Class / Patent application number | Description | Number of patent applications / Date published |
607021000 | Body or blood temperature | 6 |
20100241186 | Methods and Systems for Optimizing Cardiac Pacing Intervals for Various Physiologic Factors - Methods and systems for performing pacing interval optimization are provided. One or more optimum pacing interval is determined for each of a plurality of different ranges of heart rate, different levels of autonomic tone, different body temperature ranges, or combinations thereof. The information (e.g., measures of hemodynamic response) collected to perform pacing interval optimization can be collected and stored in a table over disjoint periods of time. Such measures of hemodynamic performance are preferably relative measures, but can alternatively be absolute measures. | 09-23-2010 |
20100305648 | METHOD AND APPARATUS FOR SAFE AND EFFICIENT DELIVERY OF CARDIAC STRESS AUGMENTATION PACING - A cardiac pacing system controls the progression of a cardiac disorder such as heart failure by delivering cardiac stress augmentation pacing to create or augment regional stress in the heart according to a delivery schedule programmed for a patient. Various events associated with the patient's conditions, activities, and other treatments may render the cardiac stress augmentation pacing risky or ineffective. The system detects such events before and during each cardiac stress augmentation pacing session and modifies the delivery schedule in response to the detection of each event to ensure patient safety and therapy efficiency. | 12-02-2010 |
20120089198 | Temperature Sensor for a Leadless Cardiac Pacemaker - A leadless cardiac pacemaker comprises a housing, a plurality of electrodes coupled to an outer surface of the housing, and a pulse delivery system hermetically contained within the housing and electrically coupled to the electrode plurality, the pulse delivery system configured for sourcing energy internal to the housing, generating and delivering electrical pulses to the electrode plurality. The pacemaker further comprises a temperature sensor hermetically contained within the housing and adapted to sense temperature information, wherein the pacemaker can control electrical pulse delivery at least partly based on the temperature information. | 04-12-2012 |
20140018876 | Temperature Sensor for a Leadless Cardiac Pacemaker - A leadless cardiac pacemaker comprises a housing, a plurality of electrodes coupled to an outer surface of the housing, and a pulse delivery system hermetically contained within the housing and electrically coupled to the electrode plurality, the pulse delivery system configured for sourcing energy internal to the housing, generating and delivering electrical pulses to the electrode plurality. The pacemaker further comprises a temperature sensor hermetically contained within the housing and adapted to sense temperature information, wherein the pacemaker can control electrical pulse delivery at least partly based on the temperature information. | 01-16-2014 |
20150328459 | SYSTEM AND METHOD FOR RATE MODULATED CARDIAC THERAPY UTILIZING A TEMPERATURE SENOR - A cardiac rhythm management system provides an increase in pacing rate as a combination of responses to three characteristics of a relative-temperature signal: a dip, a positive slope, and a positive magnitude. The relative-temperature signal is the difference between a short-term and a long-term temperature average. A dip produces a limited and temporary rate increase having a first proportionality. A positive slope produces a rate increase with a second proportionality. A positive magnitude produces a rate increase with a third proportionality. The dip response seeds the slope response to provide a seamless and immediate rate transition after a dip. The cardiac rhythm management system limits and filters the sum of the rate increases to provide a sensor indicated rate, which is used to stimulate the heart. | 11-19-2015 |
20160184588 | Combined Esophageal Temperature Monitor and Pacing Device - The methods, devices, and systems of the various embodiments may include an esophageal probe including and elongate tube, at least one pair of pacing electrodes and at least one temperature sensor. The elongate tube may include a proximal end for coupling to a handle and a distal end for insertion into an esophagus of a patient. The pair of pacing electrodes may be disposed at the distal end of the elongate tube, along with the temperature sensor. The temperature monitoring equipment may monitor the temperatures sensor, enable pacing to be conducted using the pair of pacing electrodes when measured temperature is within one or more thresholds, and preventing pacing from being conducted when measured temperature is not within the one or more thresholds. | 06-30-2016 |