Class / Patent application number | Description | Number of patent applications / Date published |
607022000 | Chemical substance in blood | 11 |
20090024177 | Osmometric Heart Monitoring Device and Methods - Embodiments of the invention are related to monitoring devices and methods with osmometric sensors, amongst other things. In an embodiment, the invention includes an implantable heart failure monitoring system including an osmometric sensor, the osmometric sensor configured to generate a signal corresponding to the osmotic strength of a bodily fluid, and a controller in communication with the osmometric sensor, the controller configured to receive and process the signal corresponding to the osmotic strength of a bodily fluid. Other aspects and embodiments are provided herein. | 01-22-2009 |
20090299430 | Method and device for stabilising disordered breathing - A device and method for improving the stability of a ventilation pattern of a patient ( | 12-03-2009 |
20100049270 | TRIGGERED HIGH-OUTPUT PACING THERAPY - A device and method for delivering electrical stimulation to the heart in order to improve cardiac function in heart failure patients. The stimulation is delivered as high-output pacing in which the stimulation is excitatory and also of sufficient energy to augment myocardial contractility. The device may be configured to deliver high-output pacing upon detection of cardiac decompensation. | 02-25-2010 |
20100057158 | Neurostimulation Based On Glycemic Condition - A glycemic condition is indicated based on variance of a feature derived from cardiac electrogram data. Neurostimulation is then used to counteract a cardiac-related autonomic response to the glycemic condition. For example, stimulation of parasympathetic innervation may be used to counteract an autonomic sympathetic response that is associated with hypoglycemia or hyperglycemia. In addition, stimulation of sympathetic innervation may be used to counteract an autonomic parasympathetic response that is associated with hypoglycemia or hyperglycemia. | 03-04-2010 |
20100160993 | IMPLANTABLE SYSTEMS AND METHODS FOR MONITORING BNP LEVELS, HF AND MI - Methods for monitoring a patient's level of B-type natriuretic peptide (BNP), and implantable cardiac systems capable of performing such methods, are provided. A ventricle is paced for a period of time to provoke a ventricular evoked response, and a ventricular intracardiac electrogram (IEGM) indicative of the ventricular evoked response is obtained. Based on the ventricular IEGM, there is a determination of at least one ventricular evoked response metric (e.g., ventricular evoked response peak-to-peak amplitude, ventricular evoked response area and/or ventricular evoked response maximum slope), and the patient's level of BNP is monitored based on determined ventricular evoked response metric(s). Based on the monitored level's of BNP, the patients heart failure (HF) condition and/or risks and/or occurrences of certain events (e.g., an acute HF exacerbation and/or an acute myocardial infarction) can be monitored. | 06-24-2010 |
20100204744 | Osmometric Heart Monitoring Device and Methods - Embodiments of the invention are related to monitoring devices and methods with osmometric sensors, amongst other things. In an embodiment, the invention includes an implantable heart failure monitoring system including an implantable osmometric sensor configured to generate a signal corresponding to osmotic strength of a bodily fluid, the osmometric sensor comprising a rigid wall member defining an enclosed volume resisting deformation, the rigid wall member comprising a semi-permeable membrane; a signaling element comprising a first pressure sensor; and a second pressure sensor. Other aspects and embodiments are provided herein. | 08-12-2010 |
20100286741 | CARDIAC RHYTHM MANAGEMENT DEVICE WITH NEURAL SENSOR - Various aspects of the present subject matter relate to a device. In various embodiments, the device comprises at least one port adapted to connect at least one lead, a CRM functions module connected to the port and adapted to provide at least one CRM function using the lead, a neural function module, and a controller connected to the CRM functions module and the neural function module. The at least one CRM function includes a function to provide an electrical signal to the lead to capture cardiac tissue. The neural function module includes a signal processing module connected to the port and adapted to receive and process a nerve traffic signal from the lead into a signal indicative of the nerve traffic. The controller is adapted to implement a CRM therapy based on the signal indicative of the nerve traffic. Other aspects are provided herein. | 11-11-2010 |
20110066206 | METHOD AND APPARATUS FOR POST-SHOCK EVALUATION USING TISSUE OXYGENATION MEASUREMENTS - A method and device for delivering therapy that includes an electrode to sense cardiac signals and to deliver a therapy, a monitoring module detecting a cardiac event in response to the sensed cardiac signals using first detection criteria, a sensor emitting light and detecting emitted light scattered by a tissue volume adjacent the sensor to generate a corresponding detected light intensity output signal, a control module coupled to the sensor to control light emission of the sensor in response to delivering the therapy, and a controller coupled to the monitoring module, the therapy delivery module and the sensor, the controller configured to determine tissue oxygenation measurements in response to the output signal, determine a tissue oxygenation trend in response to the tissue oxygenation measurements, determine a recovery index in response to the determined tissue oxygenation trend, and control one or both of detecting a cardiac event by the monitoring module and delivery of therapy by the therapy delivery module in response to the determined recovery index. | 03-17-2011 |
20120165890 | Systems and Methods for Determining Optimal Interventricular Pacing Delays Based on Electromechanical Delays - Techniques are provided for use with implantable medical devices such as pacemakers for optimizing interventricular (VV) pacing delays for use with cardiac resynchronization therapy (CRT). In one example, ventricular electrical depolarization events are detected within a patient in which the device is implanted. The onset of isovolumic ventricular mechanical contraction is also detected based on cardiomechanical signals detected by the device, such as cardiogenic impedance (Z) signals, S1 heart sounds or left atrial pressure (LAP) signals. Then, an electromechanical time delay (T_QtoVC) between ventricular electrical depolarization and the onset of isovolumic ventricular mechanical contraction is determined. VV pacing delays are set to minimize the time delay to the onset of isovolumic ventricular mechanical contraction. Various techniques for identifying the onset of isovolumic ventricular contraction based on Z, S1 or LAP or other cardiomechanical signals are described. In some examples, CRT nonresponders are specifically identified and/or heart failure progression is tracked. | 06-28-2012 |
20120209344 | ENERGY-RELEASING CARBON NANOTUBE TRANSPONDER AND METHOD OF USING SAME - An energy-releasing carbon nanotube transponder comprising a nanocapacitor connected to at least one carbon nanotube and method of using same are described. An adjustable amount of electric energy is stored within the nanocapacitor so that the energy-releasing carbon nanotube transponder delivers either a biologically destructive or a biologically non-destructive electrical charge to target cells in response to biological, chemical or electrical stimuli. | 08-16-2012 |
20160166838 | ENERGY-RELEASING CARBON NANOTUBE TRANSPONDER AND METHOD OF USING SAME | 06-16-2016 |