one or more programmable parameter values and/or displays a follow-up question in response to the answer. The programming device also allows the user to enter one or more programmable parameter values directly during or after the question-and-answer session. The implantable medical device is programmed to operate in one or more operational modes based on at least the answers received from the user during the question-and-answer session and the parameter values entered by the user, if any. | 12-13-2012 |
20130013021 | RECORDABLE MACROS FOR PACEMAKER FOLLOW-UP - A device and method for programming an implantable pulse generator. In one embodiment, commands are entered designating implantable pulse generator programming variables into programmer memory. At least some of the commands are transformed into an executable macro. The macro is stored in the programmer memory. The macro is executed to transmit the programming variables to the implantable pulse generator. | 01-10-2013 |
20130023948 | DYNAMIC REPRESENTATION OF MULTIPOLAR LEADS IN A PROGRAMMER INTERFACE - An external programming system for programming an implantable medical device includes a user display and a memory storing multiple intracardiac lead images. The intracardiac lead images correspond to lead types and includes electrodes spaced according to the spacing of electrodes of a particular lead type. The programmer selects one of the lead images for display based on an indication of which type of lead has been implanted in a patient. The selected image is displayed to a user as part of a graphical user interface for programming cardiac pacing therapy for the patient. | 01-24-2013 |
20130041422 | PROGRAMMER FOR BIOSTIMULATOR SYSTEM - A biostimulator system comprises one or more implantable devices and an external programmer configured for communicating with the implantable device or devices via bidirectional communication pathways comprising a receiving pathway that decodes information encoded on stimulation pulses generated by ones of the implantable device or devices and conducted through body tissue to the external programmer. | 02-14-2013 |
20130053920 | REMOTE PROGRAMMING OF MRI SETTINGS OF AN IMPLANTABLE MEDICAL DEVICE - A system and method are described herein including an implantable medical device (IMD) configured to be programmed with magnetic resonance imaging (MRI) settings for use during an MRI scan, wherein the IMD stores identity data that uniquely identifies the IMD or a patient having the IMD. The system includes an external storage media configured to receive MRI settings associated with the IMD and configured to store the MRI settings associated with the IMD. The system also includes a programmer configured to retrieve identity data from IMD, retrieve MRI settings associated with the IMD from the external storage media and program the IMD using the MRI settings. | 02-28-2013 |
20130150914 | HANDLING IMPROPER DEVICE DATA IN IMPLANTABLE DEVICES - A system and method for handling data received from an implantable medical device (IMD) is provided. The method includes communicating a device parameter value of an IMD device parameter from the IMD to an external device and determining, at the external device, that the communicated device parameter value is at an improper value. Additionally, in response to the determining that the communicated device parameter value is at an improper value, automatically performing at least one of re-programming the IMD device parameter with a selected substitute device parameter value, ignoring, or purging non-programmable data. | 06-13-2013 |
20130261691 | SYSTEM AND METHOD FOR NEURAL STIMULATION - Various aspects provide an implantable device. In various embodiments, the device comprises at least one port, where each port is adapted to connect a lead with an electrode to the device. The device further includes a stimulation platform, including a sensing circuit connected to the at least one port to sense an intrinsic cardiac signal and a stimulation circuit connected to the at least one port via a stimulation channel to deliver a stimulation signal through the stimulation channel to the electrode. The stimulation circuit is adapted to deliver stimulation signals through the stimulation channel for both neural stimulation therapy and CRM therapy. The sensing and stimulation circuits are adapted to perform CRM functions. The device further includes a controller connected to the sensing circuit and the stimulation circuit to control the neural stimulation therapy and the CRM therapy. Other aspects and embodiments are provided herein. | 10-03-2013 |
20130274822 | SENSING VECTOR SELECTION IN A CARDIAC STIMULUS DEVICE WITH POSTURAL ASSESSMENT - Methods, implantable medical devices and systems configured to perform analysis of captured signals from implanted electrodes to identify cardiac arrhythmias. In an illustrative embodiment, signals captured from two or more sensing vectors are analyzed, where the signals are captured with a patient in at least first and second body positions. Analysis is performed to identify primary or default sensing vectors and/or templates for event detection. | 10-17-2013 |
20130289646 | IMPLANTABLE NEUROSTIMULATOR FOR PROVIDING ELECTRICAL STIMULATION OF CERVICAL VAGUS NERVES FOR TREATMENT OF CHRONIC CARDIAC DYSFUNCTION WITH BOUNDED TITRATION - A system for providing electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction with bounded titration is provided. The system includes a patient-operable external controller to transmit a plurality of unique signals. The system further includes an implantable neurostimulator, which includes a pulse generator to deliver electrical therapeutic stimulation tuned to restore autonomic balance through continuously-cycling, intermittent and periodic electrical pulses that result in creation and propagation (in both afferent and efferent directions) of action potentials within the cervical vagus nerve of a patient through a pair of helical electrodes via an electrically coupled nerve stimulation therapy lead. The neurostimulator also includes a recordable memory storing an autotitration operating mode that includes a maximum stimulation intensity and is configured to increase an intensity of the delivered electrical therapeutic stimulation up to a level not exceeding the maximum stimulation intensity upon receipt of one of the unique signals. | 10-31-2013 |
20130310891 | AUTOMATIC PACING CONFIGURATION SWITCHER - A system or apparatus can provide electrostimulations via an electrode configuration that can be selected from multiple electrode configurations, the electrostimulations of the type for inducing a desired heart contraction, or a neurostimulation response. The system or apparatus can allow communicating with an external device to receive an input indicating a degree of patient discomfort with an electrostimulation delivered using a first electrode configuration, and can associate information about the degree of discomfort with information about the corresponding first electrode configuration for use by a controller circuit in determining a second electrode configuration for delivering a subsequent electrostimulation. | 11-21-2013 |
20140107725 | EFFICIENTLY DELIVERING ACOUSTIC STIMULATION ENERGY TO TISSUE - A system for delivering an electrical stimulation pulse to tissue comprises a controller-transmitter and a receiver-stimulator. The controller-transmitter includes circuitry having an energy storage capacitor. The capacitance of the energy storage capacitor is adjusted to improve the efficiency of energy delivered from the receiver-stimulator to tissue by modifying the geometry of an acoustic drive burst from the controller-transmitter. | 04-17-2014 |
20140163636 | Methods and Apparatus to Stimulate Heart Atria - A method and apparatus for treatment of hypertension and heart failure by increasing vagal tone and secretion of endogenous atrial hormones by excitory pacing of the heart atria. Atrial pacing is done during the ventricular refractory period resulting in atrial contraction against closed AV valves, and atrial contraction rate that is higher than the ventricular contraction rate. Pacing results in the increased atrial wall stress. An implantable device is used to monitor ECG and pace the atria in a nonphysiologic manner. | 06-12-2014 |
20140214111 | Implantable Electroacupuncture Device and Method for Treating Cardiovascular Disease - An implantable electroacupuncture device (IEAD) treats heart failure, coronary artery disease, myocardial ischemia or angina through application of stimulation pulses applied at acupoints GV20 and/or EXHN3. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio of T3/T4, is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years. | 07-31-2014 |
20140343620 | LEADLESS CARDIAC STIMULATION DEVICE EMPLOYING DISTRIBUTED LOGIC - Systems and methods involve an intrathoracic cardiac stimulation device operable to provide autonomous cardiac sensing and energy delivery. The cardiac stimulation device includes a housing configured for intrathoracic placement relative to a patient's heart. A fixation arrangement of the housing is configured to affix the housing at an implant location within cardiac tissue or cardiac vasculature. An electrode arrangement supported by the housing is configured to sense cardiac activity and deliver stimulation energy to the cardiac tissue or cardiac vasculature. Energy delivery circuitry in the housing is coupled to the electrode arrangement. Detection circuitry is provided in the housing and coupled to the electrode arrangement. Communications circuitry may optionally be supported by the housing. A controller in the housing coordinates delivery of energy to the cardiac tissue or cardiac vasculature in accordance with an energy delivery protocol appropriate for the implant location. | 11-20-2014 |
20150057717 | SYSTEM AND METHOD FOR OPERATING AN IMPLANTABLE MEDICAL DEVICE THROUGH RADIO FREQUENCY SIGNALS - An implantable medical device (IMD) may include a communication module, a therapy control module, a firmware control module, and a service application. The communication module is configured to wirelessly communicate over an RF link with an external device. The therapy control module is configured to deliver therapy to the patient, and may include a reprogrammable therapy logic circuit configured to operate the therapy control module in a reprogrammable mode of operation, and base-therapy state machine (BTSM) logic circuit configured to operate the therapy control module in a base therapy mode of operation. The firmware control module may include CPU and a memory. The service application may be stored in the memory. The firmware control module is configured to launch the service application, and the BTSM logic circuit provides a base level of sensing and pacing therapy while the communications module in parallel maintains the RF link with the external device. | 02-26-2015 |
20150328470 | SENSING VECTOR SELECTION IN A CARDIAC STIMULUS DEVICE WITH POSTURAL ASSESSMENT - Methods, implantable medical devices and systems configured to perform analysis of captured signals from implanted electrodes to identify cardiac arrhythmias. In an illustrative embodiment, signals captured from two or more sensing vectors are analyzed, where the signals are captured with a patient in at least first and second body positions. Analysis is performed to identify primary or default sensing vectors and/or templates for event detection. | 11-19-2015 |
20160067501 | DEVICES, SYSTEMS AND METHODS FOR EFFICIENT IDENTIFICATION OF IMPROVED CRT PARAMETERS - Methods, systems and devices efficiently identify cardiac resynchronization therapy (CRT) pacing parameter set(s) that provide improved hemodynamic response relative to an initial CRT pacing parameter set, wherein each CRT pacing parameter set includes at least two CRT pacing parameters. User input(s) are accepted that specify a maximum amount of time and/or parameter sets that can be used to perform testing, and specify relative importance of parameters within the sets. Based on the accepted user input(s), there is a determination of how many different variations of each of the CRT pacing parameters can be tested, and based on this determination different CRT pacing parameter sets are selected and tested to obtain a hemodynamic response measure corresponding to each of the different sets tested. Additionally, one or more of the tested CRT pacing parameter sets, if any, that provide improved hemodynamic response relative to the initial CRT pacing parameter set is/are identified. | 03-10-2016 |
20160136434 | Animal and plant cell electric stimulator with randomized spatial distribution of electrodes for both electric field shaping and for current injection - An electric stimulator for heart, brain, organs and general cells with a random shape and position of electrodes which enhances its performance for breaking the symmetry. Two types of electrodes are introduced: type-1, or active electrodes are similar to prior art, while type-2, or passive electrodes have not been used in this context. Passive electrodes are electrically insulated, being unable to inject current in the surrounding medium, but they are capable of shaping the electric field, which has consequence on the path of the stimulating currents injected by type-1 electrodes. | 05-19-2016 |
607031000 | Assurance of security, accuracy, or completion of programming procedure | 5 |
20090054948 | COMMAND SEQUENCING AND INTERLOCKS FOR A REMOTELY PROGRAMMABLE IMPLANTABLE DEVICE - Methods of providing a digital program request formatted by a remotely-located server are provided. In one embodiment, the method includes the steps of providing an identifier associated with an implantable medical device (IMD) to the remotely-located server to acquire the digital program request intended for the IMD, and validating the digital program request using a digital identification code uniquely identifying the server. In response to successful validation of the digital program request, the program request is added to a storage queue for subsequent wireless transmission to the IMD. A sequential code contained within the digital program request is compared to a second sequential code earlier processed by the IMD to verify that the digital program request is not processed out-of-order. The results of the validating step are stored in a notification queue for subsequent transmittal to the server. | 02-26-2009 |
20090157137 | Vector Configuration Detection and Corrective Response Systems and Methods - In one aspect a system includes an external communication device configured to interrogate a pulse generator, an external programmer device communicatively coupled to the external communication device; the external programmer device configured to receive a listing of valid electrode pairs from the pulse generator through the external communication device, the external programmer device configured to prevent a pacing, sensing, or shocking vector from being programmed by the user if a pair of electrodes needed for the vector are not included within the listing of valid electrode pairs. In another aspect a system includes an implantable medical device configured to detect the presence or absence of electrodes on an implanted stimulation lead coupled to the implantable medical device and to generate a valid electrode pair listing, the implantable medical device configured to compare the programmed electrode pairs with the valid electrode pair listing and to execute a corrective action procedure if one or more of the programmed electrode pairs are not included within the valid electrode pair listing. Other embodiments are also included herein. | 06-18-2009 |
20090171412 | HANDLING IMPROPER DEVICE DATA IN IMPLANTABLE DEVICES - A system and method for handling data received from an implantable medical device (IMD) is provided. The method includes communicating a device parameter value of an IMD device parameter from the IMD to an external device and determining, at the external device, that the communicated device parameter value is at an improper value. Additionally, in response to the determining that the communicated device parameter value is at an improper value, automatically performing at least one of re-programming the IMD device parameter with a selected substitute device parameter value, ignoring, or purging non-programmable data. | 07-02-2009 |
20130178909 | PERFORMANCE ASSESSMENT AND ADAPTATION OF AN ACOUSTIC COMMUNICATION LINK - Systems and methods for adapting the performance of a wireless communication link with an implantable medical device (IMD) are disclosed. An illustrative method includes initiating a wireless link with the IMD, measuring an initial performance of the wireless link, determining whether the initial performance of the wireless link is adequate, adjusting an operating parameter related to the wireless link in the event the initial performance of the wireless link is inadequate, measuring a performance of the wireless link in response to the adjusted operating parameter, and setting the operating parameter to a prior setting if the measured performance of the wireless link does not improve in response to the adjusted operating parameter. | 07-11-2013 |
20160023001 | PATIENT SPECIFIC DATA DRIVEN SAFETY INTERLOCKS FOR MEDICAL DEVICES - A medical device is provided that includes an input/output, at least one sensor, a memory, a controller and at least one delivery member. The input/output is configured to provide a communication path to and from the medical device. The at least one sensor is used to monitor at least one patient function. The memory is used to store patient specific data from the at least one sensor and operating parameters of the medical device. The controller is used to control operations of the medical device. The controller is in communication with the at least one sensor, the memory and the input/output. The controller is configured to deny device operational change requests received via the input/output based at least in part on the patient specific data sensed by the at least one sensor. The at least one delivery member is under the control of the controller and is configured to provide a therapeutic function of the medical device. | 01-28-2016 |