Class / Patent application number | Description | Number of patent applications / Date published |
607011000 | Regulating or compensating stimulus level | 48 |
20080208274 | Method for treating myocardial infarction - A method for treating patients after a myocardial infarction which includes pacing therapy is disclosed. A cardiac rhythm management device is configured to deliver pre-excitation pacing to one or more sites in proximity to an infarcted region of the ventricular myocardium. Such pacing acts to minimize the remodeling process to which the heart is especially vulnerable immediately after a myocardial infarction. | 08-28-2008 |
20080215105 | CONTROLLED DELIVERY OF INTERMITTENT STRESS AUGMENTATION PACING FOR CARDIOPROTECTIVE EFFECT - A device and method for delivering electrical stimulation to the heart in a manner which provides a protective effect against subsequent ischemia is disclosed. The protective effect is produced by configuring a cardiac pacing device to intermittently switch from a normal operating mode to a stress augmentation mode in which the spatial pattern of depolarization is varied to thereby subject a particular region or regions of the ventricular myocardium to increased mechanical stress. | 09-04-2008 |
20080234771 | MECHANICAL VENTRICULAR PACING CAPTURE DETECTION FOR A POST EXTRASYSTOLIC POTENTIATION (PESP) PACING THERAPY USING AT LEAST ONE LEAD-BASED ACCELEROMETER - A system and method for monitoring at least one chamber of a heart (e.g., a left ventricular chamber) during delivery of extrasystolic stimulation to determine if the desired extra-systole (i.e., ventricular mechanical capture following refractory period expiration) occurs. The system includes an implantable or external cardiac stimulation device in association with a set of leads such as epicardial, endocardial, and/or coronary sinus leads equipped with motion sensor(s). The device receives and processes acceleration sensor signals to determine a signal characteristic indicative of chamber capture resulting from one or more pacing stimulus delivered closely following expiration of the refractory period. A threshold optimization method optionally evaluates capture and at least one of: runs an iterative routine to establish or re-establish chamber capture for the PESP therapy, sets a logical flag relating to chamber capture status and stores parameter(s) relating to successful chamber capture for one or more subsequent cardiac cycles. | 09-25-2008 |
20080234772 | METHOD AND DEVICE FOR MYOCARDIAL STRESS REDISTRIBUTION - Methods and devices are described for delivering electrical stimulation to the heart in a manner that advantageously redistributes myocardial stress during systole for therapeutic purposes in the treatment of, for example, post-MI and HF patients. Pre-excitation pacing may be applied to deliberately de-stress a particular myocardial region that may be expected to undergo deleterious remodeling, such an the area around a myocardial infarct or a hypertrophying region or to deliberately stress a region remote from the pre-excitation pacing site in order to exert a cardioprotective conditioning effect, similar to the beneficial effects of exercise. Pre-excitation pacing may be advantageously combined with inotropic electrical stimulation applied to the stressed region. | 09-25-2008 |
20080249583 | THERAPY CONTROL BASED ON THE RATE OF CHANGE OF INTRACARDIAC IMPEDANCE - A system comprising a medical device that includes an impedance measurement circuit adapted to be coupled to implantable electrodes to obtain an intracardiac impedance signal between electrodes, a therapy circuit operable to deliver a therapy to a subject, and a controller circuit coupled to the impedance measurement circuit and the therapy circuit. The controller circuit determines a time rate of change of the intracardiac impedance signal and adjusts at least one parameter related to therapy in a manner that alters the rate of change. | 10-09-2008 |
20080255626 | IMPLANTABLE MEDICAL DEVICE CONFIGURED AS A PEDOMETER - This document discusses, among other things, a system including an implantable medical device. The implantable medical device includes a control circuit and a motion sensing device. The motion sensing device is coupled to the control circuit, and the motion sensing device is configured to transmit signals to the control circuit. The control circuit is configured to identify one or more steps of a patient using the motion sensing device signal. | 10-16-2008 |
20080255627 | Implantable Heart Stimulation Device and Method - The above object is achieved in accordance with the present invention by a cardiac stimulation device for stimulating a heart having a first ventricle and a second ventricle. The device includes a first ventricle sensing circuit that is configured to communicate with a first ventricle sensing electrode suited to be positioned in or at the first ventricle, to enable the first ventricle sensing circuit to sense the first ventricle. The device also includes a second ventricle pacing circuit, configured to communicate with a second ventricle pacing electrode suited to be positioned in or at the second ventricle of the heart, to enable the second ventricle pacing circuit to pace the second ventricle. The device includes a control circuit that operates with time cycles corresponding to normal heart cycles. The control circuit is configured to, within such a time cycle, to detect a cardiac event in the first ventricle with the first ventricle sensing circuit and, after a time duration that is greater than or equal to zero, to cause the second ventricle pacing circuit to deliver a pacing pulse. The control circuit is also configured to detect the aforementioned loop of events indicative of the pacemaker-mediated tachycardia by detecting one or both of (i) the regularity of one or more repetitious events related to operation of the first ventricle sensing circuit or the second ventricle pacing circuit, and (ii) a repetitive operation pattern of the heart stimulation device. The control circuit is configured to determine if the detected regularity satisfies a predetermined regularity criterion and to determine if the operation pattern satisfies a predetermined operation pattern criterion. Based on whether one or both of these criteria are satisfied, the control circuit determines whether the aforementioned loop of events, and thus the presence of pacemaker-mediated tachycardia, is likely to exist. | 10-16-2008 |
20090054942 | METHODS, DEVICES AND SYSTEMS FOR SINGLE-CHAMBER PACING USING A DUAL-CHAMBER PACING DEVICE - Various embodiments of the present invention are directed to systems, methods and devices for cardiac applications including those relating to pacing devices. One such device is directed to a cardiac rhythm therapy (CRT) device designed for dual chamber pacing using two pacing signals each having a positive and negative component that has been modified for single chamber pacing. The device comprises a first output that connects to a pacing lead; a second output that connects to the pacing lead; a third output that connects to a reference point; and electrical circuitry connecting the second electrical connection to the first output, the third electrical connection to the second output, and the first and fourth electrical connections to the third output. | 02-26-2009 |
20090076560 | Biventricular Heart Stimulator and Method of Controlling a Biventricular Heart Stimulator - In a biventricular heart stimulator and a method for controlling such a biventricular heart stimulator, successive stimulation pulses are delivered to the ventricles of a heart such that stimulation pulses in a single heartbeat cycle are respectively first delivered to the first ventricle and then to the second ventricle. Capture or loss of capture in response to stimulation pulses delivered to one ventricle is detected. As a result of a detected loss of capture, preventative measures are taken for preventing loss of capture in the other ventricle. | 03-19-2009 |
20090076561 | Systems and methods for avoiding neural stimulation habituation - An embodiment relates to a method for delivering a vagal stimulation therapy to a vagus nerve, including delivering a neural stimulation signal to non-selectively stimulate both afferent axons and efferent axons in the vagus nerve according to a predetermined schedule for the vagal stimulation therapy, and selecting a value for at least one parameter for the predetermined schedule for the vagal stimulation therapy to control the neural stimulation therapy to avoid physiological habituation to the vagal stimulation therapy. The parameter(s) include at least one parameter selected from the group of parameters consisting of a predetermined therapy duration parameter for a predetermined therapy period, and a predetermined intermittent neural stimulation parameter associated with on/off timing for the intermittent neural stimulation parameter. | 03-19-2009 |
20090093857 | SYSTEM AND METHOD TO EVALUATE ELECTRODE POSITION AND SPACING - An IMD can be implanted into a patient to address various conditions. The IMD case and leads can have various electrodes and other portions to measure various physiological conditions. For example, a selected current can be generated between two electrodes, either external or internal in the patient, and a voltage can be measured by one or more electrodes of the IMD. A voltage can be measured at two or more locations to determine a relative motion of different electrodes. If the electrodes are in different portions of the heart, a determination can be made of a relative motion or position of the heart or portions of the heart. | 04-09-2009 |
20090182389 | MRI DETECTOR FOR IMPLANTABLE MEDICAL DEVICE - An implantable medical device with an inductive switching regulator having an inductor with a ferromagnetic core is described. The device incorporates a core saturation detector for detecting saturation in the inductor core indicating the presence of a magnetic field such as produced by an MRI scan. The device is configured to alter its behavior when core saturation is detected such as by entering an MRI mode that may include cessation of therapy, fixed-rate bradycardia pacing, and/or disablement of tachyarrhythmia therapy. | 07-16-2009 |
20090234405 | SYSTEM AND METHOD FOR CARDIAC LEAD SWITCHING - An implantable medical device (IMD) can include an implantable pulse generator (IPG), such as a cardiac pacemaker or an implantable cardioverter-defibrillator (ICD). Various portions of the IMD, such as a device body, a lead body, or a lead tip, can be provided to reduce or dissipate a current and heat induced by various external environmental factors. According to various embodiments, features can be incorporated into the lead body, the lead tip, or the IMD body to reduce the creation of an induced current, or dissipate the induced current and heat created due to an induced current in the lead. | 09-17-2009 |
20090234406 | SYSTEMS, DEVICES AND METHODS FOR MODULATING AUTONOMIC TONE - Various system embodiments comprise means for intermittently delivering a sympathetic stimulus, including means for delivering a sequence of stress-inducing pacing pulses adapted to increase sympathetic tone during the stress-inducing pacing. The stress-inducing pacing results in a parasympathetic reflex after the sequence of stress-inducing pacing. The embodiment further includes means for delivering neural stimulation to elicit a parasympathetic response or a sympathetic response in a coordinated manner with respect to the sequence of stress-inducing pacing pulses. The neural stimulation is timed to elicit the parasympathetic response after the sequence of stress-inducing pacing pulses and concurrent with at least a portion of the parasympathetic reflex to the sequence of stress-inducing pacing to enhance a parasympathetic effect of the parasympathetic reflex, or to elicit the sympathetic response during the sequence of stress-inducing pulses to provide a larger sympathetic stimulus, resulting in an enhanced parasympathetic reflex in response to the large sympathetic stimulus. | 09-17-2009 |
20100016912 | SYSTEM FOR WAVEFORM STIMULATION COMPENSATING ELECTRODE POLARIZATION - Upon delivery of a pacing pulse to a heart by an electrode of an implantable medical device (IMD), a deleterious pace polarization artifact is generally created at the electrode-tissue interface and subsequently stored by the electrode. Such polarization artifact is generally minimized through the use of passive recharge circuitry. Such passive recharge circuitry functions in creating a recharge pulse at the electrode which in essence, minimizes the polarization artifact on the electrode. In order to produce further artifact minimization from a subsequent pacing pulse, following termination of the recharge pulse, any remaining polarization artifact is sampled and analyzed by the IMD and IMD software optionally compensates the next recharge pulse to further minimize the polarization artifact generated by a next pacing pulse. This sampling and optional compensation is repeated for subsequent pacing pulses so that polarization artifacts are effectively analyzed and if necessary, minimized. | 01-21-2010 |
20100069986 | SYSTEMS AND METHODS FOR INCREASING PACING OUTPUT AFTER EXTERNAL HIGH-ENERGY ELECTRICAL SHOCK - Embodiments of the invention are related to implantable medical devices and methods for increasing pacing output after an external electrical shock, amongst other things. In an embodiment, the invention includes a medical device including a shock detection circuit; and a pacing output circuit in communication with the shock detection circuit. The pacing output circuit can be configured to generate pacing pulses. The pacing output circuit can be configured to increase the amplitude of the pacing pulses and/or increase the pulse width of the pacing pulses in response to the shock detection circuit detecting a defibrillation or cardioversion shock delivered by an external device. Other embodiments are also included herein. | 03-18-2010 |
20100137931 | Implantable Cardiac Device With Dyspnea Measurement - Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device. | 06-03-2010 |
20100305638 | Method and Apparatus for Phrenic Nerve Activation Detection with Respiration Cross-Checking - The present invention concerns phrenic nerve activation detection algorithms for characterization of phrenic nerve activation and phrenic nerve activation avoidance in cardiac pacing therapy. | 12-02-2010 |
20110071587 | Adaptive Safety Pacing - Methods and systems involve adjusting an energy used for safety pacing based on the capture threshold. The safety pacing energy may be adjusted prior to a capture threshold test. During the capture threshold test, backup safety paces are delivered using the adjusted pacing energy. Following suspension of automatic capture verification, the device may enter a suspension mode. During the suspension mode, safety pacing pulses are delivered using a pacing energy adjusted based on capture threshold. | 03-24-2011 |
20110082511 | METHOD AND SYSTEM FOR MAINTAINING A STATE IN A SUBJECT - A method of maintaining a state in a subject ( | 04-07-2011 |
20110118802 | NERVE STIMULATION DEVICE - To provide a nerve stimulation device capable of stably stimulating a vagus nerve while preventing variation in a cardiac rate reducing effect. Adopted is a nerve stimulation device including a cardiac beat detecting part that detects a cardiac beat of a heart by a second electrode, a pulse generating part that generates a pulse for stimulating a vagus nerve to a first electrode, and a controller that controls a timing of generation of a pulse by the pulse generating part in synchronization with a cardiac cycle detected by the cardiac beat detecting part. | 05-19-2011 |
20110202102 | METHOD AND IMPLANTABLE DEVICE FOR SELECTIVE HEART PACING - An implantable medical device measures an AV delay in connection with measurement of N physiological patient parameters. The parameters are used for identifying a sub-space of an N-dimensional parameter space. An expected AV delay is assigned to the identified sub-space based on the measured AV delay, where the parameter space with expected AV delays constitute decision support information to be used by the device for performing a selective heart pacing. This selective pacing is performed based on a priori probability determined using the support information and a measured set of N parameters. The a priori probability represents the probability of successful AV conduction at a current patient condition determined based on the measured parameters. | 08-18-2011 |
20110230926 | MAXIMUM PACING RATE LIMITER SYSTEM - A maximum pacing rate limiter for use in adaptive rate pacing in conjunction with a cardiac rhythm management system for a heart. The maximum pacing rate limiter may function to measure an interval, termed the ERT interval, between a paced ventricular evoked response and a T-wave. The maximum pacing rate limiter may further function to maintain the ERT interval at less than a certain percentage of the total cardiac cycle. In one disclosed embodiment, a maximum pacing rate limiter calculates an ERT rate based on the detected paced ventricular evoked response and the T-wave, and the pacing rate limiter module further communicates the minimum of the ERT rate and an adaptive-rate sensor indicated rate to a pacemaker. | 09-22-2011 |
20110276104 | METHOD AND APPARATUS FOR DISCONNECTING THE TIP ELECTRODE DURING MRI - A medical device includes a pulse generator, a lead, and an electrode. The lead includes an electrode and a lead conductor connecting the pulse generator with the electrode via first and second conductive paths. The medical device includes first and second switches. The first switch is disposed along the first conductive path and includes an open state in the presence of a magnetic field and a closed state in the absence of the magnetic field. The second switch is disposed along the second conductive path and includes an open state when a voltage applied across the second switch is at or below a threshold voltage and a closed state when the voltage applied across the second switch exceeds a threshold voltage. | 11-10-2011 |
20110319950 | BALANCED CHARGE WAVEFORM FOR TRANSCUTANEOUS PACING - External pacemaker systems and methods deliver pacing waveforms that minimize hydrolysis of the electrode gel. Compensating pulses are interleaved with the pacing pulses, with a polarity and duration that balance the net charge at the electrode locations. The compensating pulses are preferably rectangular for continuous pacing, and decay individually for on-demand pacing. | 12-29-2011 |
20120010675 | ELECTRICAL ENERGY DELIVERY TISSUE SITE VALIDATION - Electrical energy delivery tissue site validation systems and methods can determine an indication of a tissue type at a tissue site. This information can be used to enable or inhibit electrical energy delivery to the tissue site. The tissue type at the tissue site can be determined such as by delivering a test electrical energy and sensing a responsive electrical energy. An electrical connectivity to the tissue site can also be determined, such as by using a sensed intrinsic electrical signal at the tissue site. Tissue type information may be communicated externally, such as to allow user confirmation or override of the determined indication of tissue type at the tissue site, such as by a physician, user, or other operator. | 01-12-2012 |
20120010676 | MEDICAL DEVICE SENSING AND DETECTION DURING MRI - A medical device includes a sensor for sensing for an MRI gradient magnetic field and a microprocessor configured to operate in a signal processing mode in which electrical signals induced by the gradient magnetic field are not counted as cardiac events. | 01-12-2012 |
20120185007 | VAGAL STIMULATION - The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions. | 07-19-2012 |
20120197331 | ISOLATING LEAD CONDUCTOR FOR FAULT DETECTION - Systems and methods for providing a cardiac stimulus device lead having fault tolerance and fault isolation are disclosed. A medical electrical lead is provided according to one aspect. According to one embodiment, the lead includes a first conductor and a second conductor for transmitting an electrical pulse from a pulse generator. The lead further includes a switching mechanism, a first electrode, and a lead assessment circuit. The switching mechanism selectively couples the first conductor to the first electrode. The first electrode is decoupled during a test phase and the switching mechanism directly couples the first conductor to the second conductor. The lead assessment circuit processes a signal associated with the electrical properties of the lead to determine whether the lead is exhibiting a lead related condition. | 08-02-2012 |
20120271371 | CAPTURE VERIFICATION AND PACING ADJUSTMENTS FOR USE WITH MULTISITE LEFT VENTRICULAR PACING - Various embodiments of the present invention are directed to, or are for use with, an implantable system including a lead having multiple electrodes implantable in a patient's left ventricular (LV) chamber. In accordance with an embodiment, the patients LV chamber is paced at first and second sites within the LV chamber using a programmed LV1-LV2 delay, wherein the LV1-LV2 delay is a programmed delay between when first and second pacing pulses are to be delivered respectively at the first and second sites within the LV chamber. Evoked responses to the first and second pacing pulses are monitored for, and one or more LV pacing parameter is/are adjusted and/or one or more backup pulse is/are delivered based on results of the monitoring. | 10-25-2012 |
20120283795 | SELECTIVELY ENABLING A PASSIVE RECHARGE CYCLE FOR AN IMPLANTABLE CARDIAC STIMULATION DEVICE - Techniques are described for selectively enabling and disabling a pre-stimulation passive recharge pacing mode for an implantable medical device (IMD) depending on whether the IMD is operating in an electromagnetic interference (EMI)-safe mode. In some examples, the IMD may enable the pre-stimulation passive recharge pacing mode when the IMD is operating in the EMI-safe mode, and disable the pre-stimulation passive recharge pacing mode when the IMD is not operating in the EMI-safe mode. The EMI-safe mode may be, in some examples, a magnetic resonance imaging (MRI)-safe mode. | 11-08-2012 |
20120290029 | DEVICE FOR MEDICAL APPLICATIONS AND ELECTROMEDICAL IMPLANT - A device for medical applications, comprising an elongated conductive element having one proximal end and one distal end, wherein the latter undergoes a temperature increase by absorbing energy from an electromagnetic field, comprising a separating element disposed in the elongated conductive element for the galvanic separation of the proximal end from the distal end. | 11-15-2012 |
20130096639 | ELECTRICAL MUSCLE CONTROLLER - A method of modifying the force of contraction of at least a portion of a heart chamber, including providing a subject having a heart, comprising at least a portion having an activation, and applying a non-excitatory electric field having a given duration, at a delay after the activation, to the portion, which causes the force of contraction to be increased by a least 5%. | 04-18-2013 |
20130150910 | APPARATUS FOR REVERSAL OF MYOCARDIAL REMODELING WITH PRE-EXCITATION - An apparatus for reversing ventricular remodeling with electro-stimulatory therapy. A ventricle is paced by delivering one or more stimulatory pulses in a manner such that a stressed region of the myocardium is pre-excited relative to other regions in order to subject the stressed region to a lessened preload and afterload during systole. The unloading of the stressed myocardium over time effects reversal of undesirable ventricular remodeling. | 06-13-2013 |
20130184774 | DEVICES AND METHODS FOR STEERING ELECTRICAL STIMULATION IN CARDIAC RHYTHM MANAGEMENT - Tools and methods are particularly suited for certain cardiac conditions involving use of a catheter for pacing of the right and left ventricles from a lead in the right ventricle, e.g., to facilitate mechanically and/or electrically synchronous contractions for resynchronization. Certain aspects involve pacing and/or mapping by delivering pulses to a cardiac site useful for improving heart function as measured, e.g., by QRS width, fractionation, late LV activation timing, mechanical synchronicity of free wall and septal wall, effective throughput/pressure, or a combination thereof. In one embodiment, a catheter arrangement includes a fixation mechanism to attach the catheter arrangement to heart tissue, individually-addressable electrodes for providing pacing signals to the heart tissue, and an elongated structure that supports the fixation mechanism and the electrodes. The elongated structure is used to direct an end thereof to the target region in the right ventricle, and deliver an electrical pacing signal to different portions within the target region of the heart when the fixation mechanism is operative to attach to heart tissue and also when the fixation mechanism is not attaching the catheter arrangement to heart tissue. | 07-18-2013 |
20130238044 | ACOUSTICALLY POWERED IMPLANTABLE STIMULATING DEVICE - An implantable stimulation system comprises an implantable stimulator and a control device. The control device is configured to transmit acoustic waves to the implantable stimulator, and the implantable stimulator is configured to transform the acoustic waves into electrical current, and generate stimulation energy based on the electrical current. For example, the electrical current can be transformed into electrical energy that can be used to generate the stimulation energy. Or the electrical current can contain signals used to directly or indirectly control the generation of the stimulation energy. | 09-12-2013 |
20130268014 | METHOD AND APPARATUS FOR PACING DURING REVASCULARIZATION - A system for use during revascularization includes a catheter having an adjustable balloon for delivery a stent, one or more pacing electrodes for delivering one or more pacing pulses to a patient's heart, and a pacemaker configured to generate the one or more pacing pulses to be delivered to the heart via the one or more pacing electrodes. The one or more pacing pulses are delivered at a rate substantially higher than the patient's intrinsic heart rate without being synchronized to the patient's intrinsic cardiac contractions, and are delivered before, during, or after an ischemic event to prevent or reduce cardiac injury. | 10-10-2013 |
20130268015 | CONSTANT CURRENT PACING APPARATUS WITH PROTECTION FROM HIGH VOLTAGE PULSES - A constant current pacing apparatus and method for pacing uses, for example, H-bridge circuitry and a constant current source connected to the H-bridge circuitry. Further, for example, protection is provided from high voltage pulses applied to the patient via one or more other medical devices. | 10-10-2013 |
20130317562 | LEAD FOR IMPLANTABLE CARDIAC PROSTHESIS WITH INTEGRATED PROTECTION AGAINST THE EFFECTS OF MRI FIELDS - A lead for an implantable cardiac prosthesis having an integrated protection against the effects of magnetic resonance imaging (“MRI”) fields. A protection circuit ( | 11-28-2013 |
20140018872 | ADAPTIVE PHRENIC NERVE STIMULATION DETECTION - An example of a system comprises a cardiac pulse generator configured to generate cardiac paces to pace the heart, a sensor configured to sense a physiological signal for use in detecting pace-induced phrenic nerve stimulation (PS), a storage, and a phrenic nerve stimulation detector. The storage is configured for use to store patient-specific PS features for PS beats with a desirably large signal-to-noise ratio. The phrenic nerve stimulation detector may be configured to detect PS features for the patient by analyzing a PS beat with a desirably large signal-to-noise ratio induced using a pacing pulse with a large energy output and store patient-specific PS features in the storage, and use the patient-specific PS features stored in the memory to detect PS beats when the heart is paced heart using cardiac pacing pulses with a smaller energy output. | 01-16-2014 |
20140088661 | ELECTRICAL INIBITION OF THE PHRENIC NERVE DURING CARDIAC PACING - According to various method embodiments for pacing a heart and avoiding unwanted stimulation of a phrenic nerve during cardiac pacing, a desired pacing time for delivering a cardiac pace is determined, and a desired nerve traffic inhibition time to inhibit nerve traffic in the phrenic nerve is determined using the desired pace time. The cardiac pace is delivered at the desired pacing time and nerve traffic in the phrenic nerve is inhibited at the desired nerve traffic inhibition time. | 03-27-2014 |
20140100624 | CARDIAC PACING DURING MEDICAL PROCEDURES - An implantable medical device may comprise a therapy module configured to generate pacing therapy for a heart of a patient and a control module configured to control the therapy module. The control module may also be configured to detect a condition indicative of the presence of a magnetic resonance imaging (MRI) device and switch operation from a first pacing therapy program to a second pacing therapy program in response to detecting the condition indicative of the presence of the MRI device. While operating in the second pacing therapy program, control module may control the therapy module to generate a pacing pulse to an atrium of the heart of the patient during a time period between the end of an atrial refractory period of a previous atrial depolarization and the end of a ventricular refractory period of a previous ventricular depolarization corresponding to the previous atrial depolarization. | 04-10-2014 |
20140121718 | SYSTEMS, DEVICES AND METHODS FOR MODULATING AUTONOMIC TONE - Various embodiments intermittently deliver a sympathetic stimulus, including deliver a sequence of stress-inducing pacing pulses adapted to increase sympathetic tone during the stress-inducing pacing. The stress-inducing pacing results in a parasympathetic reflex after the sequence of stress-inducing pacing. The embodiment further delivers neural stimulation to elicit a parasympathetic response or a sympathetic response in a coordinated manner with respect to the sequence of stress-inducing pacing pulses. The neural stimulation is timed to elicit the parasympathetic response after the sequence of stress-inducing pacing pulses and concurrent with at least a portion of the parasympathetic reflex to the sequence of stress-inducing pacing to enhance a parasympathetic effect of the parasympathetic reflex, or to elicit the sympathetic response during the sequence of stress-inducing pulses to provide a larger sympathetic stimulus, resulting in an enhanced parasympathetic reflex in response to the large sympathetic stimulus. | 05-01-2014 |
20140200622 | Combination Device and Methods for Treating Congestive Heart Failure and Stroke - According to some embodiments, the present invention provides a device, system, and methods for treating a plurality of conditions in a patient, where the device, system, and methods provide a stimulation signal for each condition, wherein each stimulation signal has one or more of polarity, direction, and pulse patterns selected for the respective condition. According to some embodiments, the conditions comprise congestive heart failure and stroke. | 07-17-2014 |
20140277231 | MEDICAL DEVICE INVOLVING MUSCLE STIMULATION ELECTRODES AND AN ELECTROMAGNETIC LEAD - The invention relates to electrodes of a novel type in a heart stimulator functioning on energy produced by a piezoelectric effect. A variant of the electrodes is formed by the presence of a ferromagnetic material. The device constituting the heart stimulator has a small overall volume, weighs less than traditional stimulators, poses less risk of infection and clotting and much less risk of mechanical failure. Use of the device containing electrodes composed of materials capable of producing a piezoelectric effect and, if appropriate, also containing a ferromagnetic material, and also a directional probe comprising an electromagnet. | 09-18-2014 |
20140324114 | SYSTEM AND METHOD TO DELIVER THERAPY IN PRESENCE OF ANOTHER THERAPY - Various aspects relate to a method. In various embodiments, a therapy of a first therapy type is delivered, and it is identified whether a therapy of a second therapy type is present to affect the therapy of the first therapy type. Delivery of the therapy is controlled based on the presence of the therapy of the second therapy type. Some embodiments deliver the therapy of the first type using one set of parameters in the presence of a therapy of a second type, and deliver the therapy of the first type using another set of parameters when the therapy of the second type is not present. In various embodiments, one of the therapy types includes a cardiac rhythm management therapy, and the other includes a neural stimulation therapy. Other aspects and embodiments are provided herein. | 10-30-2014 |
20140350623 | SYSTEM AND METHOD FOR CONTROLLING ELECTRICAL STIMULATION BASED ON LOWEST OPERABLE VOLTAGE MULTIPLIER FOR USE WITH IMPLANTABLE MEDICAL DEVICE - Techniques are provided for use with implantable devices equipped with programmable voltage multipliers (including voltage dividers.) Candidate pulse widths are determined for selected voltage multipliers and stimulation vectors. Each candidate pulse width corresponds to a lowest pulse energy sufficient to achieve capture within the tissues of the patient (subject to a safety margin) using the selected vector and using the corresponding voltage multiplier. As such, a candidate pulse width represents a preferred or optimal pulse width, at least insofar as energy consumption is concerned. However, depending upon the capabilities of the device, the candidate pulse width might not be achievable. Accordingly, for each programmable vector, the system determines a lowest “operable” voltage multiplier sufficient to generate a pulse at a candidate pulse width subject to the capabilities of the device. The system then determines the corresponding current drain, and the vector achieving the lowest current drain at the lowest operable voltage multiplier is selected for the delivery of stimulation. | 11-27-2014 |
20150314130 | FAULT TOLERANT IMPLANTABLE MEDICAL SYSTEM - The disclosure describes implantable medical systems that respond to occurrence of a lead-related condition by utilizing an elongated coil electrode in defining an alternative pacing therapy vector to maintain optimal drain of an IMD power supply. An exemplary system includes a medical electrical lead having an elongated electrode and an improved sensing and therapy delivery circuitry to provide the alternative pacing therapy vector responsive to the lead-related conditions. The system reconfigures the operation of the sensing and therapy delivery circuitry triggered by the switch to the alternative pacing therapy vector. | 11-05-2015 |