Entries |
Document | Title | Date |
20080200911 | Electrical ablation apparatus, system, and method - A surgical instrument, such as an endoscopic or laparoscopic instrument, includes an ablation device. The ablation device includes an elongate relatively flexible member having a proximal end and a distal end. The flexible member includes a working channel. A first electrode extends from the working channel at the distal end of the flexible member and is adapted to be endoscopically located in a first position relative to a tissue treatment region. A second electrode is adapted to be percutaneously located in a second position of the tissue treatment region. The first and second electrodes are adapted to couple to an electrical waveform generator and to receive an electrical waveform sufficient to ablate tissue located between the first and second electrodes. | 08-21-2008 |
20080208184 | Cardiac electrosurgery - A method of accessing a pericardial cavity of a heart is disclosed, comprising delivering electrical energy to a pericardium in a manner which creates a channel substantially through a parietal pericardium and does not substantially affect myocardial tissue. | 08-28-2008 |
20080221562 | TISSUE TREATMENT SYSTEM AND METHOD FOR TISSUE PERFUSION USING FEEDBACK CONTROL - A system, ablation probe, and method is provided for treating tissue, e.g., tissue having tumors. The treatment system is configured to automatically deliver infusaid to tissue when needed and comprises an ablation probe having an ablative element and at least one perfusion exit port. The system further comprises an ablation source operably coupled to the ablative element, and a pump assembly operably coupled to the perfusion exit port(s). The pump assembly is configured for pumping infusaid out through the perfusion exit port(s), preferably during the ablation process. The system further comprises a feedback device configured for controlling the amount of infusaid displaced by the pump assembly based on a sensed tissue parameter, e.g., tissue temperature or tissue impedance. For example, the feedback device can comprise a sensor configured for sensing the tissue parameter, and a perfusion controller configured for controlling the pump assembly based on the sensed tissue parameter. As another example, the feedback device can comprise a perfusion valve associated with the distal end of the shaft. In this case, the perfusion valve forms the perfusion exit port, wherein the perfusion valve changes the size of the perfusion exit port based on tissue temperature. | 09-11-2008 |
20080221563 | Safety Device For a Hf-Surgery Appliance - A safety device for a high-frequency surgery appliance that includes at least one high-frequency generator with an active output and a neutral output to generate a working current, and at least two working connectors. At least one instrument, through which the working current is conducted to a biological tissue, is connected to respective working connectors. The safety device reduces the danger presented by fault currents that may flow through an inactive instrument. The safety device is connected to the active output as well as to the neutral output in such a way that every working connector through which no working current is flowing is connected only to the neutral output. | 09-11-2008 |
20080228180 | Ablation system and heat preventing electrodes therefor - An ablation system comprising a source of electrical ablation energy having first, second and third power outputs it is disclosed. A first conductor is coupled to the first power output on the source of electrical energy. A second conductor is coupled to the second power output on the source of electrical energy, the source of electrical energy creates a first output ablation voltage between the first and second power outputs. The first output ablation voltage varies between a first higher average value during a first period of time and a first lower average value for a second period of time. The first lower average value is greater than or equal to zero. A third conductor is coupled to a third power output on the source of electrical energy. The source of electrical energy creates a second output ablation voltage between the first and third power outputs. The second output ablation voltage varies between a second higher average value during a third period of time and a lower average value for a fourth period of time. The lower average value is greater than or equal to zero. An ablation probe is coupled to the first conductor. | 09-18-2008 |
20080228181 | ELECTROSURGICAL METHOD - Methods are disclosed for delivering energy to a body of a human or animal during a treatment procedure using an electrosurgical generator, a pre-set overall procedure time being defined for the treatment procedure, a ramp time being defined for a parameter to reach a pre-set threshold during the treatment procedure, the method comprising: measuring the parameter over time; and if the parameter has not substantially reached the pre-set threshold by the ramp time, setting a procedure extension time responsive to the time difference between the ramp time and the time at which the pre-set threshold was reached, and extending the overall procedure time by the procedure extension time. | 09-18-2008 |
20080249520 | System and method for providing even heat distribution and cooling return pads - A return pad for use with an electrosurgical system is disclosed. The return pad includes a conductive layer, a contact layer configured to engage a patient's skin and an intermediate layer disposed between the conductive layer and the contact layer. The intermediate layer is adapted to distribute energy. | 10-09-2008 |
20080262490 | Minimal Device and Method for Effecting Hyperthermia Derived Anesthesia - A method and device for inducing anaesthesia in mammals by the application of RF energy to create hyperthermia derived neural anaesthesia. An RF generator drives a plurality of electrodes placed in tissue surrounding the target nerve fibre to desiccate the desired length of nerve fibre to be desiccated in a single deployment. The device allows high-speed selection/de-selection of bipolar electrode pairs or sets under continuous RF excitation. Activation of electrode pairs is adapted in response to sensed current density and temperature (by electrodes not in the current discharge activation phase) in order to create lesions of complex and well defined shape necessary for the production of hyperthermia derived neural anaesthesia. | 10-23-2008 |
20080275438 | Accordion style cable stand-off - A cable stand-off for use with an electrosurgical system includes an accordion body portion having a plurality of panels, and a plurality of hinges. Each panel has at least one hole formed therethrough. The holes of the plurality of panels are axially aligned with one another. The plurality of hinges couples adjacent panels to one another. In one embodiment, the hinges couple adjacent panels in a tip-to-tail fashion. The accordion body portion may be made of a flexible material. Each panels may further include at least one slot extending from a hole to an edge of the panel. | 11-06-2008 |
20080275439 | CARDIAC ABLATION AND ELECTRICAL INTERFACE SYSTEM AND INSTRUMENT - A system for ablating tissue and electrically interfacing with a heart including an electrosurgical instrument, an energy source, and a controller. The instrument includes a shaft maintaining first and second electrodes at a distal section. The electrodes are electrically isolated from one another. The controller controls delivery of energy from the energy source, and monitors electrical signals at the electrodes. The controller is programmed to operate in a monopolar mode and a bipolar mode. In the monopolar mode, the first and second electrodes are electrically uncoupled, and energy from the energy source is delivered to the first electrode in performing an ablation procedure. In the bipolar mode, first and second electrodes are electrically coupled and serve as opposite polarity poles to apply energy to a tissue target site, detect electrical signals at a tissue target site, or both. | 11-06-2008 |
20080281313 | System and Method for Laparoscopic Nerve Detection - A surgical system aids identification of nerves in a body to help prevent damage to the nerves during surgery to the body proximate the nerves. An electrode introduced to within a body cavity through a catheter is placed proximate a nerve within the body cavity by a laparoscopic or robotic device. An exploratory probe placed in the body cavity is selectively placed along a presumed pathway of the nerve to provide an electrical signal through the nerve to the electrode. An analyzer interfaced with the electrode analyzes the electrical signal received at the electrode to determine the proximity of the exploratory probe to the nerve, allowing mapping of the nerve pathway through the body cavity. | 11-13-2008 |
20080281314 | METHODS AND APPARATUSES FOR TISSUE TREATMENT - Disclosed in the present application are devices for localized delivery of energy and methods of using such devices, particularly for therapeutic treatment of biological tissues. The disclosed devices may contain one or more energy delivery members. The disclosed methods may involve positioning and deploying the energy delivery members in a target site, and delivering energy through the energy delivery members. | 11-13-2008 |
20080294156 | Electrosurgical generator - An electrosurgical generator includes one or more radio frequency (RF) power sources and an output stage including at least two output lines for connection to an electrosurgical instrument. The generator includes means for measuring a parameter associated with the electrosurgical procedure, such as the impedance measured across two of the output lines. A controller controls the generator such that it delivers a first RF waveform (such as a cutting signal) or a second RF waveform (such as a coagulating signal) to the output lines, and, in a combined mode, both first and second waveforms. The controller automatically adjusts at least one aspect of one or both waveforms in the combined mode, in response to the measured parameter associated with the surgical procedure. | 11-27-2008 |
20080294157 | Electrosurgical system and an electrode assembly for an electrosurgical system - In an electrosurgical system having a generator for generating radio frequency (RF) power and an electrosurgical instrument, the instrument includes a passive electrical identification component having a parameter of finite non-zero value identifying the instrument. The generator has a sensing circuit with a second electrical component, a signal source providing a voltage step-change, and a signal detector for detecting a transient response of the combination of the identification component and the second electrical component, the detector output signal being representative of the parameter value thereby allowing automatic identification of the instrument when it is connected to the generator. Also disclosed is an electrode assembly in which the identification component is associated with a digital device including a memory, the instrument having a pair of contacts interconnected by the identification component and serving to supply power from the generator to the digital device and/or convey data from a data output of the digital device. | 11-27-2008 |
20080300588 | Automating the Ablation Procedure to Minimize the Need for Manual Intervention - Cardiac ablation is automated to require minimal user intervention, to thereby reduce X-ray exposure to staff and patients, increase patient throughput, simplify ablation and make ablation more precise. Steering between ablation points on the heart is automatic by use of a localizer system ( | 12-04-2008 |
20080300589 | Assessment of Electrode Coupling for Tissue Ablation - An electrode catheter ( | 12-04-2008 |
20090005771 | Optical Pyrometric Catheter for Tissue Temperature Monitoring During Cardiac Ablation - A system for opto-pyrometric tissue temperature monitoring in real time. The system is adapted for cardiac ablation and tissue temperature measurement, having a catheter having a tip electrode adapted for RF ablation of cardiac tissue and an optical collector whose distal end is received in an opening formed in the tip electrode to detect black body radiation from the cardiac tissue. The system includes an optical detection system in communication with the optical collector, the optical processing system processing signals representative of a wavelength of at least a portion of the black body radiation to determine a tissue temperature. The incorporation of an optical collector within a catheter tip permits real time monitoring of tissue temperature during ablation and lesion formation to prevent critical thresholds in temperature associated with events that can damage tissue, including steam pop, thrombus, char, etc. | 01-01-2009 |
20090012516 | Electrosurgical system - An electrosurgical system includes an electrosurgical generator ( | 01-08-2009 |
20090018536 | Measurement and control systems and methods for electrosurgical procedures - An energy delivery system for use in performing a medical procedure is provided. The medical procedure can employ an energy source, the energy source can be connected to an energy delivering device via a transmission line. The energy delivery system can include a measurement system, the measurement system can be configured to sample an output signal generated by the energy source. The energy delivery system includes a control system, which includes a calibration unit. The calibration unit can be configured to generate a calibration signal. The calibration signal can have a magnitude and phase, wherein the magnitude and phase is representative of the output signal and the transmission line loss information. The energy delivery system can also include a control unit, the control unit being configured to receive the calibration signal and adjust the energy source as needed. | 01-15-2009 |
20090018537 | SURGICAL APPARATUS - A surgical apparatus has a surgical instrument to treat a diseased part of a patient. An energy supply unit supplies energy for driving the surgical instrument. A sensor obtains information about states of the surgical instrument. An energy change detector detects whether magnitude of energy supplied to the surgical instrument is changed or not. A control unit controls driving of the sensor, based on a result of detection by the energy change detector. | 01-15-2009 |
20090024120 | Connection cable and method for activating a voltage-controlled generator - A connection cable is disclosed for controlling a voltage-controlled generator such as an electrosurgery generator from a controlling device such as a robotic surgery system. The cable includes a first connector adapted to connect to a voltage-controlled generator and a second connector adapted to connect to a controlling device. Within the cable is a voltage divider interdisposed between the first connector and the second connector. The voltage divider is configured to divide a reference voltage provided by the voltage-controlled generator into at least one control voltage which is selectable by the controlling device. The cable additionally includes a plurality of electrical wires which operatively connect the first connector, the second connector and the voltage divider. During robotic electrosurgery, said operating parameters can be actuated by a surgeon operating at the robotic surgical system console, which causes a corresponding control voltage to be switched to a control voltage input on an electrosurgery generator, which, in turn, generates a corresponding electrosurgical signal in response thereto. | 01-22-2009 |
20090036883 | Electrosurgical systems and printed circuit boards for use therewith - An electrosurgical system for treating tissue is disclosed. The system includes an electrosurgical generator, a printed circuit board, a generator ground and a patient ground. The printed circuit board is disposed in mechanical cooperation with the electrosurgical generator and includes a plurality of conductive layers. The generator ground includes a first portion and a second portion. The first portion is electro-mechanically connected to a conductive layer of the printed circuit board and the second portion is electro-mechanically connected to another conductive layer of the printed circuit board. The patient ground includes a portion that is at least partially interposed between the first portion of the generator ground and the second portion of the generator ground. | 02-05-2009 |
20090048593 | SYSTEM AND METHOD OF TREATING ABNORMAL TISSUE IN THE HUMAN ESOPHAGUS - An ablation catheter system and method of use is provided to endoscopically access portions of the human esophagus experiencing undesired growth of columnar epithelium. The ablation catheter system and method includes controlled depth of ablation features and use of either radio frequency spectrum, non-ionizing ultraviolet radiation, warm fluid or microwave radiation, which may also be accompanied by improved sensitizer agents. | 02-19-2009 |
20090054890 | Electrosurgical device with LED adapter - The present disclosure includes an electrosurgical instrument which further includes a housing having distal and proximal ends. The electrosurgical instrument also includes a light-emitting diode adapter having distal and proximal ends configured to selectively engage the distal end of the housing. The light-emitting diode adapter also includes at least one light-emitting diode disposed therein. The light-emitting diode is adapted to connect to an electrosurgical energy source and being selectively activatable to emit light from the adapter. The at least one electrode is configured to selectively engage the distal end of the light-emitting diode adapter and adapted to connect to the electrosurgical energy source. | 02-26-2009 |
20090054891 | ELECTROSURGICAL SYSTEM EMPLOYING MULTIPLE ELECTRODES AND METHOD THEREOF - A system and method for heat ablation of tissue in which energy is sequentially applied to at least two electrodes inserted into tissue. The system is comprised of a radiofrequency (RF) source for supplying RF energy, at least two electrodes configured to apply RF energy to tissue, at least one return electrode for returning the RF energy to the RF source, and a controller configured to sequentially apply the RF energy to each of the at least two electrodes. The sequential delivery of energy is determined by the measured current and voltage, the calculated impedance at each of the electrodes and the timing for each electrode. An internal load may be activated with the previously activated channel and remain on until the next channel is activated to avoid the generator from having an open circuit. | 02-26-2009 |
20090069801 | System and method for transmission of combined data stream - An electrosurgical system is disclosed. The electrosurgical system includes an electrosurgical instrument configured to generate a first and second data streams and a transmission circuit configured to convert the first and second data streams into a pulsed transmission signal. The first signal property of the transmission signal is representative of the first data stream and the second signal property of the transmission signal is representative of the second data stream. The transmission circuit is further configured to process the transmission signal to decode the first signal property into the first data stream and the second signal property into the second data stream. | 03-12-2009 |
20090076495 | Ablation catheter with sensor array and discrimination circuit to maximize variation in power density - A catheter is designed with a virtual electrode structure for creating a linear lesion. The catheter includes a sensor array that measures temperatures of adjacent tissue along the length of the virtual electrode section. The sensors in the sensor array include a conductive material that is substantially coated with an electrically and thermally insulating material. An aperture is formed in the insulating coating to expose an area of the conductive material. Leads are coupled with each sensor and are connected at their opposite, proximal ends with a discrimination circuit. The circuit processes the signals induced in the sensors to output a single temperature measurement, for example, the highest temperature, the lowest temperature, or the average temperature. The sensors also measure cardiac electrical activity and the leads are further connected to an electrocardiograph monitor to determine the efficacy of treatment. | 03-19-2009 |
20090076496 | PROSTATE CANCER ABLATION - Methods and systems for delivering electrical energy and controlled, mild hyperthermia to a prostate tissue of a patient for destruction of cancerous and/or hyperplastic tissue. A method includes positioning a plurality of electrodes in a target tissue region comprising the prostate tissue, and establishing an alternating electrical current flow through a volume of the prostate tissue to induce mild heating and destruction of cancerous cells in the volume. | 03-19-2009 |
20090093806 | CATHETER WITH PRESSURE SENSING - A medical probe includes a flexible insertion tube, having a distal end for insertion into a body cavity of a patient, and a distal tip, which is disposed at the distal end of the insertion tube and is configured to be brought into contact with tissue in the body cavity. A resilient member couples the distal tip to the distal end of the insertion tube and is configured to deform in response to pressure exerted on the distal tip when the distal tip engages the tissue. A position sensor within the probe senses a position of the distal tip relative to the distal end of the insertion tube, which changes in response to deformation of the resilient member. | 04-09-2009 |
20090093807 | Vasculature and lymphatic system imaging and ablation - Devices, methods, and systems related to imaging and ablation are disclosed. | 04-09-2009 |
20090099561 | Coaptive tissue fusion method and apparatus with current derivative precursive energy termination control - Biological tissue is sealed or fused to occlude an opening by compressing apposite sidewall portions of the tissue and applying sufficient energy to cause the fibers of the compressed opposed sidewall portions to intertwine and fuse with one another to form a permanent seal. The energy application is controlled by detecting a precursor fusion condition while applying the energy and before sufficient energy has been applied to achieve a permanent seal. The application of energy is terminated in a time-delayed relationship to the detection of the precursor fusion condition. The precursor fusion condition is detected from derivative values of an envelope established by peak values of cycles of high-frequency current conducted through the tissue. | 04-16-2009 |
20090105708 | DUAL FREQUENCY LED/ELECTRODE SURGICAL DEVICE, KIT AND METHOD - A surgical tool device, a kit and a method are described which provide a novel dual frequency LED/electrode scheme for use in manipulating nerve and innervated structures. The surgical tool device includes a probe assembly coupled to a handle assembly. The probe assembly has a low frequency light emitting diode (LED), a high frequency LED, and a stimulator electrode. The low frequency LED is used to promote healing and the high frequency LED is to aid in promoting a microbe free surgical area. The handle assembly has a system on a chip (SOC) electrically coupled to the low frequency LED, to the high frequency LED, and to the stimulator electrode. The kit includes the unattached components of the device and may also include an detector electrode probe along with an optional monitoring system. The method includes the steps of adjoining, affixing, attaching, and obtaining. | 04-23-2009 |
20090125014 | Thermal Ablation System - A thermal ablation system comprises a fluid handling unit receiving fluid from a fluid source at a first pressure, the fluid handling unit including a heater heating the fluid to a desired temperature and a pump and an introducer including a sheath which, when in an operative position, is received within a hollow organ, the sheath including a delivery lumen introducing fluid heated by the heater to the hollow organ and a return lumen withdrawing fluid from the hollow organ and returning the withdrawn fluid to the console via a return lumen, wherein the pump increases a pressure of the fluid between the fluid source and the delivery lumen of the introducer. | 05-14-2009 |
20090131929 | RELAY DEVICE AND ULTRASONIC-SURGICAL AND ELECTROSURGICAL SYSTEM - An ultrasonic-surgical and electrosurgical system includes an ultrasonic surgical device and an electrosurgical device which supply an ultrasonic signal and a high-frequency signal, respectively, to an ultrasonic/high-frequency treatment instrument capable of performing an ultrasonic treatment and a high-frequency treatment, and a relay device which is built in one of the devices including: a switch detection unit for detecting turn-on/off of a switch unit which performs on/off control of operations of the devices; a switch element for outputting a switch signal which is used for on/off of outputs of the ultrasonic signal and the high-frequency signal to each of the devices in accordance with the detection output; and a control unit for performing on/off control of the switch signal to control at least one of an output timing and an output mode of each of the signals. | 05-21-2009 |
20090157073 | Dual Synchro-Resonant Electrosurgical Apparatus with Bi-Directional Magnetic Coupling - An electrosurgical generator is disclosed. The generator includes an RF output stage configured to generate a sinusoidal waveform for a selected electrosurgical mode. The RF output stage includes first and second connections, the first connection including a first switching component and a first parallel inductor-capacitor resonant circuit and the second connection including a second switching component and a second parallel inductor-capacitor resonant circuit. The first parallel inductor-capacitor resonant circuit is configured to produce a first half-sinusoidal waveform and the second parallel inductor-capacitor resonant circuit is configured to produce a second half-sinusoidal waveform. The first and second switching components are in a 180 degree out-of-phase relationship and are configured to operate at a predetermined frequency based on a phase-correlated dual drive signal. | 06-18-2009 |
20090171341 | DISPERSIVE RETURN ELECTRODE AND METHODS - Apparatus and methods for safely performing electrosurgery on a patient by evenly distributing electric current density at a return electrode unit having a plurality of concentric return electrodes. In an embodiment, each electrode may be independently coupled to a passive electrical element, and each of the passive electrical elements may have a different value of capacitance, resistance or inductance, according to the configuration of the concentric return electrodes, to provide the even distribution of electric current density between the plurality of concentric return electrodes of the return electrode unit. | 07-02-2009 |
20090171342 | METHOD AND SYSTEM FOR USING COMMON SUBCHANNEL TO ASSESS THE OPERATING CHARACTERISTICS OF TRANSDUCERS - A system and method for using a common subchannel to assess operating characteristics of one of a plurality of transducers that are coupled to said subchannel is disclosed. The plurality of transducers are divided into subsets and each subset is coupled to a subchannel. The system is configured to activate a selected transducer on the subchannel and the subchannel delivers operational information on the activated transducer. The present invention reduces the number of subchannels required to collect information on the plurality of transducers. The present invention may utilize one or more loading conditions to take at least one measurement, which at least one measurement is then used to derive operational information on the transducer. In one configuration, information on the amount of energy being delivered to the transducer is collected simultaneously with information on the operating temperature. In another embodiment only the temperature is measured. The present invention permits a more compact ablation device to be constructed based on the invention's ability to reduce the total number of subchannels required to collect transducer information. | 07-02-2009 |
20090171343 | PRESSURE-SENSITIVE FLEXIBLE POLYMER BIPOLAR ELECTRODE - The present invention is directed to bipolar ablation systems. A bipolar electrode system for ablation therapy is disclosed, including a pressure-sensitive conducting composite layer and a pair of electrodes in electrical conductive contact or communication with the pressure-sensitive conducting composite layer. Energy (e.g., ablation energy) is delivered via the pressure-sensitive conductive composition when sufficient pressure is applied to transform the pressure-sensitive conductive composite to an electrical conductor. An electrically insulative flexible layer, which may include a passageway for a fill material is also disclosed. In some embodiments, the systems can also be used for targeted delivery of compounds, such as drugs, using a bipolar electrode. | 07-02-2009 |
20090187182 | RF ABLATION DEVICE WITH JAM-PREVENTING ELECTRICAL COUPLING MEMBER - The inventive ablation element comprises an elongated cannula having a proximal end and a distal end. The cannula defines an internal lumen within the cannula and a cannula axis. A plurality of conductors contained within the lumen, each of the conductors has a proximal end proximate the proximal end of the cannula, and a distal end proximate the distal end of the cannula. A plurality of ablation stylets each has a proximal end and a distal end, and each coupled at the respective proximal end of the stylet to the distal end of a respective conductor, the stylets comprise a deflectable material, the conductors together with their respective stylets being mounted for axial movement. A trocar point defined proximate the distal end of the cannula. A deflection surface positioned between the trocar point and the proximal end of the cannula, the deflection surface being configured and positioned to deflect, in response to axial movement of the stylets in a direction from the proximate end of the cannula to the distal end of the cannula, at least some of the stylets laterally with respect to the cannula axis in different directions along substantially straight paths, the paths defining an ablation volume. | 07-23-2009 |
20090209956 | ABLATION PERFORMANCE INDICATOR FOR ELECTROSURGICAL DEVICES - Ablation performance indicator for electrosurgical devices is described where ablation is typically characterized by the generation of a plasma discharge at the electrode assembly of an electrosurgical probe. When the electrode begins firing, the current waveform assumes a distinct appearance characterized by a spike at the leading edge of each half cycle followed by a lower level for the remaining period of the half cycle. A calculation of the waveform's Crest Factor can be used to determine the state at the electrode, e.g., whether the ablative energy is causing a desirable ablative effect on the electrode. This provides real-time measurements of the RMS and peak current amplitudes along with the Crest Factor and may also be used as limits or inputs to control algorithms or as inputs to indicate whether the device is in its ablative or non-ablative state. | 08-20-2009 |
20090248008 | Electrosurgical Pencil Including Improved Controls - The present disclosure relates to electrosurgical devices having a plurality of hand-accessible variable controls. An electrosurgical device configured for connection to a source of electrosurgical energy is provided and includes a housing; an electrical circuit supported within the housing, the electrical circuit being connectable to the source of electrosurgical energy; and a controller slidably supported on the housing, wherein the controller is configured to exert a force on the electrical circuit to affect a change in the electrical circuit and to exert a force on a surface of the housing to provide a tactile feedback to a user of the electrosurgical device as the controller is moved relative to the housing. | 10-01-2009 |
20090259221 | POWER SUPPLY APPARATUS FOR OPERATION - A power supply apparatus for operation for outputting power to a surgical instrument includes an impedance detection section for detecting the impedance of the surgical instrument in the output, and an abnormality detection section for detecting an abnormality according to whether or not a variation value of the impedance per unit time exceeds a predetermined first impedance variation value. The abnormality detection section further detects an abnormality according to whether or not a variation value of a resonant frequency per unit time exceeds a predetermined threshold. The abnormality is detected in this manner, whereby it is possible to prevent the surgical instrument from being broken. | 10-15-2009 |
20090299362 | ELECTRICAL ABLATION DEVICE - An electrical ablation apparatus includes a housing extending along a longitudinal axis. A first electrode and a second electrode are disposed within the housing. The electrodes are configured to connect to electrically conductive wires. The first and second electrodes are separated by a gap. The second electrode includes first and second prongs defining an opening suitable to receive tissue to be ablated therebetween. When the first and second electrodes are energized at a predetermined energy level, an electric current suitable to ablate the tissue flows across the gap and forms an electric arc between the distal end of the first electrode and the tissue. A system includes an energy source to drive the electrical ablation apparatus. A method includes introducing the electrical ablation apparatus into a patient and ablating tissue with the electric arc. | 12-03-2009 |
20090306647 | DYNAMICALLY CONTROLLABLE MULTI-ELECTRODE APPARATUS & METHODS - Apparatus and methods for dynamically controlling a plurality of electrodes during an electrosurgical procedure, wherein each electrode may be controlled with respect to active or return electrode mode, condition, and power level. The electrodes may be disposed within a treatment chamber of a handpiece. Each electrode may comprise a spiral inductor. The handpiece may be equipped with suction and vibration means. The treatment chamber may be configured for receiving at least a portion of the target tissue therein. | 12-10-2009 |
20090318917 | SUBCUTANEOUS ELECTRIC FIELD DISTRIBUTION SYSTEM AND METHODS - Apparatus and methods for dynamically controlling electric field distribution within tissue disposed at various depths beneath the skin at a target region of a patient's body by independently controlling the electric potential of each of a plurality of electrodes in relation to the electric potential of a ground pad. By controlling electric field distribution during a procedure, a target tissue at particular depths beneath the skin can be selectively heated relative to adjacent non-target tissue. At least one of the electrodes and the ground pad may comprise a spiral inductor comprising a substantially planar spiral of electrically conductive material. | 12-24-2009 |
20090318918 | Suction ablator - An improved electrode for electrosurgery comprises at least one orifice in the active surface of the electrode connected to a lumen in the probe of larger cross-sectional area than the area of the orifice(s), the lumen being connected to a vacuum, such that a venturi is formed extending from the one or more orifices in the active surface of the electrode to the lumen, whereby flow of fluid, ablated tissue, and other debris in the vicinity of the surgical site is accelerated through the orifice(s), reducing clogging, whereby any particle passing through the orifice(s) is unlikely to become clogged downstream, and whereby the edges of the orifice(s) are ablative, tending to reduce any particles caught at the orifice(s) to a size small enough to pass therethrough. | 12-24-2009 |
20100030209 | CATHETER WITH PERFORATED TIP - A medical device includes an insertion tube, having a distal end for insertion into a body of a subject. A distal tip is fixed to the distal end of the insertion tube and is coupled to apply energy to tissue inside the body. The distal tip has an outer surface with a plurality of perforations through the outer surface, which are distributed circumferentially and longitudinally over the distal tip. A lumen passes through the insertion tube and is coupled to deliver a fluid to the tissue via the perforations. | 02-04-2010 |
20100036373 | Electrosurgical System Having a Sensor for Monitoring Smoke or Aerosols - An electrosurgical system includes an electrosurgical generator configured to generate electrosurgical energy and a sensor. The sensor is coupled to the electrosurgical generator and senses aerosol and/or smoke generated during application of the electrosurgical energy. The sensor generates data in response to the sensed aerosol and/or smoke and communicates the data to the electrosurgical generator. The electrosurgical generator generates the electrosurgical energy as a function of the data. | 02-11-2010 |
20100036374 | Electrosurgical System Having a Sensor for Monitoring Smoke or Aerosols - An electrosurgical system includes an evacuator apparatus and a sensor. The evacuator apparatus evacuates aerosol and smoke generated during application of electrosurgical energy. The sensor is operatively coupled to the evacuator apparatus and senses the aerosol and smoke generated during application of the electrosurgical energy. The sensor generates data in response to the sensed aerosol and smoke. The sensor operatively communicates the data to the evacuator apparatus and the evacuator apparatus evacuates the aerosol and smoke as a function of the data. | 02-11-2010 |
20100042093 | System and method for terminating treatment in impedance feedback algorithm - A system and method for performing electrosurgical procedures are disclosed. The system includes an electrosurgical generator adapted to supply energy at an output level to tissue. The electrosurgical generator includes a microprocessor adapted to generate a desired impedance trajectory having at least one slope. The target impedance trajectory includes one or more target impedance values. The microprocessor is also adapted to drive tissue impedance along the target impedance trajectory by adjusting the output level to substantially match tissue impedance to a corresponding target impedance value. The microprocessor is further adapted to compare tissue impedance to a threshold impedance value and adjust output of the electrosurgical generator when the tissue impedance is equal to or greater than the threshold impedance. The system also includes an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue. | 02-18-2010 |
20100042094 | Surgical Gas Plasma Ignition Apparatus and Method - Disclosed is an ignition system for initiating a plasma arc in an electrosurgical system. The system includes a source of high frequency electrical energy having a terminal of active potential and a terminal of return potential a base having a distal end from which a plasma arc emanates, an active electrode operatively coupled with the base and electrically in circuit with the terminal of active potential. The ignition system may have a piezoelectric device electrically coupled to the active electrode to create at least one high voltage spark when the system is initially activated. Alternately, the ignition system may include a heater or heating device of heating the active electrode and producing free electrons to assist in the initiation of the plasma arc. | 02-18-2010 |
20100049187 | Electrosurgical Instrument Including a Sensor - An electrosurgical system includes an electrosurgical generator, an electrosurgical instrument, an optical clarity sensor and a control component. The electrosurgical generator generates electrosurgical energy for use during electrosurgery. The electrosurgical instrument is coupled to the electrosurgical generator and treats tissue. The optical clarity sensor is coupled to the electrosurgical generator and is adapted to measure tissue with at least two optical frequencies. The control component is operatively coupled to the optical clarity sensor and receives sensor data therefrom. The control component communicates control instructions to the electrosurgical generator to control the generation of the electrosurgical energy. | 02-25-2010 |
20100049188 | Non-Thermal Ablation System for Treating Tissue - Systems and methods for non-thermal ablation of tissue are provided. A non-implantable minimally invasive system for treatment of tissue in a body via direct current ablation is provided including a catheter, a plurality of electrodes for deployment through the catheter, a power source for applying power to the electrodes, and a fixation element for maintaining the catheter in a treatment position during treatment of the tissue. A minimally invasive method for treating tissue in a body via direct current ablation is provided including inserting a catheter into the body such that a portion of the catheter remains outside of the body, deploying a fixation element to fix the catheter in a treatment position, deploying a plurality of electrodes through the catheter, applying power to the plurality of electrodes, using the electrodes to apply a current to the tissue, and removing the catheter from the body. | 02-25-2010 |
20100063496 | RF ABLATION PLANNER - In planning an ablation procedure, a planned target volume (PTV) ( | 03-11-2010 |
20100094276 | ELECTROSURGICAL APPARATUS AND METHOD FOR CONTROLLING ELECTROSURGICAL APPARATUS - A high-frequency cauterization power source is an electrosurgical apparatus for joining biological tissues. The electrosurgical apparatus includes a high frequency power supply portion for supplying a high frequency power that is applied to biological tissues; a detection portion for detecting a voltage and a current of a high frequency power that is output from the high frequency power supply portion; a tissue impedance calculating portion that calculates an impedance of biological tissue based on respective values for voltage and current detected at the detection portion; and a control portion that controls so as to substantially stop supply of the high frequency power from the high frequency power supply portion based on whether or not an increase greater than or equal to a predetermined value in the impedance that is calculated at the tissue impedance calculating portion occurs two times. | 04-15-2010 |
20100100093 | SYSTEM AND METHOD FOR CONTROLLED TISSUE HEATING FOR DESTRUCTION OF CANCEROUS CELLS - Methods and systems for delivering electrical energy for controlled heating or hyperthermia to a target tissue of a patient for destruction of cancerous cells or tissue. | 04-22-2010 |
20100130972 | ELECTRICAL SKIN TREATMENT DEVICE AND METHOD - An electrical device for treating problem skin areas, including warts, has an electrode and a power source coupled to the electrode for generating an arc over a gap between a distal end of the electrode and a patient's skin when the electrode is placed in spaced proximity to the patient's skin. The power source provides electricity to the electrode with a frequency of at least 100 kHz, an open-circuit voltage of less than 2 kV | 05-27-2010 |
20100168735 | SYSTEM AND METHOD FOR ASSESSING COUPLING BETWEEN AN ELECTRODE AND TISSUE - A system and method for assessing a degree of coupling between an electrode and tissue in a body is provided. Values for first and second components of a complex impedance (e.g., resistance and reactance or impedance magnitude and phase angle) between the electrode and the tissue are obtained. These values are used together with a standardization value indicative of a deviation from a reference standard by a parameter associated with at least one of the body, the electrode and another component of the system to calculate a coupling index that is indicative of a degree of coupling between the electrode and the tissue. The coupling index may be displayed to a clinician in a variety of ways to indicate the degree of coupling to the clinician. The system and method find particular application in ablation of tissue by permitting a clinician to create lesions in the tissue more effectively and safely. | 07-01-2010 |
20100179533 | Energy Delivery Algorithm for Medical Devices - A method for controlling energy applied to tissue as a function of at least one detected tissue property includes the initial step of applying energy to tissue. The method also includes detecting a phase transition of the tissue based on a detected rate of change in the at least one detected tissue property. The method also includes adjusting the energy applied to tissue based on the detected rate of change to control the detected phase transition. | 07-15-2010 |
20100179534 | Energy Delivery Algorithm Impedance Trend Adaptation - A method for controlling an electrosurgical generator configured to apply energy to tissue as a function of a detected tissue property is contemplated by the present disclosure. The method includes the step of applying energy to the tissue in a first state, wherein the first state is configured to adjust the power output of the generator to continuously achieve peak tissue conductance as a function of the detected tissue property. The method also includes the step of monitoring a trend of the at least one detected tissue property indicative of a bubble field formation during a second state, which is running concurrently with the first state. The second state is configured to interrupt the bubble field to collapse the bubble field based on the trend of the at least one detected tissue property. | 07-15-2010 |
20100179535 | Energy Delivery Algorithm Filter Pre-Loading - A method for controlling energy applied to tissue in two or more states as a function of a detected tissue property is provided. The method includes the steps of: determining an initial value of the detected tissue property, recursively processing the detected tissue property to obtain an averaged value thereof, updating the recursively processing step with the initial value of the detected tissue property and transitioning between two or more states based on a comparison of averaged values obtained by two or more recursive filters. | 07-15-2010 |
20100179536 | Energy Delivery Algorithm for Medical Devices Based on Maintaining a Fixed Position on a Tissue Electrical Conductivity v. Temperature Curve - A method for controlling an electrosurgical waveform includes the initial steps of activating an electrosurgical generator and increasing power during a first sample window and determining a direction of change in a first average impedance during the first sample window. The method also includes the steps of performing a first adjustment of power in response to the direction of change in the first average impedance during a subsequent sample window and determining a direction of change in a subsequent average impedance during the subsequent sample window in response to the first adjustment of power. The method also includes performing a subsequent adjustment of power in response to the direction of change in the subsequent average impedance, wherein the subsequent adjustment of power is reverse to that of the first adjustment of power when the direction of change in the first and subsequent average impedances is the same. | 07-15-2010 |
20100179537 | ABLATION FOR ATRIAL FIBRILLATION - A probe operates in conjunction with an ablation system to prevent accidental injury of the esophagus during atrial ablation procedures. A distal portion of the probe is placed into the esophagus via the nasal cavity and positioned in the region of the esophagus that is in contact with the left atrium. Regulated cooling fluid with desired temperature and pressure continuously circulates from the external source of the related device into a sac of the probe. Temperature and pressure sensors are disposed within the sac of the probe to transmit data to the external related devices of this invention. The information from the sensors within the sac of the probe can provide a safety feature to control or stop the energy delivery from the ablation energy generator (i.e., radio frequency generator) and to prevent the advancement of the lesion formation that is created by the tip of the ablation catheter in the left atrium. | 07-15-2010 |
20100211061 | Optimizing RF power spatial distribution using frequency control - An electro-surgical system actively maintains an optimal heating profile at the electrode-patient contact surface under varying load resistivity, thereby reducing the risk of burns and maximizing patient comfort at a given power level. A set of temperature sensors is integrated within the electrode assembly of the electrosurgical system. The sensors are located both at the center and the edges of the electrode. The sensors are thermally coupled to the electrode-patient contact surface and have a time response that is short compared to the thermal time constraints of the tissue. Some degree of signal processing may take place at the sensor, inside the transducer assembly. As RF power is applied, a control loop monitors the temperature at the center and edges of the electrode. If the edge temperature of the electrode is high compared to its center temperature, then the control loop increases the operating frequency, effectively driving heat towards the center of the electrode. Conversely, if the edge temperature of the electrode is low compared to its center temperature, then the control loop decreases the operating frequency, effectively driving heat towards the edges of the electrode. By actively adjusting the operating frequency in this way, the control loop maintains any chosen heating profile at the electrode-patient contact surface. | 08-19-2010 |
20100211062 | Device for thermosurgery - An apparatus for the thermosurgical treatment of biological tissue comprises a generator ( | 08-19-2010 |
20100211063 | Method and System for Programming and Controlling an Electrosurgical Generator System - A method and system are disclosed enabling configuration of a control system for an electrosurgical generator system for creating new surgical applications without changing the underlying software system. The electrosurgical generator system includes an RF stage to output at least one waveform of electrosurgical energy; a sensor module having at least one sensor to sense electrical or physical properties related to the output electrosurgical energy and generate sensor data; and at least one control module executable on at least one processor that controls at least one parameter of the output electrosurgical energy. The at least one control module includes an outer loop controller to generate a control signal in accordance with at least a first subset of the sensor data and an inner loop controller to generate a setpoint control signal and provide the setpoint control signal to the RF stage for controlling at least an amplitude of the energy output by the RF stage. | 08-19-2010 |
20100217257 | MEDICAL DEVICE HAVING LAMINATE-COATED BRAID ASSEMBLY - A catheter includes a braid assembly having a dual-laminate coating. The braid assembly includes a plurality of braid members interwoven to provide for interstices between the braid members, each braid member having an electrically conductive element, a flexible non-electrically-conductive polymer coating that insulates the electrically conductive element and a thermoplastic bonding adhesive coating. The braid assembly is formed between an inner polymer layer and an outer polymer layer. One or more of the braid members may be coupled to an energy delivery element. | 08-26-2010 |
20100217258 | METHOD AND SYSTEM FOR MONITORING TISSUE DURING AN ELECTROSURGICAL PROCEDURE - A system for monitoring and/or controlling tissue modification during an electrosurgical procedure includes an electrosurgical apparatus connected to an electrosurgical generator and configured to grasp tissue therebetween via a pair of jaw members. The system also includes an optical system having an optical source that directs light through tissue. One or more optical detectors analyze the light transmitted through and reflected back from the tissue and a processor utilizes this information to control the delivery of electrosurgical energy from the electrosurgical generator to the tissue. | 08-26-2010 |
20100234840 | METHODS AND SYSTEMS FOR DETERMINING PHYSIOLOGIC CHARACTERISTICS FOR TREATMENT OF THE ESOPHAGUS - A method and apparatus for treating abnormal mucosa in the esophagus is disclosed, such that the depth of the treated tissue is controlled. The depth of ablation is controlled by monitoring the tissue impedance and/or the tissue temperature. A desired ablation depth is also achieved by controlling the energy density or power density, and the amount of time required for energy delivery. A method and apparatus is disclosed for measuring an inner diameter of a body lumen, where a balloon is inflated inside the body lumen at a fixed pressure. | 09-16-2010 |
20100249771 | SYSTEM AND METHOD FOR INTERACTIVELY PLANNING AND CONTROLLING A TREATMENT OF A PATIENT WITH A MEDICAL TREATMENT DEVICE - A system and method for interactively planning and controlling a treatment of a patient for a medical treatment device are provided. The system includes a memory; a processor coupled to the memory; and a treatment control module stored in the memory and executable by the processor. The treatment control module graphically displays in real time a continuously changing treatment region defined by the electrodes as a user moves at least one of the electrodes. This allows the user to more effectively plan and treat a target region. | 09-30-2010 |
20100268221 | SIGNAL DEVICE FOR ELECTROSURGICAL INSTRUMENTS, ADAPTOR FOR CONNECTING AN ELECTROSURGICAL INSTRUMENT - An electrosurgical instrument comprising an indicator device for displaying at least one piece of status information regarding a control unit. The indicator device is arranged on the electrosurgical instrument and oriented in the distal direction thereof such that, in an active state, the indicator device illuminates an operation area of the electrosurgical instrument. In use, the indicator device fulfils a dual functions. First, the indicator device provides information and second, it simplifies the medical intervention by illuminating the operation area. | 10-21-2010 |
20100280511 | ELECTROSURGICAL INSTRUMENT WITH TIME LIMIT CIRCUIT - An electrosurgical instrument includes a housing having a treatment portion attached thereto. The treatment portion is adapted to connect to an electrosurgical generator that supplies energy to the electrosurgical instrument. An activation element is included and is disposed in electrical communication with the electrosurgical generator and the treatment portion. The activation element is selectively actuatable to supply energy from the electrosurgical generator to the treatment portion. A time-out device is coupled to the housing and is configured to prevent re-use of the electrosurgical instrument after a pre-determined time limit. | 11-04-2010 |
20100286689 | METHOD AND SYSTEM FOR PROCESSING CANCER CELL ELECTRICAL SIGNALS FOR MEDICAL THERAPY - A scientific computer system with processor capable of recording, storing and reprogramming the natural electrical signals of cancer cells as found in tumors of humans and animals. The reprogramming process is designed to create a confounding electrical signal for retransmission into a malignant tumor to damage or shut-down the cellular internal electrical communication system. Altering the electrical charge on the glycocalyx of the outer cell membrane is also part of the treatment by application of ions. The invention causes cancer cell death as a medical treatment using ultra-low voltage and amperage encoded signals which are reprogrammed from cancer cell communication signals. | 11-11-2010 |
20100298823 | Assessment of electrode coupling for tissue ablation - An electrode catheter and a method for assessing electrode-tissue contact and coupling are disclosed. An exemplary electrode catheter comprises an electrode adapted to apply electrical energy. A measurement circuit is adapted to measure impedance between the electrode and ground as the electrode approaches a target tissue. A processor determines a contact and coupling condition for the target tissue based at least in part on reactance of the impedance measured by the measurement circuit. In another exemplary embodiment, the electrode catheter determines the contact and coupling condition based at least in part on a phase angle of the impedance. | 11-25-2010 |
20100318080 | Circuit for Controlling Arc Energy from an Electrosurgical Generator - A circuit is disclosed which minimizes the amount of tissue vaporized during a first half (positive half cycle) of an electrosurgical current cycle and minimizes the amount of current applied to tissue during a second half (negative half cycle) of the electrosurgical current cycle to control thermal spread. The circuit is preferably provided within an electrosurgical generator which is capable of controlling the amount of energy delivered to a patient during electrosurgery on a per arc basis. | 12-16-2010 |
20100324548 | METHODS FOR CONTROL OF ENERGY DELIVERY TO MULTIPLE ENERGY DELIVERY DEVICES - Embodiments of a system and method are described for delivering energy to a body of a human or animal through a plurality of energy delivery devices. In some embodiments, a plurality of energy delivery devices are coupled to a generator and the number of energy delivery devices is automatically detectable. Furthermore, in some embodiments, the amount of energy delivered through the energy delivery devices is controlled, at least in part, by dynamically varying the amount of time that each energy delivery device is delivering energy. | 12-23-2010 |
20110015627 | IMPEDANCE MONITORING APPARATUS, SYSTEM, AND METHOD FOR ULTRASONIC SURGICAL INSTRUMENTS - In one general aspect, various embodiments are directed to a surgical instrument that can supply mechanical energy and electrical energy to an end effector of the surgical instrument. The surgical instrument comprises an ultrasonic generator module coupled to an ultrasonic drive system, which comprises an ultrasonic transducer coupled to a waveguide and an end effector coupled to the waveguide. The ultrasonic drive system is configured to resonate mechanically at a resonant frequency to generate a first ultrasonic drive signal. An electronic circuit is coupled to the ultrasonic generator module to monitor an electrical characteristic of the ultrasonic drive system. A processor is coupled to the electronic circuit to control the ultrasonic drive signal in response to the monitored electrical characteristic of the ultrasonic drive system. | 01-20-2011 |
20110015628 | ADVANCED ABLATION PLANNING - In planning an ablation procedure, a planned target volume (PTV) is imported, which is typically selected by a doctor but may be computer-identified. An ablation solution comprising a plurality of ablation volumes is generated or selected using a lookup table. Ablations sharing a common axis along a line of insertion are grouped into blocks. Alternatively, the PTV is enveloped in a sphere, and a pre-computed ablation solution (e.g., a 6- or 14-sphere solution) is identified to cover the PTV sphere. Optionally, a mathematical algorithm is executed to increase an axis through the ablation spheres to generate ellipsoidal ablation volumes that envelop the PTV. | 01-20-2011 |
20110060329 | System and Method for Power Supply Noise Reduction - A method for minimizing current draw on a power source for an electrosurgical system includes the step of generating a first pulse signal from a master device to electrically cooperate with a first floating power supply configured to create an electrical connection between one or more first loads and a power supply. The method also includes the step of triggering an ensuing pulse signal from a slave device based on the first pulse signal to electrically cooperate with a subsequent floating power supply configured to create an electrical connection between one or more subsequent loads and the power supply. | 03-10-2011 |
20110071516 | System and Method for Controlling Electrosurgical Output - An electrosurgical generator for supplying electrosurgical energy to tissue includes sensor circuitry configured to measure a voltage phase and a current phase through tissue and a processing device configured to compare the measured voltage and current phase to generate a real power component. The electrosurgical generator also includes a controller configured to regulate output of the electrosurgical generator based on the real power component and/or a predetermined imaginary impedance of tissue. | 03-24-2011 |
20110077641 | Return Electrode Temperature Prediction - The present disclosure relates to an electrosurgical generator for supplying electrosurgical energy to tissue and methods thereof. The electrosurgical generator includes sensor circuitry, a processing device, and a controller. The type of return electrode pad may be determined automatically. The sensor circuitry is configured to determine one or more characteristics of a patient and/or measure tissue temperature at a return electrode pad site. The processing device is configured to determine a maximum temperature of tissue and calculate real-time predicted temperature at the return electrode pad site. The controller is configured to regulate output of the electrosurgical generator based on one or more characteristics of a patient and the determined maximum temperature. | 03-31-2011 |
20110077642 | PLASMA APPLICATORS FOR PLASMA-SURGICAL METHODS - Electrosurgical instruments that transmit electrical energy from an electrosurgical generator via an electrode and a current path of ionized gas into biological tissue. In order to obtained a defined, low treatment depth in the target tissue, the electrosurgical instrument contains a resistive element with a predetermined impedance between the distal end of the connection line and the electrode, installed in such a way that treatment current is limited after ionizing of the gas. | 03-31-2011 |
20110087211 | TISSUE-PENETRATING GUIDEWIRES WITH SHAPED TIPS, AND ASSOCIATED SYSTEMS AND METHODS - Tissue-penetrating guidewires with shaped tips, and associated systems and methods are disclosed. A patient treatment system in accordance with one embodiment of the disclosure includes a tissue-penetrating guidewire that in turn includes a flexible segment having a distal portion and a proximal portion. The flexible segment is elongated along an elongation axis. A penetrating member is positioned at the distal portion and includes at least one blade segment having a tapered outer peripheral surface and an adjacent generally sharp edge. The blade segment extends to a distal end of the penetrating member to form a generally blunt tip. In operation, the guidewire can be connected to an electrical current source to deliver high frequency current to the penetrating member. | 04-14-2011 |
20110087212 | SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES - A surgical device control circuit. The control circuit may comprise a first circuit portion comprising at least one first switch. The first circuit portion may communicate with a surgical generator over a conductor pair. The control circuit may also comprise a second circuit portion comprising a data circuit element. The data circuit element may be disposed in an instrument of the surgical device and transmit or receive data. The data circuit element may implement data communications with the surgical generator over at least one conductor of the conductor pair. | 04-14-2011 |
20110087213 | SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES - A surgical generator for providing a drive signal to a surgical device may have a receptacle assembly having a receptacle body, a flange and a central protruding portion. The outer periphery of the central protruding portion may have at least one curved section and at least one linear section. Additionally, a surgical instrument may comprise an electrical connector assembly having a flange. The flange may comprise at least one curved section and at least one linear section. In some embodiments, A surgical instrument system may comprise a surgical generator, a surgical instrument comprising a connector assembly, and an adapter assembly operatively coupled to the receptacle assembly and the connector assembly. | 04-14-2011 |
20110087214 | SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES - In accordance with various embodiments, methods for controlling electrical power provided to tissue via a surgical device may comprise providing a drive signal to a surgical device; receiving an indication of an impedance of the tissue; calculating a rate of increase of the impedance of the tissue; and modulating the drive signal to hold the rate of increase of the impedance greater than or equal to a predetermined constant. | 04-14-2011 |
20110087215 | SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES - In accordance with various embodiments, methods to control electrical power provided to tissue via first and second electrodes may comprise providing a drive signal to the tissue via the first and second electrodes and modulating a power provided to the tissue via the drive signal based on a sensed tissue impedance according to a first power curve. The first power curve may define, for each of a plurality of potential sensed tissue impedances, a first corresponding power. The methods may also comprise monitoring a total energy provided to the tissue via the first and second electrodes. When the total energy reaches a first energy threshold, the methods may comprise determining whether an impedance of the tissue has reached a first impedance threshold. The methods may further comprise, conditioned upon the impedance of the tissue failing to reach the first impedance threshold, modulating the power provided to the tissue via the drive signal based on the sensed tissue impedance according to a second power curve. The second power curve may define, for each of the plurality of potential sensed tissue impedances, a second corresponding power. | 04-14-2011 |
20110087216 | SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES - In accordance with various embodiments, a surgical generator for providing a drive signal to a surgical device may comprise a first transformer and a second transformer. The first transformer may comprise a first primary winding and a first secondary winding. The second transformer may comprise a second primary winding and a second secondary winding. The surgical generator may further comprise a generator circuit to generate the drive signal. The generator circuit may be electrically coupled to the first primary winding to provide the drive signal across the first primary winding. The surgical generator may also comprise a patient-side circuit electrically isolated from the generator circuit. The patient-side circuit may be electrically coupled to the first secondary winding. Further, the patient-side circuit may comprise first and second output lines to provide the drive signal to the surgical device. In addition, the surgical generator may comprise a capacitor. The capacitor and the second secondary winding may be electrically coupled in series between the first output line and ground. | 04-14-2011 |
20110112525 | System and Method for Providing Even Heat Distribution and Cooling Return Pads - A return pad for use with an electrosurgical system is disclosed. The return pad includes a conductive layer, a contact layer configured to engage a patient's skin and an intermediate layer disposed between the conductive layer and the contact layer. The intermediate layer is adapted to distribute energy. | 05-12-2011 |
20110118728 | CONTROL OF HIGH-INTENSITY PULSED ELECTRICAL FIELDS IN SURGICAL APPLICATIONS - An eye surgery apparatus includes a HIPEF probe comprising at least two electrodes and is configured for delivery of a high-intensity pulsed electrical field to a surgical site within an eye via the electrodes. Embodiments also include a transducer configured to monitor one or more surgical parameters within the eye during application of the high-intensity pulsed electrical field to the surgical site, a pulse generation circuit configured to generate a series of electrical pulses for application to the electrodes to create the high-intensity pulsed electrical field, and a control circuit, operatively connected to the at least one transducer and the pulse generation circuit and configured to automatically adjust one or more characteristics of the series of electrical pulses, based on the one or more monitored surgical parameters. With these apparatus, the amount of energy delivered can be limited to levels necessary for effective operation without over-exposing the vitreous. | 05-19-2011 |
20110125149 | UNIVERSAL SURGICAL FUNCTION CONTROL SYSTEM - A control system includes a selector by which a user can select any of a number of surgical devices or similar devices for use, and a processor system responsive to user actuation of a foot control or other central control by controlling the selected device. Each device has an associated intelligent adapter that communicates information relating to device with which the adapter is associated. The processor system uses the information communicated by the adapter to properly interface the associated device with the control system and its central control. | 05-26-2011 |
20110125150 | SYSTEM AND METHOD FOR ASSESSING EFFECTIVE DELIVERY OF ABLATION THERAPY - A system and method for assessing effective delivery of ablation therapy to a tissue in a body is provided. A three-dimensional anatomical map of the tissue is generated and displayed with the map defining a corresponding volume. An index is generated corresponding to a location within the volume with the index indicative of a state of ablation therapy at the location. The index may be derived from one or more factors such as the duration an ablation electrode is present at the location, the amount of energy provided, the degree of electrical coupling between an ablation electrode and the tissue at the location and temperature. A visual characteristic (e.g., color intensity) of a portion of the anatomical map corresponding to the location is then altered responsive to the index. | 05-26-2011 |
20110130754 | Hybrid Scientific Computer System for Processing Cancer Cell Signals as Medical Therapy - A hybrid scientific computer system with processor capable of recording, storing and reprogramming the natural electrical signals of cancer cells as found in tumors of humans and animals. The reprogramming process is designed to create a confounding electrical signal for retransmission into a malignant tumor to damage or shut-down the cellular internal electrical communication system. Altering the electrical charge on the glycocalyx of the outer cell membrane is also part of the treatment by application of ions. Confounding electrical signals are stored in a scientific cancer cell signal processor of the computer system. The invention causes cancer cell death as a medical treatment using ultra-low voltage and amperage encoded signals which are re-programmed from cancer cell communication signals. | 06-02-2011 |
20110144635 | System and Method for Tissue Sealing - An electrosurgical system includes an energy source adapted to supply energy to tissue. The energy source includes a microprocessor configured to execute a tissue treatment algorithm configured to control the supply of electrosurgical energy to tissue and process a configuration file including at least one parameter of the tissue treatment algorithm. The at least one parameter is adjustable to effect a tissue seal result. The microprocessor generates a target impedance trajectory based on at least one parameter of the tissue treatment algorithm and is further configured to drive tissue impedance along the target impedance trajectory by adjusting the supply of energy to tissue to substantially match tissue impedance to a corresponding target impedance value. The system also includes an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue. | 06-16-2011 |
20110144636 | UNIVERSAL SURGICAL FUNCTION CONTROL SYSTEM - A control system includes a selector by which a user can select any of a number of surgical devices or similar devices for use and a processor system responsive to user actuation of a foot control or other central control by controlling the selected device. Each device has an associated intelligent adapter that communicates information relating to device with which the adapter is associated. The processor system uses the information communicated by the adapter to properly interface the associated device with the control system and its central control. | 06-16-2011 |
20110152856 | ESTIMATION AND MAPPING OF ABLATION VOLUME - Tissue ablation systems and methods are provided, wherein a cardiac catheter incorporates a pressure detector for sensing a mechanical force against the distal tip when engaging an ablation site. Responsively to the pressure detector, a controller computes an ablation volume according to relationships between the contact pressure against the site, the power output of an ablator, and the energy application time. A monitor displays a map of the heart which includes a visual indication of the computed ablation volume. The monitor may dynamically display the progress of the ablation by varying the visual indication. | 06-23-2011 |
20110166566 | DEVICES AND METHODS FOR PERFORMING PERCUTANEOUS SURGICAL PROCEDURES - A guidewire or a catheter with a stiffness that can be varied during use inside a human body, where the guidewire or the catheter comprises a magnetorheological fluid. A guidewire comprising a proximal section, a distal section, and an intermediate section connecting the proximal section and the distal section, where the intermediate section comprises a longitudinal axis, and the distal section comprises a longitudinal axis, and where the longitudinal axis of the distal section can be coincident with the longitudinal axis of the intermediate section or can be controllably made non-coincident with the longitudinal axis of the intermediate section during use inside a human body, and the guidewire further comprises a plurality of piezoelectric cores and one or more than one piezoelectric strut. | 07-07-2011 |
20110172655 | CONTROL SYSTEM AND PROCESS FOR APPLICATION OF ENERGY TO AIRWAY WALLS AND OTHER MEDIUMS - The present invention includes a system for delivering energy to an airway wall of a lung comprising an energy delivering apparatus and a PID controller having one or more variable gain factors which are rest after energy deliver has begun. The energy delivering apparatus may include a flexible elongated member and a distal expandable basket having at least one electrode for transferring energy to the airway wall and at least one temperature sensor for measuring temperature. The PID controller determines a new power set point base on an error between a preset temperature and the measured temperature. The algorithm can be P | 07-14-2011 |
20110172656 | SOFT GENERATOR - A high-frequency surgical generator for generating high efficiency outputs that can be operated in resonance over a wide load resistance range. The high-frequency surgical generator includes, a first stage circuit for generating high-frequency power and a second stage circuit coupled to the first state circuit. The second stage circuit includes an input and an output and a series resonant circuit located between the input and the output. The second stage circuit further includes an inductor that is switched parallel to the input and a capacitor that is switched parallel to the output. | 07-14-2011 |
20110178516 | System and Method for Closed Loop Monitoring of Monopolar Electrosurgical Apparatus - An electrosurgical system is disclosed comprising a generator configured to electrosurgical coagulation waveforms. The generator includes a closed loop control system for controlling the electrosurgical coagulation waveforms. The closed loop control system includes a sensor configured to sense a tissue property and/or an energy property and to transmit the tissue property and/or the energy property as one or more sensor signals having an amplitude. The control system also includes a gain controller configured to process the at least one sensor signal to reduce the amplitude of the sensor signals and to obtain a signal to noise ratio of the at sensor signals within a predetermine range. A microprocessor coupled to the generator and is configured to adjust the electrosurgical coagulation waveforms as a function of the sensor signals. | 07-21-2011 |
20110230876 | SYSTEMS AND METHODS FOR TRANSMURAL ABLATION - A method of applying ablation energy to achieve transmurality including applying ablation energy at a starting power to a tissue site and monitoring the impedance of the tissue site. A power applied to the tissue site can be reduced as a function of a rate of an increase in impedance according to some embodiments. | 09-22-2011 |
20110238062 | Impedance Mediated Power Delivery for Electrosurgery - An adaptive algorithm monitors, inter alia, the rate of tissue impedance change during an electrosurgical procedure. Impedance levels achieved within a specific timeframe are examined to determine an impedance ramp and/or slope rate, which indicates the rate at which a target tissue is undergoing a phase or state change and, thus, indicates a desired rate of tissue processing. The level of electrosurgical energy applied to the target tissue is adjusted in real time in accordance with such rate of impedance change and/or by predetermined values. Energy is thus applied to the target tissue at levels that allow tissue phase or state change to occur in an optimum fashion, for example allowing moisture to escape from the tissue slowly, and thus avoid thermal damage. As a result, such undesired results as thermal damage and defective sealing are mitigated. Another embodiment determines impedance achieved within a specific interval and adjusts the electrosurgical energy applied to the tissue after a threshold impedance has been maintained or exceeded for a predetermined interval. A further aspect of the invention provides mitigation during processing for partial tissue coverage of device electrodes and/or for thin tissue. | 09-29-2011 |
20110251605 | Optical Hydrology Arrays and System and Method for Monitoring Water Displacement During Treatment of Patient Tissue - A system that monitors water displacement in tissue during patient therapy includes a generator supplying electrosurgical energy to tissue, a spectrometer operably coupled to the generator, and a processor communicating with the generator and with the spectrometer having a light source for exposing tissue to light and a light sensor. The light sensor is configured to sense changes in light through tissue in response to tissue treatment and communicate the changes to the processor to determine tissue hydration levels and motility. A plurality of optical fibers may be configured in an array to communicate light between the generator and tissue. An optical temperature monitor may communicate with the processor and be coupled to an optical fiber. The optical fibers may have an optic fiber distance between adjacent optical fibers. The system may be incorporated within an electrosurgical pencil or a forceps. A corresponding method of detecting hydration is also disclosed. | 10-13-2011 |
20110251606 | Surgical Instrument with Non-Contact Electrical Coupling - A surgical instrument includes a reusable base component including a handle and an electrically activatable modular component removably coupled to the base component. The modular component includes an end effector operable from the handle to treat tissue. The end effector is responsive to manipulation of the handle. A first energy storage component is disposed onboard the base component and is electrically coupled to a source of electricity. A second energy storage component is disposed onboard the modular component and is electrically insulated from the first energy storage component. The second energy storage component is arranged such that a current may be selectively induced in the modular component by delivery of electrical energy to the first energy storage component. | 10-13-2011 |
20110251607 | FEEDBACK SYSTEM FOR INTEGRATING INTERVENTIONAL PLANNING AND NAVIGATION - A therapy planning and image guidance and navigation for an interventional procedure are combined in one system. The system includes: a radio frequency ablation therapy planning component ( | 10-13-2011 |
20110264088 | Electrosurgical Radio Frequency Energy Transmission Medium - A system and method for transmitting electrosurgical energy from a generator to an electrosurgical instrument are provided. The electrosurgical system includes a generator adapted to generate electro surgical energy for treating tissue. The generator includes one or more active output terminals which supply energy to the tissue. The active output terminals are operatively connected to one or more supply lines. The generator also includes one or more return output terminal which returns energy from the tissue. The return output terminals are operatively connected to at least one return line. The system also includes an electrosurgical instrument operatively connected to the one or more supply lines and one or more return electrodes operatively connected to one or more return lines. The system further includes an electrosurgical cable including one or more supply lines and one or more return lines. The one or more supply lines and one or more return lines are wound in a double helix fashion such that the electrical field along the cable is mitigated along the length thereof. | 10-27-2011 |
20110301589 | Specific Absorption Rate Measurement and Energy-Delivery Device Characterization Using Thermal Phantom and Image Analysis - A method of directing energy to tissue includes the initial step of positioning an energy applicator for delivery of energy to tissue. The energy applicator is operably associated with an electrosurgical power generating source. The method includes the steps of determining one or more operating parameters associated with the electrosurgical power generating source based on specific absorption rate data associated with the energy applicator, and transmitting energy from the electrosurgical power generating source through the energy applicator to tissue. | 12-08-2011 |
20110301590 | Specific Absorption Rate Measurement and Energy-Delivery Device Characterization Using Image Analysis - A method of controlling output of an electrosurgical power generating source includes the steps of receiving image data including tissue temperature information of a target tissue volume, calculating a specific absorption rate as a function of the tissue temperature information from the image data, and determining one or more operating parameters associated with the electrosurgical power generating source based on the calculated specific absorption rate. | 12-08-2011 |
20110301591 | Specific Absorption Rate Measurement and Energy-Delivery Device Characterization Using Image Analysis - An electrosurgical system includes an electrosurgical power generating source, an energy-delivery device operably associated with the electrosurgical power generating source, and a processor unit. The electrosurgical system also includes an imaging system capable of generating image data including tissue temperature information. The processor unit is disposed in operative communication with the imaging system and adapted to analyze the image data to determine a specific absorption rate around the energy-delivery device as a function of the tissue temperature information obtained from the image data. | 12-08-2011 |
20110306962 | Method and Device for Treatment of Conditions Aggravated by Amyloid Fibrils - A method and device for treating a condition aggravated by the presence of amyloid fibrils is disclosed. The method includes applying a plurality of ultra-short pulses to target tissue comprising amyloid fibrils. The plurality of ultra-short pulses produce an electric field in the target tissue sufficient to change a molecular structure of the amyloid fibrils without causing the death, destruction, or serious injury of healthy cells surrounding the target tissue. For example, the plurality of ultra-short pulses can be sufficient to change the molecular structure of amyloid fibrils without causing apoptosis or necrosis of surrounding cells. The ultra-short pulses can be applied using an electrode device or a wideband antenna. The ultra-short pulses can have a duration ranging from 1 ps to 10 ns, an amplitude ranging from 100 V to 1 MV, and can apply an electrical field to the target tissue ranging from 1 kV/cm to 1 MV/cm. | 12-15-2011 |
20110319884 | ABNORMALITY ERADICATION THROUGH RESONANCE - A medical device to eradicate abnormality is provided. In one embodiment, the medical device includes a needle and an electrode. The medical device further includes a processor to automatically determine a portion of a biological tissue is associated with an abnormality when a sample density of an immediate area surrounding the needle in the biological tissue matches a target density as determined based on one or more of a chemical composition and a pigmentation of the abnormality. The processor calculates a resonant frequency to eradicate a presence of the abnormality based on the chemical composition and/or the pigmentation of the abnormality as determined through one or more of a conductivity, a capacitance, and an inductance of the abnormality. The medical device also includes a signal source to electrically couple the needle with the electrode to form a closed circuit when the needle and electrode contact the biological tissue. | 12-29-2011 |
20110319885 | USER INTERFACE FOR ABLATION THERAPY - The disclosure describes a user interface that may be used to control ablation therapy and monitor ablation therapy progress in systems that utilize wet electrode ablation techniques. The user interface presents a virtual electrode depth icon to a user that indicates the size of a lesion that may be created with the selected virtual electrode depth. The virtual electrode depth may be changed by the user according to the ablation therapy most appropriate for a patient, and the user may interact with the user interface to define the virtual electrode depth. In this manner, the user interface may be a touchscreen or other input device such as a mouse, pointing device, or keyboard. The user interface may also provide a thermometer icon that represents a patient temperature, a timer icon that represents a remaining time for therapy, and other representations of therapy progress. | 12-29-2011 |
20120016359 | Hydraulic Conductivity Monitoring to Initiate Tissue Division - A method for performing an electrosurgical procedure at a surgical site on a patient includes continually sensing electrical and physical properties proximate the surgical site that includes acquiring readings of tissue electrical impedance with respect to time at the surgical site; identifying the minima and maxima of the impedance readings with respect to time; and correlating the minima and/or the maxima of the impedance readings with hydration level and/or hydraulic conductivity in the tissue at the surgical site. The method also includes controlling the application of electrosurgical energy to the surgical site to vary energy delivery based on the step of correlating the minima and/or the maxima of the impedance readings with the hydration level/or and the hydraulic conductivity in the tissue at the surgical site. The process may be an ablation process. | 01-19-2012 |
20120022522 | VOLUMETRICALLY OSCILLATING PLASMA FLOWS - Volumetrically oscillating plasma flows, the volume of which controllably expands and contracts with time, are disclosed. Volumetrically oscillating plasma flows are generated by providing an energy with a power density that changes with time to the plasma-generating gas to form a plasma flow. The changes in the energy power density result in plasma flow volumetric oscillations. Volumetric oscillations with a frequency of above 20,000 Hz results in ultrasonic acoustic waves, which are known to be beneficial for various medical applications. System for providing volumetrically oscillating plasma flows and a variety of surgical non-surgical applications of such flows are also disclosed. | 01-26-2012 |
20120029504 | SYSTEM AND METHOD FOR PRESENTING INFORMATION REPRESENTATIVE OF LESION FORMATION IN TISSUE DURING AN ABLATION PROCEDURE - A method and system for presenting information representative of lesion formation is provided. The system comprises an electronic control unit (ECU). The ECU is configured to acquire a value for an ablation description parameter and/or a position signal metric, wherein the value corresponds to a location in the tissue. The ECU is further configured to evaluate the value, assign it a visual indicator of a visualization scheme associated with the parameter/metric corresponding to the value, and generate a marker comprising the visual indicator such that the marker is indicative of the acquired value. The method comprises acquiring a value for the parameter/metric, and evaluating the value. The method further includes assigning a visual indicator of a visualization scheme associated with the parameter/metric corresponding to the value, and generating a marker comprising the visual indicator. | 02-02-2012 |
20120029505 | Self-Leveling Electrode Sets for Renal Nerve Ablation - A catheter comprises a flexible shaft having a length for accessing the renal artery and a multiplicity of electrode sets each supported a support member. Each electrode set extends beyond the catheter's distal end and includes several elongated resilient members comprising a pre-formed curve and supporting an electrode. The resilient members are constrained to a low profile when encompassed by a wall of a removable sheath or a lumen wall of the catheter's shaft, and expand outwardly to assume a shape of their pre-formed curve when removed from the removable sheath or shaft lumen. The resilient members have a stiffness sufficient to maintain contact between the electrodes and an inner wall of the renal artery including irregularities of the inner wall of the renal artery. One or more temperature sensors can be situated at or proximate the plurality of electrode sets. | 02-02-2012 |
20120041435 | HIGH FREQUENCY SURGICAL GENERATOR COMPRISING AN ADDITIONAL TRANSFORMER - An HF surgical appliance comprising an HF generator having an output circuit, which contains an output transformer and has an output impedance. Output terminals, to which an HF surgical instrument can be connected, are provided, said instrument supplying a high-frequency current with a specific frequency into tissue to treat the same. An additional output circuit containing an additional transformer, which is connected between the output circuit and the output terminals to reduce the output impedance is also provided. In this way, the HF surgical appliance can be operated with a high power output even on loads having low impedance. | 02-16-2012 |
20120071872 | Systems for Treating Tissue Sites Using Electroporation - A system for treating a tissue site. At least first and second mono-polar electrodes are configured to be introduced at or near a tissue site of the patient. A voltage pulse generator is coupled to the first and second mono-polar electrodes. The voltage pulse generator is configured to apply sufficient electrical pulses between the first and second mono-polar electrodes to induce electroporation of cells in the tissue site, to create necrosis of cells of the tissue site, but insufficient to create a thermal damaging effect to a majority of the tissue site. | 03-22-2012 |
20120078245 | CANNULA - A cannula subject to receiving electric charge via capacitive coupling is configured to provide an easily connectable path to remove the charge. The cannula is further configured with a flared distal end to prevent scraping contact with a surgical instrument shaft. Embodiments of the cannula may be used in surgical procedures in which the cannula does not contact the patient. | 03-29-2012 |
20120095457 | CONNECTION OF A BIPOLAR ELECTROSURGICAL HAND PIECE TO A MONOPOLAR OUTPUT OF AN ELECTROSURGICAL GENERATOR - A method and apparatus for operatively connecting a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical unit wherein active components simulate expected impedance characteristics of monopolar return electrodes connected to a patient. | 04-19-2012 |
20120101493 | SURGICAL TREATMENT APPARATUS - A surgical treatment apparatus includes a receptacle which is configured to abut onto a treatment section so that a predetermined clearance is formed between an electrode section and the treatment section when a grip member is closed relative to the treatment section. The surgical treatment apparatus includes a regulating section which is provided in the grip member so that a closing-direction end located on a closing-direction side of the grip member does not protrude from the receptacle toward the closing direction, the regulating section being made of a material harder than the receptacle, and a handle unit configured to operate the grip member so that the regulating section is closed up to a position where the regulating section contacts the treatment section except when the receptacle contacts the treatment section. | 04-26-2012 |
20120123408 | LAPAROSCOPIC ELECTROSURGICAL ELECTRICAL LEAKAGE DETECTION - An electrical leakage detection method and system for use with laparoscopic electrosurgical instruments are provided. The present disclosure provides for an electrosurgical unit for providing electrosurgical energy at an active output thereof and for controlling the flow of the energy through the active output; an active electrode coupled to the active output for transmitting electrosurgical energy to a patient in an electrosurgical procedure; a first sensor disposed at a distal end of the active electrode and for outputting a first signal indicative of current measured at the distal end; a second sensor disposed at a proximal end of the active electrode and for outputting a second signal indicative of current measured at the proximal end; and a comparison circuit coupled to the first and second sensors for receiving the first and second signals and determining a difference value, the difference value being indicative of leakage current. | 05-17-2012 |
20120130365 | LEAD SYSTEM FOR ELECTRICAL DEVICES USED IN MEDICAL PROCEDURES - A lead system for electrical devices is disclosed that includes a first lead and a second lead, where the second lead may be in communication with a sliding member and a lead channel. The second lead translates laterally along the lead channel between a plurality of positions so as to vary the spacing between the first lead and the second lead. | 05-24-2012 |
20120136348 | System and Method for Adaptive RF Ablation - A medical method, device, and system are provided, including advancing an ablation element of a medical device into contact with tissue to be treated, selecting a power level of energy to ablate the tissue, delivering energy at the selected power level to the ablation element, determining whether the ablation element is in continuous contact with the tissue, and reducing the selected power level when the ablation element ceases to be in continuous contact with the tissue. | 05-31-2012 |
20120136349 | RENAL DENERVATION CATHETER AND METHOD USING pH ALTERATION - A catheter includes a multiplicity of leads having exposed distal elements defining an anode and a cathode positionable relative to an outer wall of a renal artery. A power supply is configured to couple to the multiplicity of leads. The power supply generates a DC current that flows between the anode and cathode to create an acidic region at the anode sufficient to cause necrosis of perivascular renal nerve tissue in the vicinity of the anode, and to create a basic region at the cathode sufficient to cause necrosis of perivascular renal nerve tissue in the vicinity of the cathode. The catheter may be configured to deliver a biocompatible electrolytic fluid to each of the cathode and anode, thereby increasing an extent of perivascular renal nerve tissue ablation in the vicinity of the cathode and anode. | 05-31-2012 |
20120150169 | IMPEDANCE MEASUREMENT TO MONITOR ORGAN PERFUSION OR HEMODYNAMIC STATUS - A system and method for deliverying an ablation therapy that includes delivering the ablation therapy, delivering drive signals to establish a drive signal vector fields, determining impedance signals in response to the drive signals, determining a first impedance parameter in response to the first impedance signal and a second impedance parameter in response to the second impedance signal, determining whether there is a change in a hemodynamic status of the tissue subsequent to delivery of the ablation therapy in response to the first impedance parameter and the second impedance parameter, and adjusting delivery of the ablation therapy in response to determining whether there is a change in a hemodynamic status of the tissue. | 06-14-2012 |
20120150170 | Method and System for Controlling Output of RF Medical Generator - A system for monitoring and/or controlling tissue modification during an electrosurgical procedure is disclosed. The system includes a sensor module and a control module operatively coupled to the sensor module and configured to control the delivery of electrosurgical energy to tissue based on information provided by the sensor module. The sensor module further includes at least one optical source configured to generate light and at least one optical detector configured to analyze a portion of the light transmitted through, and/or reflected from, the tissue. | 06-14-2012 |
20120172866 | System and Method for Measuring Current of an Electrosurgical Generator - An electrosurgical generator includes an RF output stage, a DC blocking capacitor, a measuring circuit, and a sensor circuit. The RF output stage generates electrosurgical energy for application to an active electrode. The DC blocking capacitor is electrically coupled between the RF output stage and the active electrode. The measuring circuit is coupled to the DC blocking capacitor and measures the voltage across the DC blocking capacitor. The sensor circuit determines the current of the electrosurgical energy as a function of the voltage across the DC blocking capacitor. | 07-05-2012 |
20120184951 | Surgical Instrument Including Inductively Coupled Accessory - A surgical instrument system includes a surgical instrument, a power supply, and an accessory. The surgical instrument has a first induction device positioned therein. The accessory is selectively operably couplable to the surgical instrument. The accessory includes a second induction device that is inductively coupled with the first induction device when the accessory is operably coupled to the surgical instrument such that the power supply provides power to the accessory. | 07-19-2012 |
20120191086 | System and method for endoluminal and translumenal therapy - A robotic instrument system comprises a controller configured to control actuation of at least one servo motor and an elongate instrument configured to move in response to actuation of the at least one servo motor, wherein the controller controls positioning of the instrument based at least in part upon an electroanatomic model of the neural plexus adjacent the renal artery. | 07-26-2012 |
20120191087 | Apparatus and Methods for Determining a Subject's Response to Catheter-Based Ablation Therapy Based on Spectral Mapping During Sinus Rhythm - Apparatus for curative ablation are provided to achieve the inactivation or destruction of fibrillar myocardium of the so-called AF nests. In addition, fibrillar myocardium may be identified and mapped by spectral analysis and phase study of the tissue during sinus rhythm. The procedure may be performed by transseptal puncture using only one catheter for ablation and mapping. The methods may be used to localize the application targets even during an arrhythmia. | 07-26-2012 |
20120191088 | Apparatus and Methods for Titrating Arrhythmia Therapy Based on Spectral Mapping During Sinus Rhythm - Apparatus for curative ablation are provided to achieve the inactivation or destruction of fibrillar myocardium of the so-called AF nests. In addition, fibrillar myocardium may be identified and mapped by spectral analysis and phase study of the tissue during sinus rhythm. The procedure may be performed by transseptal puncture using only one catheter for ablation and mapping. The methods may be used to localize the application targets even during an arrhythmia. | 07-26-2012 |
20120197249 | SUBCUTANEOUS ELECTRIC FIELD DISTRIBUTION SYSTEM AND METHODS - Apparatus and methods for dynamically controlling electric field distribution within tissue disposed at various depths beneath the skin at a target region of a patient's body by independently controlling the electric potential of each of a plurality of electrodes in relation to the electric potential of a ground pad. By controlling electric field distribution during a procedure, a target tissue at particular depths beneath the skin can be selectively heated relative to adjacent non-target tissue. At least one of the electrodes and the ground pad may comprise a spiral inductor comprising a substantially planar spiral of electrically conductive material. | 08-02-2012 |
20120197250 | Electrosurgical System Having a Sensor for Monitoring Smoke or Aerosols - An electrosurgical system includes an electrosurgical generator configured to generate electrosurgical energy and a sensor. The sensor is coupled to the electrosurgical generator and senses aerosol and/or smoke generated during application of the electrosurgical energy. The sensor generates data in response to the sensed aerosol and/or smoke and communicates the data to the electrosurgical generator. The electrosurgical generator generates the electrosurgical energy as a function of the data. | 08-02-2012 |
20120197251 | APPARATUS TO DETECT AND TREAT ABERRANT MYOELECTRIC ACTIVITY - An apparatus to treat a sphincter has a support member. A sphincter electropotential mapping device includes a mapping electrode. The sphincter electropotential mapping device is coupled to the support member and configured to detect aberrant myoelectric activity of the sphincter. | 08-02-2012 |
20120215214 | Cool Tip Junction - A conduit junction for use with an electrosurgical system includes a body having a lumen defined therein and at least one positioning structure. The lumen is configured to receive to receive at least a portion of a tubular structure. The tubular structure includes at least one of a conductor and a conduit of an electrosurgical system. The positioning structure is disposed in mechanical cooperation with the lumen and is adapted to position at least one of the conductor and the conduit within the body of the conduit junction. The body of the conduit junction may include a first section and a second section pivotably connected to each other. The positioning structure may include at least one rib pocket. | 08-23-2012 |
20120226272 | System and Methods for Identifying Tissue and Vessels - A surgical system and corresponding methods for identifying tissue or vessels and assessing their conditions includes a probing signal source for applying a probing signal to the tissue and a response signal monitor for monitoring a response signal that varies according to the level of blood circulation in the tissue or vessels. The response signal monitor monitors the response signal over an interval equal to or longer than an interval between two successive cardiac contractions. The surgical system includes a microprocessor that analyzes the amplitude and/or phase of the response signal to determine the level of blood circulation in the tissue or in different portions of the tissue, and determines a tissue parameter based upon the level of blood circulation. The surgical system may monitor a cardiac signal related to cardiac contractions and correlate the response signal and the cardiac signal to determine a level of blood circulation in the tissue. | 09-06-2012 |
20120232547 | ABLATION CATHETER SYSTEM WITH SAFETY FEATURES - A medical system for delivering treatment or therapy to a patient has a kill switch for interrupting the delivery. The kill switch, which can disrupt the delivery directly or can cause an error message to be generated that disrupts the delivery, can be activated by the operator or remotely. In an ablation catheter system, a kill switch mechanism immediately and abruptly terminates delivery of ablation treatment or therapy. | 09-13-2012 |
20120239024 | Energy-Based Ablation Completion Algorithm - An electrosurgical generator is disclosed. The generator includes sensor circuitry configured to measure voltage and current delivered to tissue and a controller configured to measure time of energy delivery to tissue and to calculate energy delivered to tissue, the controller further configured to estimate a size of an ablation volume as a function of energy delivered to tissue and time and to calculate a growth rate of the ablation volume based on the estimated size. | 09-20-2012 |
20120239025 | Isolated Current Sensor - An electrosurgical generator is disclosed. The generator includes an output stage configured to generate a frequency electrosurgical waveform. A bridge rectifier is coupled to the output stage and configured to pass-through the radio frequency electrosurgical waveform and to transform at least a portion of the radio frequency electrosurgical waveform into direct current. The generator also includes an isolated current sensor configured to measure amplitude of the direct current. | 09-20-2012 |
20120253342 | System and Method for Transmission of Combined Data Stream - An electrosurgical system is disclosed. The electrosurgical system includes an electro surgical instrument configured to generate a first and second data streams and a transmission circuit configured to convert the first and second data streams into a pulsed transmission signal. The first signal property of the transmission signal is representative of the first data stream and the second signal property of the transmission signal is representative of the second data stream. The transmission circuit is further configured to process the transmission signal to decode the first signal property into the first data stream and the second signal property into the second data stream. | 10-04-2012 |
20120265194 | System and Method for Process Monitoring and Intelligent Shut-Off - An electrosurgical generator for supplying electrosurgical energy to tissue is disclosed. The generator includes sensor circuitry configured to measure at least one tissue or energy parameter and a controller configured to generate a plot of the at least one tissue or energy parameter including a plurality of tissue parameter values, wherein the controller is further configured to normalize the plot of the at least one tissue or energy parameter with respect to treatment volume. | 10-18-2012 |
20120265195 | Systems and Methods for Calibrating Power Measurements in an Electrosurgical Generator - The disclosed electrosurgical systems and methods accurately determine the power actually applied to a load by using equalizers to calibrate the power measurements. The electrosurgical systems include an electro surgical generator and an electrosurgical instrument coupled to the electrosurgical generator through an electrosurgical cable. The electro surgical generator includes an electrical energy source, voltage and current detectors, equalizers that estimate the voltage and current applied to a load, and a power calculation unit that calculates estimated power based upon the estimated voltage and current. The methods of calibrating an electro surgical generator involve applying a resistive element across output terminals of the electrosurgical generator, applying a test signal to the resistive element, measuring the magnitude and phase angle of voltage and current components of the test signal within the electrosurgical generator, estimating the magnitude and phase angle of the voltage and current at the resistive element using equalizers, and determining gain correction factors and minimum phase angles for the equalizers. | 10-18-2012 |
20120265196 | SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES - A control circuit of a surgical device is disclosed. The control circuit includes a first circuit portion coupled to at least one switch operable between an open state and a closed state. The first circuit portion communicates with a surgical generator over a conductor pair to receive a control signal to determine a state of the at least one switch. | 10-18-2012 |
20120283720 | Combined Bipolar and Monopolar Electrosurgical Instrument and Method - An electrical switching system for use in various types of electrosurgical instruments and related tools comprises a system adapted to automatically determine which of at least two electrical current modes to deliver through an electrosurgical instrument based on a condition sensed by the electrosurgical instrument. In another embodiment, the electrical switching system comprises a generator, the generator including a first electrical distribution systems for delivering monopolar electrical energy, and a second electrical distribution system for delivering bipolar electrical energy, a controller coupled to the generator for selecting based on an input which of the first and second electrical distribution systems to activate. | 11-08-2012 |
20120296328 | METHOD AND SYSTEM OF AN ELECTROSURGICAL CONTROLLER WITH WAVE-SHAPING - An electrosurgical controller with wave-shaping. At least some embodiments are methods including generating an alternating current (AC) voltage signal within an electrosurgical controller. The generating may be by inducing an intermediate AC voltage signal on a secondary winding of a first transformer, and wave-shaping the intermediate AC voltage signal by a second winding of a second transformer coupled to the first transformer, and thereby creating a final AC voltage signal. Thereafter, the method includes applying the final AC voltage signal to electrical pins of a connector configured to couple to an electrosurgical wand. | 11-22-2012 |
20120316554 | HAND-HELD CAUTERY DEVICE - A disposable cautery device and related methods for making and disassembling a disposable cautery device are disclosed. In one embodiment, the disposable cautery device comprises a housing having a first end and a second end. A cautery tip extends from the housing first end, and the housing second end is configured to receive a removable power source. An actuator is provided to selectively complete an electrical connection between the cautery tip and the removable power source. The actuator is disposed within a recess formed in the housing, and the recess is at least partially circumscribed by a raised rim. A top surface of the actuator is flush with or lower than the rim to inhibit inadvertent actuation of the disposable cautery device. In some embodiments, an end cap is coupled with the second end of the housing to retain the removable power source in the housing, and removal of the end cap from the housing causes the coupling between the end cap and the housing to fracture. | 12-13-2012 |
20120316555 | System and Method for Closed Loop Monitoring of Monopolar Electrosurgical Apparatus - An electrosurgical system is disclosed comprising a generator configured to electrosurgical coagulation waveforms. The generator includes a closed loop control system for controlling the electrosurgical coagulation waveforms. The closed loop control system includes a sensor configured to sense a tissue property and/or an energy property and to transmit the tissue property and/or the energy property as one or more sensor signals having an amplitude. The control system also includes a gain controller configured to process the at least one sensor signal to reduce the amplitude of the sensor signals and to obtain a signal to noise ratio of the at sensor signals within a predetermine range. A microprocessor coupled to the generator and is configured to adjust the electrosurgical coagulation waveforms as a function of the sensor signals. | 12-13-2012 |
20120316556 | IMAGINARY IMPEDANCE PROCESS MONITORING AND INTELLIGENT SHUT-OFF - An electrosurgical generator for supplying electrosurgical energy to tissue is disclosed. The generator includes sensor circuitry configured to measure an imaginary impedance and/or a rate of change of the imaginary impedance of tissue. The generator also includes a controller configured to regulate output of the electrosurgical generator based on the measured imaginary impedance and/or the rate of change of the imaginary impedance. | 12-13-2012 |
20130006235 | ENERGY DELIVERY ALGORITHM FOR MEDICAL DEVICES - A method for controlling an electrosurgical waveform includes the initial steps of activating an electrosurgical generator and increasing power during a first sample window and determining a direction of change in a first average impedance during the first sample window. The method also includes the steps of performing a first adjustment of power in response to the direction of change in the first average impedance during a subsequent sample window and determining a direction of change in a subsequent average impedance during the subsequent sample window in response to the first adjustment of power. The method also includes performing a subsequent adjustment of power in response to the direction of change in the subsequent average impedance, wherein the subsequent adjustment of power is reverse to that of the first adjustment of power when the direction of change in the first and subsequent average impedances is the same. | 01-03-2013 |
20130006236 | ELECTROSURGICAL INSTRUMENT WITH ADJUSTABLE UTILITY CONDUIT - An electrosurgical instrument that reduces the amount of fatigue experienced by a physician performing electrosurgery includes a hand piece with a utility conduit connected to the hand piece at a central portion of the hand piece. The utility conduit can include an electrical cable and a smoke/fluid evacuation hose. The hand piece can include a channel system that receives a portion of the utility conduit therein and allows a physician to adjust the location on the hand piece at which the utility conduit exits the hand piece. Adjusting the location on the hand piece at which the utility conduit exits the hand piece can reduce the resistance to the movement of the electrosurgical instrument created by the weight of the utility conduit, which leads to less fatigue in a physician's hand during electrosurgery. | 01-03-2013 |
20130023870 | MICROWAVE AND RF ABLATION SYSTEM AND RELATED METHOD FOR DYNAMIC IMPEDANCE MATCHING - An electrosurgical system and method for performing electrosurgery is disclosed. The electrosurgical system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The electrosurgical system includes an electrosurgical instrument, such as an electrosurgical antenna, knife, forceps, suction coagulator, or vessel sealer. The disclosed system includes an impedance sensor, a controller, dynamic impedance matching network, and an electrosurgical energy generator. The dynamic impedance matching network includes a PIN diode switching array configured to selectively activate a plurality of reactive elements. The disclosed arrangement of reactive elements provides real-time impedance correction over a wide range of impedance mismatch conditions. | 01-24-2013 |
20130023871 | MICROWAVE AND RF ABLATION SYSTEM AND RELATED METHOD FOR DYNAMIC IMPEDANCE MATCHING - An electrosurgical system and method for performing electrosurgery is disclosed. The electrosurgical system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The electrosurgical system includes an electrosurgical instrument, such as an electrosurgical antenna, knife, forceps, suction coagulator, or vessel sealer. The disclosed system includes an impedance sensor, a controller, dynamic impedance matching network, and an electrosurgical energy generator. The dynamic impedance matching network includes a PIN diode switching array configured to selectively activate a plurality of reactive elements. The disclosed arrangement of reactive elements provides real-time impedance correction over a wide range of impedance mismatch conditions. | 01-24-2013 |
20130023872 | Articulating Surgical Apparatus - An endoscopic instrument includes a housing having shaft extending therefrom that defines a longitudinal axis therethrough. The shaft includes an articulating section disposed thereon. The articulating section has a central annulus extending therealong and first and second pluralities of bores. The first plurality of bores configured to receive corresponding tendons therethrough and the second plurality of bores configured to receive corresponding conductive leads therethrough. An end effector assembly operatively connected to a distal end of the shaft including a pair of first and second jaw members. The corresponding conductive leads transition from a first state for enabling articulation of the shaft about the articulating section, to a second state for disabling articulation of the shaft about the articulating section. | 01-24-2013 |
20130023873 | CONTROL METHODS AND DEVICES FOR ENERGY DELIVERY - Control systems and methods for delivery of energy that may include control algorithms that prevent energy delivery if a fault is detected and may provide energy delivery to produce a substantially constant temperature at a delivery site. In some embodiments, the control systems and methods may be used to control the delivery of energy, such as radiofrequency energy, to body tissue, such as lung tissue. | 01-24-2013 |
20130041368 | Apparatus and Method for Using a Remote Control System in Surgical Procedures - A system and method for using a remote control to control an electrosurgical instrument, where the remote control includes at least one momentum sensor. As the surgeon rotates their hand mimicking movements of a handheld electrosurgical instrument, the movements are translated and sent to the remote controlled (RC) electrosurgical instrument. The surgeon uses an augmented reality (AR) vision system to assist the surgeon in viewing the surgical site. Additionally, the surgeon can teach other doctors how to perform the surgery by sending haptic feedback to slave controllers. Also, the surgeon can transfer control back and forth between the master and slave controller to allow a learning surgeon to perform the surgery, but still allow the surgeon to gain control of the surgery whenever needed. Also, the surgeon could be located at a remote location and perform the surgery with the assistance of the AR vision system. | 02-14-2013 |
20130041369 | Electrosurgical Device and Methods - An electrosurgical probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The probe includes tubular electrodes configured such that the inner surface of the lesioning electrodes are cooled, directly or indirectly, while keeping the electrodes electrically isolated. One embodiment includes an electrosurgical probe having at least two electrically isolated electrical conductors, including an inner electrical conductor and an outer electrical conductor. The inner electrical conductor defines a lumen for the circulation of a cooling fluid therein. An inner electrical insulator is disposed between the electrical conductors to electrically isolate the electrical conductors. The electrical insulator has sufficient thermal conductivity to allow for cooling of the inner and outer electrical conductors when the cooling fluid is circulating within the lumen of the inner electrical conductor. In this way, cooling of both electrodes is achieved while avoiding direct contact of the cooling fluid with one of the electrodes. | 02-14-2013 |
20130072926 | Systems and Methods for Transmural Ablation - A method of applying ablation energy to achieve transmurality including applying ablation energy at a starting power to a tissue site and monitoring the impedance of the tissue site. A power applied to the tissue site can be reduced as a function of a rate of an increase in impedance according to some embodiments. | 03-21-2013 |
20130085489 | SYSTEM AND METHOD FOR PERFORMING RENAL DENERVATION VERIFICATION - A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel. | 04-04-2013 |
20130085490 | External Cooling Devices And Systems For Surgical Instruments - A surgical system includes a portable surgical instrument and a sleeve. The portable surgical instrument includes an end effector assembly and a housing operably coupled to the end effector assembly. The housing includes a generator and a battery assembly coupled thereto and configured to supply energy to the end effector assembly for treating tissue. The sleeve is shaped complementarily to the housing and is removably positionable about the housing. The sleeve is configured to cool the housing and/or remove heat from the housing to inhibit overheating of the generator and/or the battery assembly. | 04-04-2013 |
20130116681 | System for Automatic Medical Ablation Control - A system provides heart ablation unit control. The system includes an input processor for acquiring electrophysiological signal data from multiple tissue locations of a heart and data indicating tissue thickness at the multiple tissue locations. A signal processor processes the acquired electrophysiological signal data to identify location of particular tissue sites of the multiple tissue locations exhibiting electrical abnormality in the acquired electrophysiological signal data and determines an area of abnormal tissue associated with individual sites of the particular sites. An ablation controller automatically determines ablation pulse characteristics for use in ablating cardiac tissue at an individual site of the particular tissue sites in response to the acquired data indicating the thickness of tissue and determined area of abnormality of the individual site. | 05-09-2013 |
20130123773 | INTEGRATIVE ATRIAL FIBRILLATION ABLATION - Cardiac tissue ablation is carried out by defining first regions containing first locations including ganglionated plexi in a heart of a living subject, and inserting a probe into the heart. The method is further carried out by detecting electrical activity in the heart via electrodes on the distal portion of the probe, defining second regions having second locations, wherein the electrical activity exhibits a dominant frequency that is higher than a predefined threshold, defining third regions having third locations, wherein the electrical activity exhibits complex fractionated atrial electrograms, constructing an electroanatomical map of the heart that defines intersections of the first regions and at least one of the second regions and the third regions, selecting ablation sites within the intersections, and ablating cardiac tissue at the ablation sites. | 05-16-2013 |
20130131662 | Generator, Combination of a Generator and a Catheter, and Method for Providing an Electrical Pulse - The invention provides systems, methods, and apparatus for use in ablation procedures. The invention includes a generator with at least one indifferent lead and at least one catheter lead for connecting an indifferent electrode and a catheter provided with at least one electrode, a charging unit arranged to charge an amount of electrical energy and to discharge an electrical pulse of a predetermined magnitude between the two electrode leads, a power supply arranged to supply electrical energy to the charging unit, an input unit arranged for inputting an indication of the magnitude of the pulse, and a measuring unit arranged between the electrode leads for measuring at least one electrical property between the leads. Numerous additional aspects are provided. | 05-23-2013 |
20130138098 | ELECTROSURGICAL RADIO FREQUENCY ENERGY TRANSMISSION MEDIUM - A system and method for transmitting electrosurgical energy from a generator to an electrosurgical instrument are provided. The electrosurgical system includes a generator adapted to generate electrosurgical energy for treating tissue. The generator includes one or more active output terminals which supply energy to the tissue. The active output terminals are operatively connected to one or more supply lines. The generator also includes one or more return output terminal which returns energy from the tissue. The return output terminals are operatively connected to at least one return line. The system also includes an electrosurgical instrument operatively connected to the one or more supply lines and one or more return electrodes operatively connected to one or more return lines. The system further includes an electrosurgical cable including one or more supply lines and one or more return lines. The one or more supply lines and one or more return lines are wound in a double helix fashion such that the electrical field along the cable is mitigated along the length thereof. | 05-30-2013 |
20130158541 | ELECTROSURGICAL APPARATUS WITH HIGH SPEED ENERGY RECOVERY - A circuit for controlling the discharging of stored energy in an electrosurgical generator includes a pulse modulator which controls an output of a power supply. At least one comparator is configured to provide an error signal to the pulse modulator based on a comparison between an output signal generated by the power supply and a feedback signal generated in response to the application of energy to tissue. A discharge circuit is configured to control the discharge of the output of the power supply to an inductive load disposed in parallel with the output of the power supply based on the comparison between the output signal and the feedback signal. The discharge circuit provides a rapid response and time rate control of the delivered electrosurgical energy by controlling the power supply and delivered RF energy in real time, based on a feedback signal generated in response to the application of energy to tissue. | 06-20-2013 |
20130158542 | SURGICAL SYSTEMS WITH ROBOTIC SURGICAL TOOL HAVING PLUGGABLE END-EFFECTORS - In one embodiment of the invention, a replaceable electrosurgical end effector cartridge is provided to couple to a mechanical wrist of a surgical instrument for a robotic surgical system. The replaceable electrosurgical end effector cartridge includes two pluggable end effectors and a pair of spring latches. The two end effectors are moveable end effectors having a jaw portion, an off-center portion, and a base portion in one embodiment. The replaceable electrosurgical end effector cartridge may further include a fastener to rotatably couple the end effectors together. | 06-20-2013 |
20130178848 | SYSTEM AND METHOD FOR POWER SUPPLY NOISE REDUCTION - An electrosurgical system includes an electrosurgical generator, a power source configured to deliver power to at least one load connected to the generator, a master configured to generate an initial pulse, the initial pulse cooperating with a first floating power supply configured to create an electrical connection between at least one first load and the power source, and a plurality of slaves connected in series to the master, wherein a first slave is configured to generate a subsequent pulse based on the initial pulse, the subsequent pulse cooperating with a second floating power supply configured to create an electrical connection between at least one second load and the power source, the subsequent pulse configured to cause an ensuing slave to generate an additional pulse, the additional pulse cooperating with a corresponding floating power supply configured to create an electrical connection between at least one additional load and the power source. | 07-11-2013 |
20130190751 | Electrosurgical Device Having a Multiplexer - An electrosurgical system includes an electrosurgical generator configured to provide electrosurgical energy to an electrosurgical device coupled thereto which, in turn, delivers electrosurgical energy to tissue. The electrosurgical device may include a plurality of sensors configured to detect one or more tissue properties and output a detected tissue property signal relating thereto. One or more multiplexers having a plurality of channels are electrically connected to each of the corresponding plurality of sensors. The multiplexer(s) may be configured to receive the detected tissue property signal from each sensor of the plurality of sensors and output at least one output signal along a signal line. The signal line is configured to connect to the electrosurgical generator to control a power output of the electrosurgical generator. A channel select algorithm is configured to automatically select channels from the plurality of channels. | 07-25-2013 |
20130197508 | SYSTEMS AND METHODS FOR CONTROLLING USE AND OPERATION OF A FAMILY OF DIFFERENT TREATMENT DEVICES - A system for controlling a treatment device generates a graphical interface that visually prompts a user in a step-wise fashion to use the treatment device to perform a process of forming a pattern of lesions that extends both circumferentially and axially in different levels in a body region. The graphical interface displays for the user a visual record of the progress of the process from start to finish and guides the user so that so that individual lesions desired within a given level are all formed, and that a given level of lesions is not skipped. | 08-01-2013 |
20130197509 | SYSTEMS AND METHODS FOR CONTROLLING USE AND OPERATION OF A FAMILY OF DIFFERENT TREATMENT DEVICES - A system for controlling a treatment device generates a graphical interface that visually prompts a user in a step-wise fashion to use the treatment device to perform a process of forming a pattern of lesions that extends both circumferentially and axially in different levels in a body region. The graphical interface displays for the user a visual record of the progress of the process from start to finish and guides the user so that so that individual lesions desired within a given level are all formed, and that a given level of lesions is not skipped. | 08-01-2013 |
20130204243 | HANDHELD ELECTROSURGICAL GENERATOR - A handheld electrosurgical generator including a pen, internal controller, signal generator, and RF amplifier. The pen electro-mechanically connects to an electrosurgical needle. The controller is embedded within the pen to control the RF output at the electrosurgical needle tip. An electrosurgical system incorporates the handheld electrosurgical generator along with at least one of a data processing unit and a data entry point in communication with the controller of the handheld electrosurgical generator. | 08-08-2013 |
20130226168 | GLOVE WITH SENSORY ELEMENTS INCORPORATED THEREIN FOR CONTROLLING AT LEAST ONE SURGICAL INSTRUMENT - A surgical control system is provided including a glove having a plurality of sensory elements disposed therein, the plurality of sensory elements configured to provide sensory signals and at least one surgical instrument configured to be responsive to the sensory signals when the glove is within a functional range of the at least one surgical instrument. The plurality of sensory elements are magnetic elements or conductive elements. At least one surgical instrument includes a plurality of sensors positioned therein for sensing the magnetic elements or the conductive elements of the glove. Movement of the glove having the plurality of magnetic or conductive elements disposed therein, relative to the at least one surgical instrument, causes the plurality of sensors positioned within the at least one surgical instrument to activate at least one operation of the at least one surgical instrument. | 08-29-2013 |
20130226169 | SYSTEM AND METHOD FOR ASSESSING LESIONS IN TISSUE - A method and system for assessing lesion formation in tissue is provided. The system includes an electronic control unit (ECU). The ECU is configured to acquire values for first and second components of a complex impedance between the electrode and the tissue, and to calculate an index responsive to the first and second values. The ECU is further configured to process the ECI to assess lesion formation in the tissue. | 08-29-2013 |
20130231656 | Method and Apparatus for Identification Using Capacitive Elements - A surgical instrument and related method are provided. The surgical instrument includes a housing, a cable, and an identifying circuit. An end-effector is coupled to the housing for treating tissue. The cable extends from the housing and is configured to couple the surgical instrument to a generator. The identifying circuit includes a plurality of capacitive elements disposed on the surgical instrument. The plurality of capacitive elements is readable by the generator. | 09-05-2013 |
20130253501 | Electrosurgical System - An electrosurgical system is provided. The electrosurgical system includes an electrosurgical generator including a computer having one or more microprocessors in operable communication with memory for storing information pertaining to the electrosurgical generator. An audio output module is in operable communication with the computer and configured to generate an audio output having the information pertaining to the electrosurgical generator embedded therein. A speaker is in operable communication with the audio output module for outputting the audio output. A recording device is configured to record the audio output. An audio collector is configured to receive the audio output from the recording device and decipher the embedded audio so that the information pertaining to the electrosurgical generator may be utilized for future use. | 09-26-2013 |
20130253502 | Multiple Parameter Fault Detection in Electrosurgical Instrument Shields - A system and method for detecting faults within an electrosurgical instrument having a shield and an active electrode uses multiple possible fault conditions. In one embodiment the monitoring system comprises an electrosurgical generator coupled to the electrosurgical instrument and adapted to deliver power to the active electrode of the electrosurgical instrument, monitoring circuitry coupled to the electrosurgical generator and the electrosurgical instrument. | 09-26-2013 |
20130261619 | REMOVABLE INK FOR SURGICAL INSTRUMENT - The present disclosure relates to an apparatus and method for preventing reuse of a surgical instrument. The single-use surgical instrument includes a housing, an electrical connector and a treatment component. Indicia may be printed on the housing, the electrical connector and/or the treatment component. A removable ink is applied to any portion of the surgical instrument in the form of indicia that is readable by a scanning device. The removable ink includes a protein-based composition that is reactivateable with a sterilization solution having an enzyme-based composition such that upon sterilization, the removable ink reacts with the sterilizing solution and becomes unreadable by the scanning device. | 10-03-2013 |
20130267944 | Method for Employing Single Fault Safe Redundant Signals - An electrosurgical system includes an electrosurgical instrument coupled to an electrosurgical generator. The electrosurgical system may include a first sensor and a second sensor, which are configured to detect redundant tissue properties and output a signal corresponding thereto. The electrosurgical system has a signal processing circuit for receiving and modifying the output signal from the second sensor. The electrosurgical generator may include a controller for receiving an output signal from the first sensor and a processed signal from the signal processing circuit. The controller compares the two signals received and shuts down the system based on the comparison of the first sensor and a processed signal. | 10-10-2013 |
20130267945 | Electrosurgical Generator - An electrosurgical system for performing an electrosurgical procedure is provided and includes an electrosurgical generator and a calibration computer system. The electrosurgical generator includes one or more processors and a measurement module including one or more log amps that are in operative communication with the processor. The calibration computer system configured to couple to a measurement device and is configured to measure parameters of an output signal generated by the electrosurgical generator. The calibration computer system is configured to compile the measured parameters into one or more data look-up tables and couple to the electrosurgical generator for transferring the data look-up table(s) to memory of the electrosurgical generator. The microprocessor is configured to receive an output from the log amp(s) and access the data look-up table(s) from memory to execute one or more control algorithms for controlling an output of the electrosurgical generator. | 10-10-2013 |
20130274734 | Single or Limited Use Device Designs - The present disclosure is directed to an electrosurgical system. The electrosurgical system includes an electrosurgical generator configured to output electrosurgical energy and including a receptacle having at least one mechanical interface. The system also includes an electrosurgical instrument adapted to connect to the electrosurgical generator and configured to deliver energy to tissue. Further, a plug is provided to engage the receptacle to electrically couple the electrosurgical instrument to the electrosurgical generator. The plug includes a terminal electrically coupled to the electrosurgical instrument and a prong electrically coupled to the terminal that includes a recess defined therein and is configured to receive the at least one mechanical interface. When the plug is disengaged from the receptacle, the at least one mechanical interface cooperates with the recess to uncouple the prong from the terminal. | 10-17-2013 |
20130274735 | RENAL DENERVATION AND STIMULATION EMPLOYING WIRELESS VASCULAR ENERGY TRANSFER ARRANGEMENT - Devices, systems, and methods provide for intravascular or extravascular delivery of renal denervation therapy and/or renal control stimulation therapy. Wireless vascular thermal transfer apparatuses and methods provide for one or both of production of current densities sufficient to ablate renal nerves and terminate renal sympathetic nerve activity, and production of current densities sufficient to induce endothelium dependent vasodilation of the renal artery bed. A common apparatus may be used for both renal ablation and control of renal function locally after renal denervation. | 10-17-2013 |
20130296845 | AUTOMATIC ABLATION TRACKING - A method for performing a medical procedure includes bringing a probe into contact with an organ in a body of a patient. A map of the organ is displayed, and the location of the probe relative to the map is tracked. A therapy is applied via the probe at multiple tissue sites in the organ with which the probe is brought into contact. Stability of the contact between the probe and the tissue sites is assessed while applying the therapy. The map is automatically marked, responsively to the assessed stability, to indicate the tissue sites at which the therapy was applied. | 11-07-2013 |
20130310826 | SYSTEMS AND METHODS FOR SELECTING, ACTIVATING, OR SELECTING AND ACTIVATING TRANSDUCERS - Transducer-based systems can be configured to display a graphical representation of a transducer-based device, the graphical representation including graphical elements corresponding to transducers of the transducer-based device, and also including between graphical elements respectively associated with a set of the transducers and respectively associated with a region of space between the transducers of the transducer-based device. Selection of a between graphical element can cause activation of the set of transducers associated with the selected between graphical element. Selection of a plurality of between graphical elements and graphical elements can cause visual display of a corresponding activation path in the graphical representation. Visual characteristics of graphical elements and between graphical elements can change based on an activation-status of the corresponding transducers. Activation requests for a set of transducers can be denied if it is determined that a transducer in the set of transducers is unacceptable for activation. | 11-21-2013 |
20130310827 | SYSTEMS AND METHODS FOR SELECTING, ACTIVATING, OR SELECTING AND ACTIVATING TRANSDUCERS - Transducer-based systems can be configured to display a graphical representation of a transducer-based device, the graphical representation including graphical elements corresponding to transducers of the transducer-based device, and also including between graphical elements respectively associated with a set of the transducers and respectively associated with a region of space between the transducers of the transducer-based device. Selection of graphical elements and/or between graphical elements can cause activation of the set of transducers associated with the selected elements. Selection of a plurality of graphical elements and/or between graphical elements can cause visual display of a corresponding activation path in the graphical representation. Visual characteristics of graphical elements and between graphical elements can change based on an activation-status of the corresponding transducers. Activation requests for a set of transducers can be denied if it is determined that a transducer in the set of transducers is unacceptable for activation. | 11-21-2013 |
20130310828 | SYSTEMS AND METHODS FOR ACTIVATING TRANSDUCERS - Transducer-based systems and methods may be configured to display a graphical representation of a transducer-based device, the graphical representation including graphical elements corresponding to transducers of the transducer-based device, and also including between graphical elements respectively associated with a set of the transducers and respectively associated with a region of space between the transducers of the transducer-based device. Selection of graphical elements and/or between graphical elements can cause activation of the set of transducers associated with the selected elements. Transducer activation characteristics, such as initiation time, activation duration, activation sequence, and energy delivery characteristics, can vary based on numerous factors. Visual characteristics of graphical elements and between graphical elements can change based on an activation-status of the corresponding transducers. Activation requests for a set of transducers can be denied if it is determined that a transducer in the set of transducers is unacceptable for activation. | 11-21-2013 |
20130310829 | ABLATION CATHETER SYSTEM WITH SAFETY FEATURES - A medical system for delivering treatment or therapy to a patient has a kill switch for interrupting the delivery. The kill switch, which can disrupt the delivery directly or can cause an error message to be generated that disrupts the delivery, can be activated by the operator or remotely. In an ablation catheter system, a kill switch mechanism immediately and abruptly terminates delivery of ablation treatment or therapy. | 11-21-2013 |
20130345695 | ENERGY-HARVESTING SYSTEM, APPARATUS AND METHODS - An electrosurgical energy delivery apparatus includes an energy delivery circuit, a control circuit and an energy-harvesting system with a plurality of energy-harvesting circuits and a voltage regulator that provides a regulated DC voltage to the energy delivery circuit and/or the control circuit. The energy delivery circuit receives an electrosurgical energy signal having a primary frequency and selectively provides the electrosurgical energy signal to an energy delivery element. The control circuit connects to the energy delivery circuit and selectively enables the flow of electrosurgical energy to the energy delivery element. The plurality of energy-harvesting circuits each include an energy-harvesting antenna tuned to a particular frequency, a matched circuit configured to receive an RF signal from the energy-harvesting antenna, rectify the RF signal and generate a DC signal, and an energy storage device that connects to the voltage regulator to receive and store the DC signal. | 12-26-2013 |
20130345696 | SYSTEM AND METHOD FOR TESTING ELECTROSURGICAL GENERATORS - A system is provided. The system includes an electrosurgical generator configured to measure, collect and record data pertaining to a characteristic of tissue as the tissue is being electrosurgically treated. A tuner configured to couple to the electrosurgical generator includes a tuning circuit providing a load having a variable complex impedance for the electrosurgical generator when the electrosurgical generator is connected thereto. A controller including stored data pertaining to impedance values is in operable communication with the electrosurgical generator for retrieving the recorded data pertaining to the characteristic of tissue. The controller is in operable communication with the tuner for varying a complex impedance of the load. The controller configured to compare the recorded data pertaining to the at least one characteristic of tissue with the stored data pertaining to the plurality of impedance values and to adjust the tuner to one of the plurality of impedance values. | 12-26-2013 |
20130345697 | SYSTEM AND METHOD FOR ESTIMATING A TREATMENT VOLUME FOR ADMINISTERING ELECTRICAL-ENERGY BASED THERAPIES - The invention provides for a system for estimating a 3-dimensional treatment volume for a device that applies treatment energy through a plurality of electrodes defining a treatment area, the system comprising a memory, a display device, a processor coupled to the memory and the display device, and a treatment planning module stored in the memory and executable by the processor. In one embodiment, the treatment planning module is adapted to generate an estimated first 3-dimensional treatment volume for display in the display device based on the ratio of a maximum conductivity of the treatment area to a baseline conductivity of the treatment area. The invention also provides for a method for estimating 3-dimensional treatment volume, the steps of which are executable through the processor. In embodiments, the system and method are based on a numerical model which may be implemented in computer readable code which is executable through a processor. | 12-26-2013 |
20140018791 | Systems and Methods for Transmural Ablation - A method of applying ablation energy to achieve transmurality including applying ablation energy at a starting power to a tissue site and monitoring the impedance of the tissue site. A power applied to the tissue site can be reduced as a function of a rate of an increase in impedance according to some embodiments. | 01-16-2014 |
20140025066 | ABLATION NEEDLE INCLUDING FIBER BRAGG GRATING - A surgical device is disclosed, and includes a probe having a handle assembly and an electrode assembly extending distally therefrom. An optical member is disposed on the probe and has a first set of light transmitting properties corresponding to a first set of physical parameters of the probe. The probe is configured to transition to a second set of physical parameters, the second set of physical parameters being different from the first set of physical parameters. The optical member is configured to transition from the first set of light transmitting properties to a second set of light transmitting properties, the second set of light transmitting properties corresponding to the second set of physical parameters, the second set of light transmitting properties being different from the first set of light transmitting properties. | 01-23-2014 |
20140031813 | NEEDLE PROBE GUIDE - A device for guiding electrodes relative to a tissue treatment region. The device can comprise a body have a plurality of passages therethrough. Each passage can axially restrain an electrode positioned therein. When each electrode is axially restrained in a passage, the distal ends of the electrodes can be spaced a predetermined distance apart. Further, the electrodes can be held in a parallel or substantially parallel alignment when axially retained in the passages. The predetermined distance between the electrodes can correspond to a treatment distance in a tissue treatment region and the distal ends of the electrodes can be operably structured to conduct current therebetween when at least one of electrodes is energized by an energy source. | 01-30-2014 |
20140031814 | GAS SENSING SURGICAL DEVICE AND METHOD OF USE - A handheld surgical assembly has a body, a first end, a second end, and a body length separating the first and second ends, an energy input and output, the energy output located at the first end of the body, the assembly also having a sensor that is coupled to the handheld surgical assembly, in fluid communication with an outside environment, and operable to identify a plurality of gases, with the assembly additionally having an electronic circuit system communicatively coupled to the sensor, the electronic circuit system being operable, upon the identification of at least one of the plurality of gases by the sensor, to control the energy output from the handheld surgical device. | 01-30-2014 |
20140039488 | CARDIAC ABLATION DEVICES AND METHODS - Devices and methods provide for ablation of cardiac tissue for treating cardiac arrhythmias such as atrial fibrillation. Although the devices and methods are often be used to ablate epicardial tissue in the vicinity of at least one pulmonary vein, various embodiments may be used to ablate other cardiac tissues in other locations on a heart. Devices generally include at least one tissue contacting member for contacting epicardial tissue and securing the ablation device to the epicardial tissue, and at least one ablation member for ablating the tissue. Various embodiments include features, such as suction apertures, which enable the device to attach to the epicardial surface with sufficient strength to allow the tissue to be stabilized via the device. For example, some embodiments may be used to stabilize a beating heart to enable a beating heart ablation procedure. Many of the devices may be introduced into a patient via minimally invasive introducer devices and the like. Although devices and methods of the invention may be used to ablate epicardial tissue to treat atrial fibrillation, they may also be used in veterinary or research contexts, to treat various heart conditions other than atrial fibrillation and/or to ablate cardiac tissue other than the epicardium. | 02-06-2014 |
20140039489 | ACUTE BLOOD-BRAIN BARRIER DISRUPTION USING ELECTRICAL ENERGY BASED THERAPY - A method is provided for ablating brain tissue of a living mammal comprising: placing first and second electrodes in a brain of the living mammal; applying a plurality of electrical pulses through the first and second placed electrodes which are predetermined to: cause irreversible electroporation (IRE) of brain tissue of the mammal within a target ablation zone; and cause a temporary disruption of a blood brain barrier (BBB) within a surrounding zone that surrounds the target ablation zone to allow material in a blood vessel to be transferred to the surrounding zone through the temporarily disrupted BBB. Such methods are useful for delivering large molecule material within a blood vessel of the brain across the BBB, where the large molecule is otherwise blocked by the BBB from passing through the blood vessel into the brain. | 02-06-2014 |
20140039490 | ARC BASED ADAPTIVE CONTROL SYSTEM FOR AN ELECTROSURGICAL UNIT - A system and method for performing electrosurgical procedures are disclosed. The system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue in form of one or more electrosurgical waveforms having a crest factor and a duty cycle. The system also includes sensor circuitry adapted to measure impedance and to obtain one or more measured impedance signals. The sensor circuitry is further adapted to generate one or more arc detection signals upon detecting an arcing condition§. The system further includes a controller adapted to generate one or more target control signals as a function of the measured impedance signals and to adjust output of the electrosurgical generator based on the arc detection signal. An electrosurgical instrument is also included having one or more active electrodes adapted to apply electrosurgical energy to tissue. | 02-06-2014 |
20140052126 | ELECTROSURGICAL DEVICES AND METHODS - An electrosurgical system may generally first and second electrodes coupled to an energy source operative to generate and deliver pulses of a biphasic radio frequency (RF) waveform to treat undesirable tissue in a patient. The pulses may induce non-thermal cell death in the patient's tissue while causing no or minimal muscle contractions in the treated patient. The pulses may be grouped in bursts wherein the pulses within a burst repeat at a particular pulse frequency. | 02-20-2014 |
20140052127 | METHOD FOR TREATING COMPLEX RHYTHM DISORDERS - A method of treating a complex rhythm disorder of a human heart includes identifying a region of a wall of the heart having an activation trail that is rotational or radially emanating, where the activation trail is indicative of the complex rhythm disorder and is based on activation times associated with one or more activations of the heart. A portion of the region is selected based on the activation trail and modified to affect the activation trail. | 02-20-2014 |
20140052128 | SURGICAL FORCEPS - A forceps includes an end effector assembly having first and second jaw members. One (or both) of the first and second jaw members is moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween. One (or both) of the jaw members includes a jaw frame a disposable jaw housing and an elastomeric ring member. The disposable jaw housing is releasably engageable with the jaw frame. The elastomeric ring member is removably positionable about a distal end of the jaw housing. The elastomeric ring member is configured to define a gap distance between the first and second jaw members upon movement of the first and second jaw members to the approximated position. | 02-20-2014 |
20140052129 | Surgical Instrument Including Inductively Coupled Accessory - A surgical instrument system includes a surgical instrument, a power supply, and an accessory. The surgical instrument has a first induction device positioned therein. The accessory is selectively operably couplable to the surgical instrument. The accessory includes a second induction device that is inductively coupled with the first induction device when the accessory is operably coupled to the surgical instrument such that the power supply provides power to the accessory. | 02-20-2014 |
20140058383 | LOCATION-BASED SERVICES - An apparatus comprises an external device for communication with an implantable device. The external device includes a communication circuit configured to receive a communication signal from at least one other device different from the implantable device, a locating circuit configured to determine a location of the external device using the received communication signal, and a control circuit electrically coupled to the communication circuit and the locating circuit. The control circuit is configured to determine whether the determined location imposes a limit on functionality of an implantable device, and provide user access to an implantable device feature according to the determined location. | 02-27-2014 |
20140058384 | THERMAL FEEDBACK SYSTEMS AND METHODS OF USING THE SAME - A system for providing feedback during an electrosurgical procedure on a target tissue is provided. The system includes an electrosurgical energy source; an electrode probe assembly connected to the electrosurgical energy source, wherein the electrode probe assembly includes at least one electrode assembly having a needle configured to deliver electrosurgical energy to the target tissue; at least one thermal feedback assembly connected to the electrosurgical energy source, wherein each thermal feedback assembly includes at least one temperature sensor assembly; and a hub configured to selectively support the electrode probe assembly and each thermal feedback assembly such that the needle of the electrode probe assembly and each temperature sensor assembly of each thermal feedback assembly are proximate one another when disposed proximate the target tissue. | 02-27-2014 |
20140074085 | SURGICAL INSTRUMENT WITH NON-CONTACT ELECTRICAL COUPLING - A surgical instrument includes a reusable base component including a handle and an electrically activatable modular component removably coupled to the base component. The modular component includes an end effector operable from the handle to treat tissue. The end effector is responsive to manipulation of the handle. A first energy storage component is disposed onboard the base component and is electrically coupled to a source of electricity. A second energy storage component is disposed onboard the modular component and is electrically insulated from the first energy storage component. The second energy storage component is arranged such that a current may be selectively induced in the modular component by delivery of electrical energy to the first energy storage component. | 03-13-2014 |
20140088588 | SYSTEMS AND METHODS FOR CONTROLLING ENERGY APPLICATION - Energy delivery systems and methods for treating tissue are disclosed that may include an energy generator, a cooled electrode device, and a controller connected to the energy generator. The controller may include a processor and may be configured to control power output by the cooled electrode device based on a measured impedance level of tissue at a target treatment site. | 03-27-2014 |
20140088589 | ELECTROSURGICAL POWER CONTROL - A method and apparatus include determining a value of a parameter associated with operation of an electrosurgical probe having a particular probe design, and determining whether the value of the parameter is within a range of values that has been predetermined for the particular probe design to indicate that the probe is treating tissue in a desired manner. Power is delivered to the probe according to an algorithm based upon a determination that the value of the parameter is outside the range of values The algorithm delivers power in a pulsed profile including portions of low power and portions of high power. In one embodiment, the tissue treatment is ablation, the parameter is impedance, and the method limits tissue necrosis to less than 200 microns. In another embodiment, the tissue treatment is shrinkage, the parameter is temperature, and the method limits power delivery when the probe is not shrinking tissue. | 03-27-2014 |
20140094792 | HEAT-SENSITIVE OPTICAL PROBES - A method of directing energy to tissue includes the initial steps of determining target tissue location and/or target tissue margins, positioning an ablation device for delivery of energy to target tissue, and positioning one or more heat-sensitive optical probes into a tissue region to be monitored. Each heat-sensitive optical probe is adapted to utilize spectral properties of light to access one or more optical fiber portions of the heat-sensitive optical probe in response to heat. The method also includes the steps of applying energy to the ablation device, continuing ablation while size and/or position of ablated zone which received heat above a threshold value is displayed on a monitor using one or more electrical signals generated by the one or more heat-sensitive optical probes, determining whether the ablated zone displayed on the monitor is larger than the target tissue margins, and terminating ablation if it is determined that the ablated zone displayed on the monitor is larger than the target tissue margins. | 04-03-2014 |
20140094793 | DEVICE AND METHOD FOR HEAT-SENSITIVE AGENT APPLICATION - A method of directing energy to tissue includes the initial steps of determining target tissue location and/or target tissue margins, positioning an ablation device for delivery of energy to target tissue, and introducing a material having a shape into a tissue region to be monitored. The material is adapted to change echogenic properties in response to heat. The method also includes the steps of applying energy to the ablation device, monitoring the material on a monitor, determining an echogenic response of the material, and terminating ablation if it is determined that the echogenic response of the material is outside a predetermined target tissue threshold. | 04-03-2014 |
20140094794 | ELECTRO-THERMAL DEVICE - An electro-thermal apparatus configured to treat tissue is provided. The electro-thermal apparatus including an electrosurgical cable configured to couple to an electrosurgical energy source. The electrosurgical cable includes supply and return lines that are wound in a double helix arrangement around a dielectric insulator within the electrosurgical cable. An electro-thermal element is provided at a distal end of the electrosurgical cable. The electro-thermal element is in electrical communication with the supply and return lines via corresponding first and second conductive traces. The first and second conductive traces have a patterned geometry and resistivity configured to convert electrical energy provided by the supply and return lines to thermal energy for treating tissue. | 04-03-2014 |
20140094795 | ENERGY-BASED MEDICAL DEVICES - A medical device includes an energy-generating unit configured to produce energy for conduction through tissue to treat tissue. Waste heat produced by the energy-generating unit during energy production is conducted to tissue to facilitate treating tissue. | 04-03-2014 |
20140107641 | PLANAR TRANSFORMERS HAVING REDUCED TERMINATION LOSSES - The present disclosure relates to planar transformers including a plurality of circuit layers that are configured to reduce termination losses on at least one of the plurality of circuit layers. The plurality of circuit layers are stacked together in a first direction and include at least first and second circuit layers. The first and second circuit layers each include an electrically conductive trace forming at least one winding having a first termination portion and a second termination portion that are separated by a gap. The gaps of the first and second circuit layers are offset relative to each other in a second direction different from the first direction. The plurality of circuit layers may further include a third circuit layer, which includes an electrically conductive trace having a grounded portion that is disposed adjacent to at least one of the gaps of the first and second circuit layers. | 04-17-2014 |
20140121659 | ELECTROGRAM-BASED ABLATION CONTROL - Methods, devices, and systems for predicting, diagnosing, and preventing adverse events during an ablation procedure are described. A method for providing ablation energy includes receiving a first signal based on biological activity of a tissue of a patient. The method further includes analyzing the first signal to yield a first data set, establishing a threshold parameter according to the first data set, and providing ablation energy for the ablation of a biological site. | 05-01-2014 |
20140121660 | CARDIAC TISSUE ELASTICITY SENSING - A system and method are provided for assessing the compliance of internal patient tissue for purposes of catheter guidance and/or ablation procedures. Specifically, the system/method provides for probing internal patient tissue in order to obtain force and/or tissue displacement measurements. These measurements are utilized to generate an indication of tissue elasticity. In one exemplary embodiment, the indication of elasticity is correlated with an image of the internal tissue area and an output of this image including elasticity indications is displayed for a user. | 05-01-2014 |
20140128863 | SYSTEMS AND METHODS FOR CONTROLLING DELIVERY OF ULTRASONIC ENERGY TO A BODILY TISSUE - An apparatus includes a generator including a control module that is operably coupled to a power module. The power module is configured to produce an electronic signal to be received by an ultrasonic energy delivery assembly. The ultrasonic energy delivery assembly is characterized by a natural frequency, and the electronic signal is characterized by a frequency. The control module is configured to send a control signal to the power module to randomly vary the frequency of the electronic signal within a range defined at least in part by the natural frequency. | 05-08-2014 |
20140142566 | COUPLING MEANS CONNECTING AN ELECTROSURGICAL INSTRUMENT TO A VACUUM SOURCE, AN ELECTROSURGICAL INSTRUMENT PROVIDED WITH THE COUPLING MEANS, A KIT INCLUDING THE COUPLING MEANS AND THEIR USES - A coupling means ( | 05-22-2014 |
20140148803 | EXTERNAL ACTUATOR FOR AN ELECTROSURGICAL INSTRUMENT - An electrosurgical instrument is provided having a treatment portion attached at a distal end thereof and a handle for actuating the treatment portion. The instrument includes at least one switch, each configured to close an associated open circuit upon activation thereof for controlling at least one respective function or parameter associated with the treatment portion. The instrument is provided with a cap configured to mechanically engage the housing and having an inner surface including a corresponding number of mechanical interfaces configured to align with each switch, such that an activation force against an outer surface of the cap and relative to the housing closes the open circuit associated with a corresponding switch. | 05-29-2014 |
20140148804 | QUADRIPOLAR FORCEPS - Electrosurgical forceps that can provide improved hemostatis and tissue-cutting capabilities during surgical procedures. The electrosurgical forceps include opposing jaw members, each including first and second electrode members. The first and second electrodes included in the respective jaw members are disposed directly opposite one another, the first electrode members included in the respective jaw members are disposed diagonally opposite one another, and the second electrode members included in the respective jaw members are disposed diagonally opposite one another. A first high frequency (HF) electric power source is connectable across the first electrode members, and a second HF electric power source is connectable across the second electrode members, electrically isolating the first electrode members from the second electrode members, and allowing current to flow diagonally through the tissue between one or both of the first electrode members and the second electrode members. | 05-29-2014 |
20140155882 | ELECTROSURGICAL WAND AND RELATED METHOD AND SYSTEM - An electrosurgical wand. At least some of the illustrative embodiments are electrosurgical wands including an elongate housing that defines a handle end and a distal end, a first discharge aperture on the distal end of the elongate housing, a first active electrode of conductive material disposed on the distal end of the elongate housing, a first return electrode of conductive material disposed within the first fluid conduit, and an aspiration aperture on the distal end of the elongate housing fluidly coupled to a second fluid conduit. | 06-05-2014 |
20140155883 | ELECTROSURGICAL SYSTEM AND METHOD HAVING ENHANCED TEMPERATURE MEASUREMENT - Electrosurgical systems and methods are described herein in which the temperature of a fluid within a body or joint space is determined and/or monitored despite the energy generated during treatment by an ablation probe. One or more temperature sensors are positioned along the probe proximally of the electrode assembly and measure the temperature of an electrically conductive fluid without being overly influenced by the surgical effect occurring proximate the electrode assembly. A controller automatically suspends energy delivery for one or more periods of time while the temperature is monitored. | 06-05-2014 |
20140163546 | LASSO CATHETER WITH TIP ELECTRODE - Medical apparatus includes a sheath having a lumen with a distal opening. A flexible probe, which is adapted for insertion through the sheath, includes an insertion shaft, an end section, which is connected to the distal end of the insertion shaft, a tip electrode extending over the tip of the end section, and proximal electrodes distributed along the end section. The probe is manipulable, within the sheath, between a retracted configuration in which the end section is contained within the lumen so that only the tip electrode protrudes through the distal opening, and an extended configuration in which the entire end section protrudes from the distal opening and assumes an arcuate shape. An energy generator applies electrical energy only to the tip electrode while the probe is in the retracted configuration and to at least the proximal electrodes while the probe is in the extended configuration. | 06-12-2014 |
20140171935 | SYSTEM AND METHOD FOR VOLTAGE AND CURRENT SENSING - An electrosurgical system is disclosed. The system includes a radio frequency output stage configured to output at least one radio frequency waveform and a current sensor coupled to the output stage and configured to output a first differentiated signal corresponding to a current of the at least one radio frequency waveform, the current sensor coupled to a first conditioning circuit configured to integrate the first differentiated signal to output a processed current signal indicative of the current. The system further includes a voltage sensor coupled to the output stage and configured to output a second differentiated signal corresponding to a voltage of the at least one radio frequency waveform, the voltage sensor coupled to a second conditioning circuit configured to integrate the second differentiated signal to output a processed voltage signal indicative of the voltage, wherein the first and second conditioning circuits have a substantially similar bandpass and phase response. | 06-19-2014 |
20140171936 | IRRIGATED CATHETER TIP WITH TEMPERATURE SENSOR AND OPTIC FIBER ARRAYS - Apparatus, consisting of an insertion tube having a distal end configured for insertion into proximity with tissue in a body of a patient and containing a lumen having an electrical conductor for conveying electrical energy to the tissue. The apparatus further includes a conductive cap attached to the distal end of the insertion tube and coupled electrically to the electrical conductor, wherein the conductive cap has an outer surface. In addition there are a multiplicity of optical fibers contained within the insertion tube, each fiber terminating in proximity to the outer surface of the cap, and being configured to convey optical radiation to and from the tissue while the electrical energy is being conveyed to the tissue. | 06-19-2014 |
20140171937 | ELECTROSURGICAL INSTRUMENT & SHAFT | 06-19-2014 |
20140171938 | ELECTROSURGICAL PENCIL INCLUDING IMPROVED CONTROLS - An electrosurgical device is configured for connection to a source of electrosurgical energy and includes a housing and an electrical circuit supported within the housing. The electrical circuit is connectable to the source of electrosurgical energy. The electrical circuit is provided with at least one tactile enhancement feature. A controller is slidably supported on the housing. The controller is configured to exert a force on the electrical circuit to affect a change in the electrical circuit and to exert a force on a surface of the housing to engage the tactile enhancement feature and provide a tactile feedback to a user of the electrosurgical device as the controller is moved relative to the housing. | 06-19-2014 |
20140180272 | FLUX TRANSMISSION CONNECTORS, SYSTEMS, AND METHODS - A surgical flux transmission conduit for operationally coupling a surgical flux supply pathway with a surgical flux delivery instrument may include a data signal transmission pathway, a surgical flux transmission pathway, and a connector interface. The connector interface can include a data signal transmission connector feature in communication with the data signal transmission pathway, and a surgical flux transmission connector feature in communication with the surgical flux transmission pathway. A surgical flux delivery instrument may include an electronic circuit encoded with identification data corresponding to the instrument and a connector interface configured to mate with the connector interface of the conduit. A surgical flux supply source may include a connector interface including a data signal transmission connector to receive a data signal from the instrument and a surgical flux transmission connector feature. | 06-26-2014 |
20140180273 | Device, System, and Method for Imaging and Tissue Characterization of Ablated Tissue - Disclosed herein is a system for ablating and characterizing tissue. The system comprises an ablation element configured to emit ablative energy toward a tissue of interest, an imaging apparatus configured to emit energy and collect imaging data including reflected signals from the tissue of interest, and a characterization application. The characterization application comprises a signal analyzer for analyzing the imaging data and determining one or more signal properties from the reflected signals, and a correlation processor configured to associate the one or more signal properties to pre-determined tissue signal properties of different tissue components through a pattern recognition technique. The pre-determined tissue signal properties are embodied in a database, and the correlation processor is configured to identify a tissue component and an ablation level of the tissue of interest based on the pattern recognition technique. | 06-26-2014 |
20140180274 | SURGICAL OPERATION SYSTEM - A surgical operation system has a power supply apparatus that generates a high frequency signal by a first signal producing section, a converter that performs conversion into other energy by supply of the second signal, a surgical treatment instrument including a pair of electrodes, a cable that connects the surgical treatment instrument to the power supply apparatus, a measurement section that measures a high frequency voltage and a high frequency current for a living tissue to which the high frequency signal is supplied via the cable and the surgical treatment instrument, a calculation section that calculates an electrostatic capacity value of the cable and the surgical treatment instrument from the high frequency voltage and the high frequency current that are measured, a determination section that determines whether or not the calculated electrostatic capacity value is smaller than a threshold value for detecting wire breakage, and a control section that performs output control of the high frequency signal and the like on a basis of a determination result by the determination section. | 06-26-2014 |
20140180275 | METHOD AND SYSTEM FOR CONTROLLING AN OUTPUT OF A RADIO-FREQUENCY MEDICAL GENERATOR HAVING AN IMPEDANCE BASED CONTROL ALGORITHM - A system for performing an electrosurgical procedure at a surgical site is disclosed. The system includes a sensor configured to continually sense an electrical and/or a physical property of tissue at a surgical site and to generate a sensor signal as a function thereof. The system also includes a control module configured to process the sensor signal using a processor, an algorithm, and a map having one or more predetermined values. The control module is further configured to compare the sensor signal to a predetermined level to determine reliability of the sensor signal and to signal an electrosurgical generator in response to a reliable sensor signal such that the electrosurgical generator enters energy control mode, wherein the electrosurgical generator matches an output of the control signal with a predetermined value from the map. | 06-26-2014 |
20140188103 | Methods and Apparatus for Neuromodulation Utilizing Optical-Acoustic Sensors - A thermal neuromodulation apparatus, system, and methods for the ablative and non-ablative application of thermal energy to the nerves of a patient are disclosed. The thermal neuromodulation apparatus includes an elongated, hollow body configured to traverse the tortuous intravascular pathways of the renal vasculature and includes an expandable structure bearing electrodes and configured to selectively apply thermal energy via electric fields to the renal nerves through a vessel wall. The thermal neuromodulation apparatus may also include optical-acoustic sensors and an imaging apparatus to obtain data from the treatment area before, during, and after neuromodulation to monitor and/or control the neuromodulation process. | 07-03-2014 |
20140194867 | System and method for assessing the formation of a lesion in tissue - A method and system for assessing lesion formation in tissue is provided. The system includes an electronic control unit (ECU) configured to acquire magnitudes for a component of a complex impedance between an electrode and tissue, and the power applied to the tissue during lesion formation. The ECU is configured to calculate a value responsive to the complex impedance component and the power. The value is indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, or a predicted tissue temperature. The method includes acquiring magnitudes for a component of a complex impedance between an electrode and tissue and the power applied during lesion formation. The method includes calculating a value responsive to the complex impedance component and the power, the value being indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, and/or a predicted tissue temperature. | 07-10-2014 |
20140194868 | SURGICAL APPARATUS - A surgical apparatus includes: a treatment section treating a living tissue; an energy generation section generating energy for providing ultrasound vibration or high-frequency current to the treatment section; a probe provided in the treatment section, for performing the ultrasound vibration; a liquid feeding unit supplying a liquid; a liquid feeding conduit feeding the liquid; a liquid feeding port, provided in the treatment section, for feeding the liquid toward the probe to feed the liquid to between the living tissue and the treatment section; a liquid feeding unit supplying the liquid to the liquid feeding conduit; an impedance detection section detecting an impedance of the living tissue is in contact with the treatment section; and a control section that controls the liquid feeding unit, after the stoppage of the output of the energy, so that as the impedance is larger, a predetermined period of time or a predetermined amount increases. | 07-10-2014 |
20140200571 | METHODS AND SYSTEMS FOR ASSESSING CARDIAC FIBRILLOGENICITY - Methods and systems for assessing cardiac fibrillogenicity in a patient includes generating a map of a duration of one or more measurements indicative of a number of electrical circuit cores and distribution of the electrical circuit cores across a cardiac tissue substrate in the patient's heart in response to electrical activity in the cardiac tissue substrate, the map being registered onto a representation of the patient's heart, applying a set of executable instructions to the map to define an optimal placement of at least one ablation lesion in the cardiac tissue substrate, and calculating total length of the at least one ablation lesion, wherein the total length measure is indicative of the patient's cardiac fibrillogenicity to inform treatment using catheter ablation. | 07-17-2014 |
20140200572 | METHODS AND SYSTEMS FOR MINIMIZING AND TREATING CARDIAC FIBRILLATION - Methods and systems for using feedback to minimize and treat cardiac fibrillation in a patient, includes generating a map of one or more measurements indicative of a number and distribution of electrical circuit cores for a duration across a cardiac tissue substrate in the patient's heart in response to electrical activity, defining an optimal placement of at least one ablation lesion in the cardiac tissue substrate; applying ablation lesion therapy based on the optimal placement; determining whether the ablation lesion therapy minimized or treated cardiac fibrillation; if therapy is determined to have minimized or treated cardiac fibrillation, assessing fibrillogenicity of the cardiac tissue substrate to determine whether fibrillogenicity is below a predetermined threshold; and if therapy is determined to have not minimized or treated cardiac fibrillation, repeating the steps of generating, defining, applying, and determining until ablation lesion therapy minimizes or treats cardiac fibrillation. | 07-17-2014 |
20140200573 | Systems and Methods for Neuromodulation for Treatment of Pain and Other Disorders Associated with Nerve Conduction - Methods and apparatus are provided, for selective destruction or temporary disruption of nerves and/or conduction pathways in a mammalian body for the treatment of pain and other disorders. Apparatus comprises catheters having electrodes for targeting and affecting nerve tissue at a cellular level to reversible and irreversible nerve portion and incapacitation. | 07-17-2014 |
20140200574 | METHOD AND APPARATUS FOR TREATING CANCER - A method and apparatus for treating masses, such as prostate or breast cancer, or any other soft tissue cancerous or benign mass, employs a unique, three-dimensional software-controlled electronic amplifier array using arbitrary waveforms that dynamically and proportionally steer electrical currents by using two or more current vector paths, sequentially or simultaneously, through a mass containing electrically-conductive ionic solutions so as to obtain 100% thermal beating or hyperthermia through the mass, and destroying it with a minimally-invasive treatment which requires no radiation or chemotherapy which could be harmful to the patient. | 07-17-2014 |
20140214024 | OPHTHALMIC SURGICAL CONTROL APPARATUS - An ophthalmic surgical control apparatus is configured to be connectable to a piezo handpiece for emulsifying an eye lens. The control apparatus includes a frequency generator having a first and a second frequency module. The first frequency module generates a first oscillation signal having a first frequency lower than the ultrasonic resonant frequency of the piezo handpiece. The second frequency module generates a second oscillation signal having a second frequency greater than the ultrasonic resonant frequency of the piezo handpiece. A frequency generator control module controls the first and the second frequency modules. | 07-31-2014 |
20140236140 | TREATMENT SYSTEM - A treatment system includes a holding section that has a heat generation section, a signal output section that supplies a drive signal to the heat generation section, a setting section that sets a target temperature of the heat generation section, a signal detection section that detects the drive signal, a signal extraction section that extracts an extracted signal of a predetermined frequency band from the drive signal detected by the signal detection section, a fault detection section that detects a precursory phenomenon of a fault of the heat generation section when the extracted signal reaches a predetermined threshold, and a control section that controls the drive signal to the heat generation section in a treatment mode for treating the living tissue at the target temperature or in a test mode for detecting the precursory phenomenon. | 08-21-2014 |
20140236141 | METHOD AND SYSTEM OF REDUCTION OF LOW FREQUENCY MUSCLE STIMULATION DURING ELECTROSURGICAL PROCEDURES - Reduction of low frequency muscle stimulation during electrosurgical procedures. At least some of the illustrative embodiments are methods including: treating a target tissue with an electrosurgical wand comprising a plurality of active electrodes intermittently exposed to a rectifying electrical phenomenon; charging a first capacitance in series with a first electrode of the plurality of active electrodes, the charging during periods of time when the rectifying electrical phenomenon proximate the first electrode; charging a second capacitance in series with a second electrode of the plurality of active electrodes, the charging during periods of time when the rectifying electrical phenomenon is proximate the second electrode; charging a third capacitance in series with a third electrode of the plurality of active electrodes, the charging during periods of time when the rectifying electrical phenomenon is proximate the third electrode; and discharging, through the first electrode, the first capacitance, while simultaneously charging the second capacitance. | 08-21-2014 |
20140243811 | LIMITED USE MEDICAL DEVICES - The present disclosure is directed to a surgical system that may include an end effector assembly configured to conduct energy through tissue to treat tissue, the end effector assembly including at least one limited-use portion, the limited-use portion configured to degrade during use, and a control system configured to monitor degradation of the limited-use portion. | 08-28-2014 |
20140243812 | APPARATUS AND METHOD FOR MONITORING EARLY FORMATION OF STEAM POP DURING ABLATION - A system for measuring real-time tissue reflection spectral characteristics during ablation includes a catheter for collecting light reflected from tissue undergoing ablation, a detection component for separating constituent wavelengths of the collected light, a quantification apparatus for generating measured light intensity data of the collected light, and a processor for analyzing the data in relation to time. A method for monitoring formation of steam pop during ablation includes delivering light to tissue, delivering ablative energy to the tissue, measuring the reflectance spectral intensity of the tissue, and observing whether the measured reflectance spectral instensity (MRSI) initially increases in a specified time period followed by a decrease at a specified rate. If the MRSI does not decrease, delivery of ablation energy continues. If the MRSI decreases within the specified time at the specified rate, formation of a steam pocket is inferred and delivery of ablative energy is decreased or discontinued. | 08-28-2014 |
20140243813 | Device and method for real-time lesion estimation during ablation - Disclosed herein are ablation systems and methods for providing feedback on lesion formation in real-time. The methods and systems assess absorptivity of tissue based on a degree of electric coupling or contact between an ablation electrode and the tissue. The absorptivity can then be used, along with other information, including, power levels and activation times, to provide real-time feedback on the lesions being created. Feedback may be provided, for example, in the form of estimated lesion volumes and other lesion characteristics. The methods and systems can provide estimated treatment times to achieve a desired lesion characteristic for a given degree of contact, as well as depth of a lesion being created. The degree of contact may be measured using different techniques, including the phase angle techniques and a coupling index. | 08-28-2014 |
20140243814 | CATHETER STRUCTURE AND METHOD FOR LOCATING TISSUE IN A BODY ORGAN AND SIMULTANEOUSLY DELIVERING THERAPY AND EVALUATING THE THERAPY DELIVERED - A catheter structure is provided for use with an electroviscerogram (EVG) system. The catheter structure includes an elongated tube structure having distal and proximal ends. Three electrodes are associated with distal end of the tube structure and are constructed and arranged obtain signals relating to myoelectrical activity internally of an intra-abdominal organ to thereby locate targeted tissue that includes main pathways of electrical generation in the organ. Therapy delivery structure, associated with the distal end of the tube structure and separate from the electrodes, is constructed and arranged to provide therapy at the targeted tissue simultaneously as the electrodes obtain the signals at the targeted tissue so that effectiveness of the therapy can be monitored. | 08-28-2014 |
20140243815 | SYSTEM AND METHOD FOR DELIVERING HIGH CURRENT TO ELECTROSURGICAL DEVICE - An electrosurgical system is disclosed. The system includes an electrosurgical generator adapted to supply electrosurgical power and an electrosurgical device coupled to the electrosurgical generator. The electrosurgical device includes a transformer and one or more active electrodes coupled thereto, wherein the transformer is adapted to step down the voltage of the power supplied by the electrosurgical generator. | 08-28-2014 |
20140249520 | CATHETER OR GUIDEWIRE DEVICE INCLUDING FLOW SENSING AND USE THEREOF - Devices and methods are provided for performing procedure on tissue with flow monitoring using flow sensors. The devices include an elongated member, and at least one flow sensor disposed on the elongated member. The flow sensor includes at least one temperature sensor and at least one heating element having a cavity. At least a portion of the at least one temperature sensor is housed in the cavity. A temperature measurement of the temperature sensor provides an indication of the flow rate of a fluid proximate to the flow sensor. | 09-04-2014 |
20140249521 | METHODS OF DETERMINING TISSUE CONTACT BASED ON RADIOMETRIC SIGNALS - Methods and systems are provided for detecting tissue contact prior to and/or during energy delivery to tissue. For example, the methods may include calculating temperature and detecting tissue contact based on signal(s) received from a radiometer. The radiometer may provide information about whether a treatment device is in contact with the tissue, and thus provide feedback to assist a clinician in properly contacting and treating the tissue. | 09-04-2014 |
20140249522 | METHOD AND APPARATUS FOR FRACTIONAL SKIN TREATMENT - An apparatus for cosmetic RF skin treatment where the RF energy supply is isolated from the patient treated, such that in course of treatment no undesired current flows through the subject body. | 09-04-2014 |
20140257269 | ELECTROSURGICAL METHODS AND SYSTEMS - Electrosurgical methods and systems. At least some of the illustrative embodiments are methods including maintaining plasma proximate to an active electrode in a first energy range, and a second energy range. During periods when plasma is proximate to the active electrode, the illustrative method may include controlling flow of fluid drawn into an aperture of an electrosurgical wand, and in some situations increasing fluid flow drawing into the aperture responsive to the active electrode being in operational relationship with tissue, and in other cases decreasing fluid flow drawing into the aperture responsive to the active electrode being in operational relationship with tissue. Further, during periods when plasma is proximate to the active electrode, the illustrative method may include providing output energy at a default energy setpoint, and then providing output energy at a second energy setpoint. | 09-11-2014 |
20140257270 | CIRCUIT AND METHOD FOR REDUCING STORED ENERGY IN AN ELECTROSURGICAL GENERATOR - A circuit for discharging stored energy in an electrosurgical generator includes a pulse width modulator for controlling a high voltage power supply, an error signal generating circuit configured for delivering an error signal as a difference between an output signal voltage and a feedback voltage generated by the high voltage power supply. The circuit further includes a switching circuit configured to switch in a load in parallel with an output of the high voltage power supply when the error signal is less than a first predetermined threshold to discharge the output. | 09-11-2014 |
20140257271 | APPARATUS FOR INJURING NERVE TISSUE - Systems, delivery devices, and methods to treat to ablate, damage, or otherwise affect tissue. The treatment systems are capable of delivering energy to nerve tissue in a target region such that at least a portion of the nerve tissue is replaced by scar tissue or otherwise altered to inhibit reinnervation in the target region. | 09-11-2014 |
20140276760 | FORCE FEEDBACK DEVICE AND METHOD FOR CATHETERS - An ablation apparatus includes a flexible probe adapted for insertion into a heart of a living subject. The probe has a distally disposed ablation electrode to be brought into contact with a target tissue in the heart, and has facilities for measuring contact force with the target tissue. The apparatus includes a transmitter, operative to transmit an indication of the contact force to a wearable device having an actuator operative to haptically stimulate the operator responsively to the indication. | 09-18-2014 |
20140276761 | ELECTROSURGICAL DEVICE WITH DISPOSABLE SHAFT HAVING TRANSLATING GEAR AND SNAP FIT - An apparatus includes an interface assembly and a shaft assembly. The interface assembly is configured for use with a robotic system and includes a first drive assembly and a mounting plate. The mounting plate includes an opening. The first drive assembly is positioned within the opening such that the first drive assembly is laterally translatable within the opening from a first position to a second position. The shaft assembly is removably coupled with the interface assembly. The shaft assembly comprises an end effector and a first coupling feature. The first drive assembly of the interface assembly actuates the end effector of the shaft assembly. The first coupling feature is longitudinally aligned with the first drive assembly. The first drive assembly engages the first coupling feature of the shaft assembly when the first drive assembly is laterally translated from the first position to the second position. | 09-18-2014 |
20140276762 | ABLATION CATHETERS AND SYSTEMS INCLUDING ROTATIONAL MONITORING MEANS - The present disclosure provides an improved ablation catheter. In particular, the present disclosure provides an improved renal denervation ablation catheter and system including a catheter handle and a means for tracking, monitoring, and/or recording the circumferential angular history of the renal denervation ablation catheter handle. The renal denervation ablation catheters in accordance with the present disclosure are well-suited for use with a renal denervation ablation system that can record the circumferential angular history of the renal denervation catheter handle, and hence the circumferential angular ablation history of the catheter electrode within a vessel, and use this data in combination with other known information to estimate the percent circumferential denervation of the vessel. | 09-18-2014 |
20140276763 | ELECTROSURGICAL INSTRUMENT - An electrosurgical instrument that reduces the amount of fatigue experienced by a physician performing electrosurgery includes a hand piece with a utility conduit connected to the hand piece. The utility conduit can include an electrical cable and a smoke/fluid evacuation hose. The location at which the utility conduit exits the hand piece is selectively adjustable to reduce the resistance to the movement of the electrosurgical instrument created by the weight of the utility conduit. An electrosurgical instrument may also include an extendable shaft that allows for selective adjustment of the reach of the operational capabilities of the instrument. | 09-18-2014 |
20140276764 | Flexible RF Ablation Needle - Embodiments disclosed herein are directed to devices, methods, and systems for the treatment of tissue using energy delivery. Specifically, certain embodiments may be used for the treatment of lung tissue, such as lung nodules, using RF ablation, via a catheter provided with a first electrode attached to a distal end of the catheter, wherein the first electrode is hollow, wherein the first electrode comprises a piercing tip configured to pierce through an airway all and a second electrode received in a movable manner within the first electrode, wherein the second electrode is extendable from the first electrode to form a first extended configuration. | 09-18-2014 |
20140276765 | ABLATION SYSTEM, METHODS, AND CONTROLLERS - Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system includes a power supply configured to be coupled to a plurality of electrodes and a controller coupled to the power supply. The controller is configured to determine a thermal gain of each electrode of the plurality of electrodes. For each electrode of the plurality of electrodes, the controller sets a power limit based at least in part on said electrode's determined thermal gain. The power limit establishes a maximum power that may be dissipated through said electrode. | 09-18-2014 |
20140276766 | ABLATION SYSTEM, METHODS, AND CONTROLLERS - Multi-electrode ablation systems, methods, and controllers are described. In one example, a multi-electrode ablation system generally includes a power supply and a controller. The power supply is configured to be coupled to a plurality of electrodes for delivering power to the electrodes. The controller is operable to compare a measured temperature at each electrode to a desired temperature to thereby define a temperature difference for each electrode. The controller is operable to determine, based on the temperature difference, a desired power for each electrode, compare the desired power of one of the electrodes to an actual power delivered to the one of the electrodes to define a power difference, and adjust the actual power delivered by the power supply to the one of the electrodes based on the power difference. | 09-18-2014 |
20140276767 | ABLATION SYSTEM, METHODS, AND CONTROLLERS - In a multi-electrode ablation system, method, and controller, a power supply is configured to be coupled to a plurality of electrodes, and a controller is coupled to the power supply. The controller is configured to couple an output voltage of the power supply to the plurality of electrodes, and for each electrode of the plurality of electrodes, measure a temperature associated with the electrode, and determine a thermal gain of each electrode of the plurality of electrodes. | 09-18-2014 |
20140276768 | ELECTROSURGICAL SYSTEMS - An electrosurgical instrument can selectively provide electrosurgical energy to an energizable electrode. The instrument can include an interface configured to issue one or more waveform command signals corresponding to a selected therapeutic result; waveform generation circuitry configured to deliver in response to the one or more wave form command signals, a corresponding one or more waveforms selected from a first, a second, and a third waveform, each of the first, second and third waveforms being different from the other of the first, second and third waveforms. The instrument can include a variable output voltage supply configured to supply a selected electrical current to a corresponding output, and an output driver circuitry configured to combine at least one or more of the waveforms with the respective high-voltage electrical current to generate an electrosurgical current suitable for achieving the therapeutic result when applied to a treatment site by the energizeable electrode. | 09-18-2014 |
20140276769 | DETECTING IMPROPER ENERGY TRANSMISSION CONFIGURATION IN MEDICAL DEVICE SYSTEM - A medical device system may be configured to detect an improper energy transmission configuration therein. The condition may be detected by way of a detection of a condition where an energy-transmitting electrode of the medical device system becomes too close to or becomes in contact with an object resulting in an inability of the electrode to properly transmit energy. For example, if the energy-transmitting electrode is a first electrode configured in its operational state to transmit energy to bodily tissue adjacent the first electrode, but the first electrode is inadvertently contacting a second electrode, such contact may cause at least some energy transmitted by the first electrode to follow an unintended path away from its intended path to the adjacent tissue. Such a condition may be detected based at least upon an analysis of information acquired from a sensing device system. | 09-18-2014 |
20140276770 | Electrosurgical Handpiece - One embodiment of the present invention is a electrosurgical tool which includes a electrically powered handpiece with a detachable electrode at one end and a power connection at the other. The handpiece includes a feedback controller incorporated in tool to adjust operational characteristics of the electrosurgical tool. | 09-18-2014 |
20140276771 | SYSTEMS AND METHODS FOR CONTROLLED TISSUE ABLATION - The invention describes methods for safely delivering ablation energy to a tissue, e.g., thrombus, in need of ablation therapy. The method uses a catheter adapted for IVUS imaging, ablation, and impedance measurements to monitor the impedance of a tissue receiving ablation energy. In an embodiment, a user may view an IVUS image of the tissue with impedance measurements to determine if it is safe to deliver additional energy. In another embodiment, a processor is configured to determine if it is safe to deliver additional ablation energy based upon the impedance measurement. | 09-18-2014 |
20140276772 | COMBINATION ELECTROSURGICAL DEVICE - An electrosurgical system comprising: a handpiece including: a first power connector; a second power connector; and one or more moveable members having a first position and a second position; and an activation circuit having a first switch state and a second switch state, wherein the activation circuit in the first switch state does not allow either a first electrosurgical therapy signal or a second electrosurgical therapy signal to exit the handpiece; wherein when the activation circuit is in the second switch state and the one or more moveable members are in the first position the activation circuit allows the first electrosurgical therapy signal to exit the handpiece so that a first therapy current extends between the first power connector and the second power connector, and wherein when the activation circuit is in the second switch state and the one or more moveable members are in the second position the activation circuit allows the second electrosurgical therapy signal to exit the handpiece so that a second therapy current extends between the first power connector and the second power connector. | 09-18-2014 |
20140288545 | Methods for Bilateral Renal Neuromodulation - Methods and apparatus are provided for bilateral renal neuromodulation, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney. | 09-25-2014 |
20140288546 | RF ENERGY DELIVERY SYSTEM - A radio frequency tissue ablation system with a radio frequency generator, the generator comprising a radio frequency source, at least four independently controllable radio frequency outputs, a user interface and a controller configured to delivery radio frequency energy from the radio frequency source to the radio frequency outputs in one of at least two different output configurations in response to a configuration selection made through the user. | 09-25-2014 |
20140288547 | ELECTRICAL MEANS TO NORMALIZE ABLATIONAL ENERGY TRANSMISSION TO A LUMINAL TISSUE SURFACE OF VARYING SIZE - Methods and devices for measuring the size of a body lumen and a method for ablating tissue that uses the measurement to normalize delivery of ablational energy from an expandable operative element to a luminal target of varying circumference are provided. The method includes inserting into the lumen an expandable operative element having circuitry with resistivity or inductance that varies according to the circumference of the operative element, varying the expansion of the operative element with an expansion medium, measuring the resistivity of the circuitry, and relating the resistivity or inductance to a value for the circumference of the operative element. In some embodiments the sizing circuit includes a conductive elastomer wrapped around the operative element. Other embodiments of the method apply to operative elements that include an overlapping energy delivery element support in which the overlap varies inversely with respect to the state of expansion, and which is configured with sizing electrodes that sense the amount of the overlap. | 09-25-2014 |
20140296842 | Patient Specific Planning and Simulation of Ablative Procedures - Patient specific temperature distribution in organs, due to an ablative device, is simulated. The effects of ablation are modeled. The modeling is patient specific. The vessel structure for a given patient, segmented from medical images, is accounted for as a heat sink in the model of biological heat transfer. A temperature map is generated to show the effects of ablation in a pre-operative analysis. Temperature maps resulting from different ablation currents and ablation device positions may be used to determine a more optimal location of the ablative device for a given patient. Other models may be included, such as accounting for the tissue damage during the ablation. | 10-02-2014 |
20140296843 | APPARATUS AND METHOD FOR TREATING CANCER CELLS AND BACTERIA IN MAMMALS INCLUDING HUMANS - Bacteria, cancer cells, fungus and other harmful cells located beneath the surface of a mammal body can be effectively destroyed by passing an electrical current through the area to be treated. Electrodes are positioned on either side of the area to be treated, for example, gums, fingers, arms, legs, feet and torso, and an electric current is caused to flow between the electrodes and through the area to be treated. The electric current will destroy the bacteria, cancer cells, fungus or other harmful cells. | 10-02-2014 |
20140296844 | DUAL BRACKETED ENERGY DELIVERY PROBE AND METHOD OF USE - An energy delivery probe and method of using the energy delivery probe to treat a patient is provided herein. The energy delivery probe has at least one probe body having a longitudinal axis and at least a first trocar and a second trocar. At least a portion of each trocar is disposed with the at least one probe body. The distance between the first trocar and the second trocar is adjustable between a first position and a second position. Each of the deployed electrodes has an energy delivery surface of a sufficient size to create a volumetric ablation zone between the deployed electrodes. The energy delivery probe is connected to an energy source. At least one cable couples the energy delivery probe to the energy source. | 10-02-2014 |
20140303613 | SYSTEM AND METHOD FOR ENERGY DELIVERY TO A TISSUE USING AN ELECTRODE ARRAY - Devices, systems, and related methods for electric fields delivery for preferential destruction of cancerous cells and tissue ablation. | 10-09-2014 |
20140303614 | METHODS OF DETERMINING TISSUE TEMPERATURES IN ENERGY DELIVERY PROCEDURES - Methods and systems for treating tissue that employ a radiometer for measurement and/or control are provided. For example, methods and systems are provided for radiometrically measuring temperature, such as by calculating temperature based on signal(s) from a radiometer, thereby providing useful information about tissue temperature at depth, even during an optional irrigated procedure. | 10-09-2014 |
20140303615 | LAPAROSCOPIC INSTRUMENTS - A DC driven ionisation apparatus is provided for ionising a local atmosphere in which a corporeal surgical or cosmetic procedure is to be performed, the ionisation apparatus including a safety circuit comprising detector means for detecting when a hazard condition exists, such as a short circuit or high charge level condition, a circuit controller for actuating switch means to turn the DC supply off and thereafter to cyclically reconnect and disconnect the DC supply until the hazard condition has been rectified, and re-set means for thereafter re-setting a continuous DC supply to the circuit until the next occurrence of a hazard condition or until the procedure is complete. | 10-09-2014 |
20140309631 | FLATTENED MESH ABLATION DEVICE - A flattened mesh ablation device for ablating tissue in a body lumen is disclosed. The flattened mesh ablation device includes a flattened mesh with at least one conductor on an edge of the flattened mesh. When the flattened mesh is compressed axially it expands radially to contact the inner surface of the body lumen in a helical pattern. Energy is applied to the conductor ablating tissue proximate the conductor. | 10-16-2014 |
20140309632 | METHODS FOR TISSUE ABLATION MEASUREMENT AND CONTROL AND DEVICES THEREOF - An apparatus comprises a first longitudinal member and a second longitudinal member configured to be located near a tissue region. An energy source is coupled to first longitudinal member and second longitudinal member. A measuring device is configured to measure at least one characteristic of the tissue region. An energy controller is coupled to the energy source and the measuring device. The energy controller includes a processor coupled to a memory and configured to execute programmed instructions stored in the memory, comprising initiating a delivery of energy to the tissue region from the energy source. One or more items of data are received from the measuring device based on the delivery of energy to the tissue region. The delivery of energy to the tissue region is adjusted based on the one or more items of data. | 10-16-2014 |
20140316400 | ABLATION SYSTEM, METHODS, AND CONTROLLERS - Multi-electrode ablation systems, methods, and controllers are described. In one example, a method of beginning an ablation procedure using a multi-electrode ablation system is described. The method includes selectively coupling the output of a power supply to a first electrode of a plurality of electrodes to increase a temperature at the first electrode to a first temperature set-point and limit a rate of increase of the temperature at the first electrode to a predetermined first rate. | 10-23-2014 |
20140316401 | SHEATH ASSEMBLIES FOR ELECTROSURGICAL INSTRUMENTS - An electrosurgical device may include an elongated shaft having a distal end and a proximal end, an electrosurgical end effector coupled to the distal end of the elongated shaft, an electrically insulative sheath disposed around at least a proximal end portion of the end effector, and an electrically insulative viscous material disposed to provide a barrier to liquid entry into an interior region defined by the sheath. | 10-23-2014 |
20140316402 | Controlled Neuromodulation Systems and Methods of Use - The present disclosure relates to devices, systems and methods for positioning a neuromodulation device at a treatment site and evaluating the effects of therapeutic energy delivery applied to tissue in a patient. Before, during and/or after therapeutic energy delivery, a system can monitor parameters or values relevant to efficacious neuromodulation by emitting and detecting diagnostic energy at the treatment site. Feedback provided to an operator is based on the monitored values and relates to a relative position of the treatment device at the treatment site, as well as assessment of the likelihood that a completed treatment was technically successful. | 10-23-2014 |
20140316403 | ELECTROSURGICAL APPARATUS TO GENERATE A DUAL PLASMA STREAM AND METHOD THEREOF - The present disclosure relates to an electrosurgical apparatus to generate a dual plasma stream to perform electrosurgery on a surgical site on a patient. The apparatus and method of the present disclosure generates a hot gas jet to a surgical site by generating two plasma beams that are electrically up to 180 degrees out of phase from each other. Since each beam uses the other beam to establish plasma currents at a load, the combined dual plasma stream can be used on non-conductive surfaces, e.g., a tissue at the surgical site. Furthermore, by applying different flow rates to the plasma beams, various scanning effects by the hot gas jet can be achieved. | 10-23-2014 |
20140316404 | Electrosurgical Device - An electrosurgical device comprises a first signal generator and a second signal generator, wherein the signal generators are configured to generate an electrical signal that can be transmitted to a patient via electrodes. A control module is provided in which an output value of the first signal generator and an output value of the second signal generator are combined to form an aggregate output value, and which determines whether the aggregate output value exceeds a predetermined threshold value. A method for operating such an electrosurgical device ensures that the patient is not inadvertently treated with an excessively high electrical output. | 10-23-2014 |
20140324038 | MEDICAL DEVICE - A medical device that can perform plural actions by a single operation and is excellent in operability includes a catheter that is insertable into a living body, a sandwiching portion and a needle positioning portion that are disposed in the catheter so as to be able to advance and retract. A slide portion is operable such that the sandwiching portion and the needle positioning portion advance and retract simultaneously, and an action switching portion causes the sandwiching portion to advance and retract in tandem with or independently of the slide portion by the advance and retraction of the slide portion. | 10-30-2014 |
20140324039 | POWER CONSOLE FOR SURGICAL TOOL CAPABLE OF RECEIVING TOOL MEMORY DATA OVER THE TERMINALS OVER WHICH POWER SIGNALS ARE SOURCED TO THE TOOL - A console for providing power to a surgical tool. Internal to the console is a power supply that supplies power, a processor that regulates the application of the power and a memory reader that reads data from a memory integral with the tool. The power is sourced over terminals also part of the console. The tool memory data are used to regulate the characteristics of the sourced power. An isolation circuit also internal to the console extends between the terminals over and the memory reader. The isolation circuit allows the memory reader to send read requests to the tool memory and receive data signals from the tool memory over the terminals while protecting the memory reader from the power signals sourced by the power supply. | 10-30-2014 |
20140324040 | Controlling Coagulum Formation - Some embodiments of a medical instrument can be configured to reduce the formation of coagulum by delivering a negative charge bias to conductive surfaces that interface with blood or bodily tissue during a medical procedure. The application of the negative charge at the instrument-blood interface can reduce the fibrinogen deposition and the formation of coagulum because fibrinogen molecules in general are negatively charged at neutral pH levels. In addition, some embodiments of the instrument may be configured to irrigate the instrument-blood interface with RGD/ClfA peptides, a bicarbonate solution (or other high pH solution), or both to further repel the fibrinogen and thereby inhibit the formation of coagulum. Accordingly, some embodiments of the medical instrument can substantially reduce the risks of thromboembolism during particular medical procedures. | 10-30-2014 |
20140330266 | ABLATION SYSTEM, METHODS, AND CONTROLLERS - Multi-electrode ablation systems, methods, and controllers are described. In one example, a power supply is configured to be coupled to a plurality of electrodes. A controller includes a touchscreen display configured to display at least a graphical representation of each electrode of the ablation system. The controller is configured to receive an interactive input for each respective electrode to select and deselect the electrode for activation, during which power may be supplied thereto, by touching the graphical representation of the respective electrode on the touchscreen display. This may occur during a diagnostic mode and/or an ablation procedure run mode of the system. | 11-06-2014 |
20140330267 | Devices And Methods For Detection And Treatment Of The Aorticorenal Ganglion - Devices and methods that regulate the innervation of the kidney by detection and modification of the aorticorenal ganglion. Devices for percutaneous detection and treatment of the aorticorenal ganglion via a blood vessel to modify renal sympathetic activity. | 11-06-2014 |
20140330268 | OPTIMIZING TREATMENT USING TTFIELDS BY CHANGING THE FREQUENCY DURING THE COURSE OF LONG TERM TUMOR TREATMENT - Tumors can be treated with an alternating electric field. The size of cells in the tumor is determined prior to the start of treatment by, for example, biopsy or by inverse electric impedance tomography. A treatment frequency is chosen based on the determined cell size. The cell size can be determined during the course of treatment and the treatment frequency is adjusted to reflect changes in the cell size. A suitable apparatus for this purpose includes a device for measuring the tumor impedance, an AC signal generator with a controllable output frequency, a processor for estimating the size of tumor cells and setting the frequency of the AC signal generator based thereon, and at least one pair of electrodes operatively connected to the AC signal generator such that an alternating electric field is applied to the tumor. | 11-06-2014 |
20140336630 | ELECTROSURGICAL SYSTEMS AND METHODS - System and methods of an electrosurgical controller having multiple modes of operation that are configured for treatment of a specific targeted tissue type and the electrosurgical effect desired where the treatment and effect are provided by a single controller and an electrosurgical probe. The electrosurgical controller includes an integrated fluid control apparatus or pump where activation of the controller allows for selective energy delivery and corresponding fluid volume flow rates. The electrosurgical probe includes a fluid transport lumen and is in communication with the controller and the pump for operation of the probe in the various user selected modes with accompanying energy delivery and fluid control directed to the desired treatment and surgical effect. | 11-13-2014 |
20140336631 | APPARATUS, SYSTEMS, AND METHODS FOR ACHIEVING INTRAVASCULAR, THERMALLY-INDUCED RENAL NEUROMODULATION - Apparatus, systems, and methods for achieving thermally-induced renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a thermal element to a renal artery via an intravascular path. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. | 11-13-2014 |
20140336632 | TISSUE ABLATION SYSTEMS AND METHOD - Tissue is treated using a radiofrequency power supply connected to an applicator having a chamber filled with an electrically non-conductive gas surrounded by a thin dielectric wall. A radiofrequency voltage is applied at a level sufficient to ionize the gas into a plasma and to capacitively couple the ionized plasma with the tissue to deliver radiofrequency current to ablate or otherwise treat the tissue. | 11-13-2014 |
20140336633 | ELECTROSURGICAL GENERATOR - An electrosurgical system is provided. The electrosurgical system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. A power source operably couples to the electrosurgical generator and is configured to deliver power to one or more types of loads connected to the electrosurgical generator. The electrosurgical generator includes a controller including a microprocessor coupled to the electrosurgical generator and configured to control the output of the electrosurgical generator. A fiber optic connection circuit is in operative communication with the controller and includes one or more types of logic devices and one or more types of fiber optic channels. The fiber optic connection circuit is configured to mitigate leakage current associated with at least one of a plurality of components operatively associated with the electrosurgical generator by providing isolation. | 11-13-2014 |
20140350540 | HIGH-FREQUENCY ELECTROSURGICAL TREATMENT INSTRUMENT FOR OPERATIONS AND HIGH-FREQUENCY ELECTROSURGICAL SYSTEM FOR OPERATIONS - A high-frequency electrosurgical treatment instrument for operations, includes a pair of forceps pieces, an insulating member, a transmission member, a manipulation rod member, a distal end cover member, a shaft member and a manipulation portion. The instrument, includes a flow channel portion formed between the manipulation rod member and the shaft member, the flow channel portion being disposed along a longitudinal direction of the manipulation rod member to allow liquid to flow; a groove portion that communicates with the flow channel portion to allow the liquid to flow from the flow channel portion; and an opening portion that communicates with the groove portion to supply the liquid near the proximal end portions of the pair of forceps pieces. | 11-27-2014 |
20140350541 | CONTROL AND DELIVERY OF ELECTRIC FIELDS VIA AN ELECTRODE ARRAY - A method of controlling electric fields created by a plurality of electrodes. The method includes repetitively applying multiple sets of voltages to at least some of a plurality of electrodes over a treatment period to achieve and maintain a target temperature, the at least some of the electrodes being treatment electrodes. The sets of voltages may be in patterns such that a unique current pattern between electrodes is created for each set of voltages, resulting in temperature averaging. The voltage at each electrode may be determined based on a temperature of an adjacent electrode. The voltage at each electrode may also or alternatively be determined based on an estimated voltage at the electrode. | 11-27-2014 |
20140350542 | METHODS AND SYSTEMS FOR USE IN CONTROLLING TISSUE ABLATION VOLUME BY TEMPERATURE MONITORING - This invention relates to medical methods, instruments and systems for creating a controlled lesion using temperature to control the growth of the lesion. The treatment can be used in any tissue area and is particularly useful in or around a vertebral body. The features relating to the methods and devices described herein can be applied in any region of soft or hard tissue including bone or hard tissue. | 11-27-2014 |
20140350543 | IMPEDANCE COMPUTATION FOR ABLATION THERAPY - This disclosure describes impedance computation techniques that may reduce the effect of crosstalk, thus generating more accurate impedance measurements. In particular, an ablation system models the electrical interaction among the active electrodes and a common return electrode using a star-configuration resistor model. The ablation system computes one or more parameters of the star-configuration resistor model and adjusts the therapy based on at least the computed parameters of the star-configuration resistor model. | 11-27-2014 |
20140350544 | REMOVABLE INK FOR SURGICAL INSTRUMENT - The present disclosure relates to an apparatus and method for preventing reuse of a surgical instrument. The single-use surgical instrument includes a housing, an electrical connector and a treatment component. Indicia may be printed on the housing, the electrical connector and/or the treatment component. A removable ink is applied to any portion of the surgical instrument in the form of indicia that is readable by a scanning device. The removable ink includes a protein-based composition that is reactivateable with a sterilization solution having an enzyme-based composition such that upon sterilization, the removable ink reacts with the sterilizing solution and becomes unreadable by the scanning device. | 11-27-2014 |
20140350545 | INDUCTIVE POWERED SURGICAL DEVICE WITH WIRELESS CONTROL - A system and method for wirelessly powering an electrosurgical device using a generator to generate a radio frequency (RF) energy field. A switch on the electrosurgical device sends a wireless signal to the generator, where the generator allows a current to pass through an inductive coil to generate the RF energy field. The RF energy field induces a current to flow across an inductive coil within the electrosurgical device. The current flow is then processed through a RF conditioning circuit and outputted to the end effector assembly of the device. | 11-27-2014 |
20140364843 | Design of handle set for ablation catheter with indicators of catheter and tissue parameters - An electrode coupling output system provides indication to the physician, via electrode guidance instrumentation, concerning the electrical coupling of an electrode, such as an ablative or mapping electrode, with a patient. The output can be provided to the physician via an output device incorporated into the handle set of the electrode catheter. For example, a visual, audio or mechanical output can be provided via the handle set. Additionally or alternatively, the output can be provided to the physician via a navigation system. The indication may be provided by changing the color or other display characteristics of the electrode on the navigation system display or by way of providing a waveform indicating the electrode coupling. In this manner, electrode coupling information is provided to a physician in a manner that minimizes physician distraction. | 12-11-2014 |
20140371739 | SYSTEM AND METHODS FOR MONITORING AND CONTROLLING USE OF MEDICAL DEVICES - A usage key card is adapted to be handled separate from a device tissue treatment deice. The usage key card has a storage medium formatted to contain an identification code, which is unique to the usage key card. The usage key card is also adapted to be read by a reader separate from the device. The storage medium is also formatted, when inserted into the reader, to retain data generated pertaining to operation of the de | 12-18-2014 |
20140378960 | Electrosurgical Instrument Comprising a Light Guide - The instrument according to the invention for electrosurgically impacting biological tissue comprises an electrode ( | 12-25-2014 |
20140378961 | SURGICAL INSTRUMENT WITH TISSUE RECOGNITION - An electrosurgical device for recognizing tissue by means of spectral analysis of the light generated at an electrode. An acoustic or optical indicator device displays the tissue type permanently or when detecting certain tissue. Indicators, in particular optical indicators, are arranged in the application field of view, so as to support the user in response to making an incision. | 12-25-2014 |
20140378962 | DEVICES AND METHODS FOR NERVE MODULATION USING LOCALIZED INDIFFERENT ELECTRODES - The disclosure pertains to an intravascular catheter for nerve modulation. The catheter includes an elongate member having a proximal end and a distal end, and an inflatable balloon secured adjacent to the distal end of the elongate member. The balloon includes an exterior surface and an interior surface defining a lumen. The lumen includes a section that is permeable to radiofrequency (RF) radiation. The section extends from the interior surface of the balloon to the exterior surface of the balloon. A first electrode is disposed within the inflatable balloon and indifferent electrodes are disposed external to the inflatable balloon. | 12-25-2014 |
20150011990 | GRAPHICAL USER INTERFACE FOR MONITORING AND CONTROLLING USE OF MEDICAL DEVICES - A device for treating a tissue region is supplied with a separate usage key card. The usage key card comprises a storage medium, which is formatted to contain an identification code unique to the usage key card. The usage key card is adapted to be read by a remote reader, to download the identification code for processing by a controller for the device. Processing of the identification code by the controller either enables or disables operation of the device according to prescribed criteria. A viewable image is generated on a display screen that changes in response to processing of the identification code. | 01-08-2015 |
20150025521 | ELECTROSURGICAL GENERATORS - An electrosurgical generator is provided. The electrosurgical generator includes at least one converter configured to output a DC waveform and a nonlinear carrier control current. At least one boost inverter is coupled to the at least one converter and is configured to convert the DC waveform to generate at least one electrosurgical waveform. At least one inductor is connected in series with the at least one converter and at least one boost inverter and is configured to output an inductor current. A controller is coupled to the at least one converter and the at least one boost inverter and is configured to maintain the inductor current at a predetermined value by controlling a pulse duration of a duty cycle of the at least one converter based on a comparison of inductor current and the nonlinear control current. | 01-22-2015 |
20150025522 | LIMITED-USE SURGICAL DEVICES - A system includes an energy source and a surgical device. The energy source has a receptacle configured to delivery energy to the surgical device through a receptacle. The surgical device is configured to deliver the energy to tissue. The surgical device includes a plug selectively engagable to the receptacle to couple the surgical device to the energy source. The plug includes a prong configured to mechanically transition from a condition permitting engagement of the plug and the receptacle to another condition inhibiting engagement of the plug with the receptacle upon reaching a predetermined usage threshold. | 01-22-2015 |
20150025523 | ELECTROSURGICAL GENERATOR WITH CONTINUOUSLY AND ARBITRARILY VARIABLE CREST FACTOR - An electrosurgical generator is provided. The electrosurgical generator includes: a non-resonant radio frequency output stage configured to output a substantially square electrosurgical waveform; and a controller coupled to the non-resonant radio frequency output stage, the controller configured to adjust a crest factor of the substantially square electrosurgical waveform on a cycle-by-cycle basis. | 01-22-2015 |
20150025524 | RENAL DENERVATION MONITORING AND FEEDBACK APPARATUS, SYSTEM AND METHOD - Methods, systems, and apparatuses for measuring the efficacy of a renal denervation procedure are described. In one embodiment, a method for measuring the efficacy of a renal denervation procedure includes utilizing an ablation catheter including one or more sensors designed and configured for measuring and reporting the plasma norepinephrine level of a subject. The plasma norepinephrine levels of the subject may be measured intermittently after each individual ablation, or may be continuously monitored throughout an entire ablation procedure to provide real time plasma norepinephrine level data to the operator to assist in determining the efficacy of the procedure. | 01-22-2015 |
20150025525 | SPIRAL BIPOLAR ELECTRODE RENAL DENERVATION BALLOON - A renal nerve ablation device may include an elongate tubular member having a distal region. An expandable member may be coupled to the distal region. One or more active electrodes may be coupled to the expandable member. One or more ground electrodes may be coupled to the expandable member. The one or more active electrodes and/or the one or more ground electrodes may be oriented helically about the length of the expandable member. | 01-22-2015 |
20150025526 | ABLATION ELECTRODE AND PERFUSED ELECTRODE CATHETER USING THE ELECTRODE - The present invention discloses an ablation electrode used in a catheter. The ablation electrode includes an electrode shell, an optional cavity inside the electrode shell and a temperature sensor. An outflow liquid pathway for the perfusion liquid is arranged on the electrode shell, and an inflow liquid pathway for the perfusion liquid is arranged in the proximal end of the electrode shell. A thermal conduction isolation structure is arranged between the temperature sensor and the liquid pathway. The thickness of the electrode shell where the temperature sensor is located is less than 0.2 mm. The present invention also provides a perfusion electrode catheter which includes the ablation electrode. The perfused electrode catheter of the present invention can provide efficient prompts on the rising ablation temperature in the ablation process. | 01-22-2015 |
20150025527 | Multi-Electrode Catheter Assemblies for Renal Neuromodulation and Associated Systems and Methods - Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally spiral/helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., spiral/helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function. | 01-22-2015 |
20150032096 | SYSTEMS AND METHODS FOR GENERATING ELECTROSURGICAL ENERGY USING A MULTISTAGE POWER CONVERTER - The electrosurgical systems and methods according to the present disclosure use a multi-stage power converter for generating electrosurgical energy. The electrosurgical systems include an electrosurgical generator having a power converter coupled to an electrical energy source and configured to generate electrosurgical energy. The power converter includes a boost converter configured to convert a first direct current from the electrical energy source to a second direct current, and a phase-shifted pulse width modulation (PS-PWM) resonant inverter configured to invert the second direct current to an alternating current. The electrosurgical generator also includes a plurality of sensors configured to sense a voltage and a current of the generated electrosurgical energy and a controller coupled to the power converter and the plurality of sensors. The controller includes a signal processor configured to determine tissue impedance based on the sensed voltage and current, and an output controller configured to select one of a plurality of output characteristics based on the determined tissue impedance, and to generate control signals to control the boost converter and the PS-PWM resonant inverter, according to the selected output characteristic. | 01-29-2015 |
20150032097 | APPARATUS, SYSTEM AND METHOD FOR PERFORMING AN ELECTROSURGICAL PROCEDURE - The present disclosure provides a bipolar forceps. The bipolar forceps includes a housing having a handle assembly including a movable handle and one or more shafts. An end effector assembly operatively connects to a distal end of the shaft and includes a pair of first and second jaw members. A solenoid is in operative communication with the movable handle and operatively couples to a drive rod operatively coupled to at least one of the first and second jaw members for causing movement thereof. One or both of the first and second jaw members includes one or more teeth configured to engage one or more teeth located on the drive rod such that rotation of the solenoid imparts one of longitudinal and rotational movement of the drive rod such that at least one of the first and second jaw members moves between the open and closed positions. | 01-29-2015 |
20150038958 | METHODS AND SYSTEMS FOR DETERMINING PHYSIOLOGIC CHARACTERISTICS FOR TREATMENT OF THE ESOPHAGUS - A method and apparatus for treating abnormal mucosa in the esophagus is disclosed, such that the depth of the treated tissue is controlled. The depth of ablation is controlled by monitoring the tissue impedance and/or the tissue temperature. A desired ablation depth is also achieved by controlling the energy density or power density, and the amount of time required for energy delivery. A method and apparatus is disclosed for measuring an inner diameter of a body lumen, where a balloon is inflated inside the body lumen at a fixed pressure. | 02-05-2015 |
20150038959 | CONTROL SYSTEM AND PROCESS FOR APPLICATION OF ENERGY TO AIRWAY WALLS AND OTHER MEDIUMS - The present disclosure may include a system for delivering energy to an airway wall of a lung comprising an energy delivering apparatus and a PID controller having one or more variable gain factors. The energy delivering apparatus may include a flexible elongated member and a distal expandable basket having at least one electrode for transferring energy to the airway wall and at least one temperature sensor for measuring temperature. | 02-05-2015 |
20150038960 | Balloon Catheter Mesh - A resector balloon includes an outer wall having a resecting surface that resects biological material. The balloon also includes a woven sleeve including at least one woven thread disposed on at least a portion of the outer wall. The woven sleeve forms at least a portion of the resecting surface. In certain embodiments, the woven sleeve includes weft knit threads including crossover points where the threads overlap. In some embodiments, the woven sleeve includes electrically conductive threads. | 02-05-2015 |
20150045786 | System for treating gastric reflux by tightening a lower esophageal sphincter - A method of treating a sphincter provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. Bioelectric activity causing a relaxation of the sphincter is detected and energy is delivered from either the mapping electrode or the treatment electrode to treat the bioelectric activity. A method of treating a sphincter provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. Bioelectric activity causing a relaxation of the sphincter is detected and energy is delivered from either the mapping electrode or the treatment electrode to treat the bioelectric activity. | 02-12-2015 |
20150051597 | DELIVERY DEVICES WITH COOLABLE ENERGY EMITTING ASSEMBLIES - Systems, delivery devices, and methods to treat to ablate, damage, or otherwise affect tissue. The treatment systems are capable of delivering a coolable ablation assembly that ablates targeted tissue without damaging non-targeted tissue. The coolable ablation assembly damages nerve tissue to temporarily or permanently decrease nervous system input. | 02-19-2015 |
20150057652 | ADAPTIVE ELECTRODE FOR BI-POLAR ABLATION - Cardiac ablation is carried out by placing two ablation electrodes on opposite sides of a wall of the heart to generally oppose one another. The effective current transmission area of one of the electrodes is then varied according to the distance between the two electrodes or the thickness of the wall. Sufficient electrical current is transmitted between the two electrodes to achieve transmural ablation. | 02-26-2015 |
20150057653 | MEDICAL WIRELESS POWER SUPPLY SYSTEM - A medical wireless power supply system includes a trocar, a power transmission coil provided in a state in which at least a part thereof is covered with a nonconductive member, a power transmission coil unit including the power transmission coil and configured to be capable of resonating at a predetermined resonance frequency, a medical instrument including a cylindrical insertion portion insertable into an insertion hole of the trocar, a power reception coil provided in a state in which at least a part thereof is covered with a nonconductive member on an inside of the insertion portion, and a power reception coil unit including the power reception coil and configured to be capable of resonating at a resonance frequency that coincides with the predetermined resonance frequency. | 02-26-2015 |
20150066009 | SWITCH ASSEMBLIES FOR MULTI-FUNCTION SURGICAL INSTRUMENTS AND SURGICAL INSTRUMENTS INCORPORATING THE SAME - A surgical instrument includes an end effector assembly and a switch assembly. The end effector assembly includes a monopolar assembly and a bipolar assembly. The switch assembly includes first and second bipolar inputs, first and second bipolar outputs, a monopolar input, and a monopolar output. The switch assembly is transitionable between a first condition, wherein the first and second bipolar inputs are coupled to the first and second bipolar outputs, respectively, for supplying energy to the bipolar assembly, and a second condition, wherein the monopolar input and the monopolar output are coupled to one another for supplying energy to the monopolar assembly. | 03-05-2015 |
20150066010 | EXPANDABLE MESH PLATFORM FOR CARDIAC ABLATION - An ablation device and methods for using the same. The ablation device has an inner shaft, an outer shaft, a mesh, a conductive coating on the mesh, and a compression mechanism. The inner shaft is disposed within the outer shaft and the compression mechanism moves the inner shaft relative to the outer shaft. The mesh expands when the compression mechanism moves the inner shaft proximally relative to the outer shaft. Electrical energy is delivered to the conductive coating to ablate tissue proximate the conductive coating. | 03-05-2015 |
20150066011 | DEVICES AND METHODS FOR PERFORMING SUBCUTANEOUS SURGERY - Devices and methods for performing subcutaneous surgery in a minimally invasive manner are provided. The methods include application of reduced air pressure in a recessed area of a handpiece placed over a section of skin and drawing the section of skin and subcutaneous tissue into the recessed area. In a subsequent step a tool is inserted through a tool conduit in the handpiece and through the skin into the subcutaneous tissue, enabling the performance of the desired surgery. Common surgical procedures include dissection and ablation. The devices and methods can be directed at the treatment of skin conditions like atrophic scars, wrinkles, or other cosmetic issues, at treatments like or promoting wound healing or preventing hyperhidrosis, or can be used for creating space for various implants. | 03-05-2015 |
20150066012 | ELECTRODE FOR HIGH-FREQUENCY SURGERY, HIGH-FREQUENCY SURGERY DEVICE, AND METHOD FOR CONTROLLING SAME - Disclosed are an electrode for high-frequency surgery, a high-frequency surgery device, and a method for controlling same, wherein the electrode for high-frequency surgery can be easily inserted and moved inside the lumens inside the body, and can expand a conduction area of a high-frequency current after reaching an area to be treated. The electrode for the high-frequency surgery, according to the present invention, comprises: a balloon; and a conductive structure, which is arranged on the outside of the balloon and the exterior shape of which varies according to the volume of the balloon. | 03-05-2015 |
20150066013 | Energy Delivery Device and Methods of Use - The present disclosure is directed to an expandable energy delivery assembly adapted to deliver electrical energy to tissue. The assembly includes an elongate device including an irrigation shaft defining a irrigation lumen fluidly couplable to an irrigation source and a rapid exchange shaft defining a guidewire lumen configured for reception and passage of a guidewire. The assembly also includes an inflatable element that is secured to the elongate device. The inflatable element includes a double helical electrode disposed on the inflatable element that makes between about 0.5 to about 1.5 revolutions around the inflatable element. | 03-05-2015 |
20150066014 | Ultrasonic lesion feedback, antipop monitoring, and force detection - An ablation catheter comprises: an elongated catheter body extending longitudinally between a proximal end and a distal end along a longitudinal axis; a distal member disposed adjacent the distal end, the distal member including an ablation element to ablate a biological member; one or more acoustic transducers disposed in the distal member and each configured to direct an acoustic signal toward a respective target ablation region and receive reflection echoes therefrom; and an acoustic redirection member disposed in the distal member to at least partially redirect the acoustic signal from at least one of the acoustic transducers toward a tissue target. The distal member includes a most-distal portion, a proximal portion, and a deflectable portion between the most-distal portion and proximal portion to permit deflection between the most-distal portion and proximal portion of the distal member. The transducers and redirection member are mounted on opposite sides of the deflectable portion. | 03-05-2015 |
20150066015 | VALVE TREATMENT DEVICES, SYSTEMS, AND METHODS - Medical device systems, methods and devices are provided for treating a valve in a heart to minimize valve regurgitation. The medical device system includes an RF energy source, a handle, a treatment catheter, and a treatment device. The handle is operatively coupled to the RF energy source and coupled to the treatment catheter. The treatment device includes exposed electrode portions of one or more electrodes operatively coupled to the RF energy source and configured to contact tissue of a valve annulus. Further, one or more of the exposed electrode portions include a marker associated therewith. With this arrangement, a physician may view the one or more markers and selectively activate particular exposed electrode portions with RF energy to selectively treat a portion of the valve annulus. | 03-05-2015 |
20150066016 | VALVE TREATMENT DEVICES, SYSTEMS, AND METHODS - Medical device systems, methods and devices are provided for treating a valve in a heart to minimize valve regurgitation, the medical device system includes an RF energy source, a handle, a treatment catheter, and first and second sleeves. The handle is operatively coupled to the RF energy source and coupled to the treatment catheter. The first and second sleeves each extend through a lumen of the treatment catheter and are moveable between a constricted position and an expanded position. The first sleeve includes a first electrode and the second sleeve includes a second electrode. Further, the first sleeve and the second sleeve are biased away from each other such that, upon being moved to the expanded position, the first and second sleeves splay outward to exhibit a v-configuration. | 03-05-2015 |
20150066017 | CATHETER AND METHOD FOR IMPROVED ABLATION - An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features. | 03-05-2015 |
20150073404 | ENERGY APPLICATION APPARATUS - The invention relates to an energy application apparatus ( | 03-12-2015 |
20150073405 | APPARATUS AND METHOD FOR TUBESET WITH DRIVE AXLE - A device comprising: a handpiece having one or more attachment ports; a tubeset having one or more attachment features for connecting the tubeset to the one or more attachment ports in the handpiece; a removable tip having an attachment arm for attaching to the one or more attachment ports in the handpiece; wherein the device comprises one or more of the following: the handpiece includes an attachment port that attaches the handpiece to an active lead and a return lead and the device is adapted to use only the active lead or both leads so that the device can switch between bi-polar energy and mono-polar energy; the tubeset has one or more fluid conduits that are in fluid communication with the removable tip, wherein the removable tip is located at a distal end of the device; and the handpiece connects to one or more electrical input lines; the tubeset connects to one or more fluid lines, and the removable tip is free of direct connection to both the one or more electrical input lines and the one or more fluid lines. | 03-12-2015 |
20150080876 | INTEGRATED SYSTEMS FOR ELECTROSURGICAL STEAM OR SMOKE CONTROL - A medical device includes an end effector and a fluid control system configured to control fluid generated when the end effector applies energy to target tissue and includes a fluid path element having one or more fluid paths. The one or more fluid paths include a distal fluid port positioned adjacent to a working portion of the end effector and a proximal fluid port fluidically coupled to a supply and transport element. The supply and transport element is configured to one of evacuate and supply fluid adjacent to the working portion of the end effector. The supply element may be operatively coupled to an activation element configured to activate the supply and transport element when end effector applies energy to the target tissue. | 03-19-2015 |
20150080877 | Spark Ablation Device - A spark ablation device for generating nanoparticles comprising a spark generator; the spark generator comprising first and second electrodes, wherein the spark generator further comprises at least one power source which is arranged to be operative at a first energy level for maintaining a discharge between the first and second electrodes, which power source is arranged for repetitively increasing the energy of the discharge to a predetermined secondary level that is higher than the first energy level for ablating a portion of the electrodes. | 03-19-2015 |
20150088115 | SURGICAL INSTRUMENTS, SYSTEMS, AND METHODS INCORPORATING WIRELESS BI-DIRECTIONAL COMMUNICATION - A surgical system and method is provided generally including a portable surgical instrument, a battery assembly, and a battery charger. The battery assembly is removably coupled to the portable surgical instrument and is configured to wirelessly transfer electrical power to the portable surgical instrument. The battery assembly is also removably couplable to the battery charger and is configured to wirelessly transfer electrical power to the battery charger and wirelessly receive electrical power from the battery charger. The portable surgical instrument and the battery charger are configured for simultaneous bi-directional communication of data with the battery assembly via the transferred or received electrical power. | 03-26-2015 |
20150088116 | SYSTEMS AND METHODS FOR ESTIMATING TISSUE PARAMETERS USING SURGICAL DEVICES - Systems and methods for estimating tissue parameters, including mass of tissue to be treated and a thermal resistance scale factor between the tissue and an electrode of an energy delivery device, are disclosed. The method includes sensing tissue temperatures, estimating a mass of the tissue and a thermal resistance scale factor between the tissue and an electrode, and controlling an electrosurgical generator based on the estimated mass and the estimated thermal resistance scale factor. The method may be performed iteratively and non-iteratively. The iterative method may employ a gradient descent algorithm that iteratively adds a derivative step to the estimates of the mass and thermal resistance scale factor until a condition is met. The non-iterative method includes selecting maximum and minimum temperature differences and estimating the mass and the thermal resistance scale factor based on a predetermined reduction point from the maximum temperature difference to the minimum temperature difference. | 03-26-2015 |
20150088117 | SYSTEMS AND METHODS FOR IMPROVING EFFICIENCY OF ELECTROSURGICAL GENERATORS - A method of improving efficiency of an electrosurgical generator is presented, the method including controlling an output of an electrosurgical generator by converting a direct current (DC) to an alternating current (AC) using an inverter, and sensing a current and a voltage at an output of the inverter. The method further includes the steps of determining a power level based on the sensed voltage and the sensed current, determining an efficiency of the electrosurgical generator, and inserting a predetermined integer number of off cycles when the efficiency of the electrosurgical generator reaches a threshold power efficiency. | 03-26-2015 |
20150088118 | SYSTEMS AND METHODS FOR IMPROVING EFFICIENCY OF ELECTROSURGICAL GENERATORS - An electrosurgical generator is presented including a radio frequency (RF) amplifier coupled to an electrical energy source and configured to generate electrosurgical energy, the RF amplifier including an inverter configured to convert a direct current (DC) to an alternating current (AC), and a plurality of sensors configured to sense voltage and current of the generated electrosurgical energy. The electrosurgical generator further includes a controller coupled to the RF amplifier and the plurality of sensors. The electrosurgical may be further configured to determine a power level based on the sensed voltage and the sensed current, determine an efficiency of the electrosurgical generator, and insert a predetermined integer number of off cycles when the efficiency of the electrosurgical generator reaches a threshold power efficiency. | 03-26-2015 |
20150088119 | MEDICAL DEVICE FOR EVALUATING A TEMPERATURE SIGNAL - A medical device including an evaluation unit and an electrode line. The electrode line includes at least one temperature sensor. The temperature sensor delivers a temperature signal to the evaluation unit. The evaluation unit evaluates periodic fluctuations of a signal level of the temperature signal and generates an evaluation output signal qualifying constant wall touching of the electrode line according to whether periodic fluctuations of a signal level of the temperature signal lie below or above a predetermined limit value. | 03-26-2015 |
20150088120 | SYSTEM AND METHOD FOR ESTIMATING TISSUE HEATING OF A TARGET ABLATION ZONE FOR ELECTRICAL-ENERGY BASED THERAPIES - Systems and methods are provided for modeling and for providing a graphical representation of tissue heating and electric field distributions for medical treatment devices that apply electrical treatment energy through one or a plurality of electrodes. In embodiments, methods comprise: providing one or more parameters of a treatment protocol for delivering one or more electrical pulses to tissue through a plurality of electrodes; modeling electric and heat distribution in the tissue based on the parameters; and displaying a graphical representation of the modeled electric and heat distribution. In another embodiment, a treatment planning module is adapted to generate an estimated target ablation zone based on a combination of one or more parameters for an irreversible electroporation protocol and one or more tissue-specific conductivity parameters. | 03-26-2015 |
20150088121 | Ablation Overtube - An energy delivery system and a method of delivering energy to a tissue are provided. The energy delivery system includes an overtube. The overtube includes a body having a proximal portion, a distal portion and a lumen extending at least partially therethrough. The proximal portion is adapted to be positioned over a distal portion of an endoscope. The body also includes a first plurality of openings formed in the body and connected to the lumen and an electrode operably connected to the body and extending over at least a portion of a surface of the body. The lumen is operably connectable to a vacuum source and the electrode is operably connectable to a power source. | 03-26-2015 |
20150094708 | BIPOLAR ELECTROSURGICAL INSTRUMENT WITH MOVABLE ELECTRODE AND RELATED SYSTEMS AND METHODS - An electrosurgical device is provided that includes a handset having a shaft extending therefrom, a pair of active electrodes at a distal end of the shaft, and a movable, electrically floating electrode selectively positionable between the active electrodes. The floating electrode, when positioned to contact tissue between the active electrodes, modifies the electrosurgical current flows through tissue. The resultant modified current flows enables a surgeon to more effectively to control tissue desiccation by focusing electrosurgical energy toward targeted tissue and by reducing peripheral current flows. Embodiments are provided wherein the active electrodes include cooling provisions. Related electrosurgical systems and method of use are also provided. | 04-02-2015 |
20150094709 | Electrosurgical Probes for Suction and Irrigation Systems - An electrosurgical probe for suction and irrigation systems is provided. The electrosurgical probe comprises an elongate tube with a probe tip and a probe handle. An unobstructed fluid communication path is defined by the probe handle and elongate tube. | 04-02-2015 |
20150094710 | GRAPHICAL USER INTERFACE FOR ASSOCIATION WITH AN ELECTRODE STRUCTURE DEPLOYED IN CONTACT WITH A TISSUE REGION - Systems and methods deploy an electrode structure in contact with the tissue region. The electrode structure carries a sensor at a known location on the electrode structure to monitor an operating condition. The systems and methods provide an interface, which generate an idealized image of the electrode structure and an indicator image to represent the monitored operating condition in a spatial position on the idealized image corresponding to the location of the sensor on the electrode structure. The interface displays a view image comprising the idealized image and indicator image. The systems and methods cause the electrode structure to apply energy to heat the tissue region while the view image is displayed on the display screen. | 04-02-2015 |
20150100052 | SPINAL DISK HERNIATION REPOSITIONING AND RADIOFREQUENCY ABLATION (RFA) DEVICE AND METHOD FOR TREATING VERTEBRAL DISC HERNIATION - Devices, components, apparatus, and/or methods for using and making a combination spinal disk herniation repositioning and radiofrequency apparatus (RFA) or device that uses one or more repositioning probes and one or more needles/electrodes, wherein the device's probe repositions, and the electrode or needle treats or ablates, an injured, torn, herniated, or displaced vertebral disc propulus and/or nucleus, and wherein one or more side probes or needles are used to reposition or treat the spinal disk herniation, optionally followed by medicine/ozone therapy of the disc being treated. | 04-09-2015 |
20150100053 | SCANNING CANNULA - A scanning cannula for scanning an electrosurgical instrument for electrical insulation defects includes an elongated sleeve having a receiving end, an opposite exit end, and a passageway extending from the receiving end to the exit end. At least one sweeping contact is disposed in the passageway with a limit switch or photocell upstream. A circuit is electrically connected to the at least one sweeping contact. A communication device is connected to the circuit to transmit signals from the circuit to a controller of a surgical instrument. An electrosurgical instrument inserted into the receiving end of the sleeve passes through the at least one sweeping contact, and any electrical defect of the electrosurgical instrument detected by the at least one sweeping contact and assessed by the software is relayed as an error signal to the circuit, which communicates the error signal to the controller. The controller cuts current to the electrosurgical instrument and signals an alarm. | 04-09-2015 |
20150105765 | Systems and Methods of Radiometrically Determining a Hot-Spot Temperature of Tissue Being Treated - According to some embodiments, systems for energy delivery to targeted tissue comprise a catheter with an ablation member, a radiometer configured to detect temperature data from the targeted tissue, a processor configured to determine a calculated temperature (e.g., an extreme temperature, such as a peak or trough temperature) within the tissue by applying at least one factor to the temperature data detected by the radiometer, the processor configured to compare the calculated temperature to a setpoint and an energy source configured to energize the ablation member and to regulate delivery of ablative energy to the targeted tissue of the subject based at least in part on the comparison. In some embodiments, the factor depends on at least one characteristic of the targeted tissue. Information regarding a tissue characteristic can be provided using information from an imaging set (e.g., intracardiac echo) or an electrical signal of the subject (e.g., electrocardiogram). | 04-16-2015 |
20150105766 | RADIOFREQUENCY AMPLIFIER IMPEDANCE OPTIMIZATION - The present disclosure is directed to an electrosurgical generator including a resonant inverter having an H-bridge and a tank. The generator also includes a pulse width modulation (PWM) controller configured to output PWM timing signals to the H-bridge. A switch is configured to select a modality from among a plurality of modalities and the PWM controller adjusts a frequency of the PWM timing signals based on the selected modality. | 04-16-2015 |
20150105767 | RESONANT INVERTER - The present disclosure is directed to an electrosurgical generator including a resonant inverter having an H-bridge and a tank. The tank includes a transformer including a first core half, a second core half, a primary winding, and a secondary winding having a number of turns, wherein each turn is separated by a gap. The transformer is configured to provide a parallel capacitance based on the gap. | 04-16-2015 |
20150105768 | ELECTROSURGICAL SYSTEMS AND METHODS FOR MONITORING POWER DOSAGE - The electrosurgical systems and methods of the present disclosure monitor power dosage delivered to tissue being treated with improved speed and accuracy. The electrosurgical systems include an output stage, sensors, analog all-pass filters, an analog multiplier, an average power calculation circuit, and a controller. The output stage generates electrosurgical energy to treat tissue. The plurality of sensors sense voltage and current waveforms of the generated electrosurgical energy. The plurality of analog all-pass filters filter the sensed voltage and current waveforms. The plurality of analog all-pass filter may have lagging or leading phase. The analog multiplier multiplies the filtered voltage and current waveforms to obtain a real power waveform. The average power calculation circuit calculates a real average power based on the real power waveform. The controller then generates a control signal to control the output stage based on the real average power. | 04-16-2015 |
20150112321 | Current Control Methods and Systems - Apparatus, systems, and methods of controlling energy delivered to electrodes used in electrically and/or thermally induced neuromodulation are provided to improve neuromodulation. In particular, a catheter treatment device having a control algorithm that regulates current or current density delivered to an electrode is provided. The electrode may maintain a known and consistent electrode contact surface area with the vessel. The control algorithm controls energy delivery to provide consistent current or current density to the treatment site, even though the tissue impedance Z may vary from patient to patient and vessel to vessel, and despite changes in impedance of the treatment site during the course of the treatment. The controlled delivery of energy can be used to control and maintain placement of the zone of thermal treatment and reduce undesirable energy delivery to unwanted locations near the treatment site. | 04-23-2015 |
20150112322 | ELECTROSURGICAL INSTRUMENT AND SYSTEM - A handheld electrosurgical instrument includes a handpiece ( | 04-23-2015 |
20150112323 | ADAPTER ELEMENT, HF SURGICAL INSTRUMENT, ADAPTER ATTACHMENT AND SYSTEM - An adapter element for receiving an HF surgical handpiece is proposed. The adapter element is characterized in that it is possible by receiving the handpiece in the adapter element to form a smoke duct in said adapter element for discharging smoke from a treatment area, at least one stick-, point-, ring-, sphere- or loop-shaped electrode or combinations of the same being attached on the distal end of the adapter element. | 04-23-2015 |
20150112324 | RF TISSUE MODULATION DEVICES AND METHODS OF USING THE SAME - Minimally invasive RF tissue modulation devices are provided. In some aspects, the devices include a hand-held control unit and an elongated member. The hand-held control unit includes an electrical energy source and the elongated member has a proximal end operably coupling to the hand-held control unit. The RF tissue modulation device is configured to generate a plasma at a distal end plasma generator for a therapeutic duration. In some aspects, RF tissue modulation devices are provided and include an adapter that operably couples to a hand-held medical device. The adapter generates RF energy for delivery to a plasma generator on an elongated member. Methods of delivering the RF energy to the internal target tissue site are also provided. | 04-23-2015 |
20150119871 | RESONANT INVERTER WITH A COMMON MODE CHOKE - The present disclosure is directed to an electrosurgical generator including a tank configured to output energy and an H-bridge configured to drive the tank. The generator also includes a choke. The choke impedes a common mode current generated by the H-bridge and provides a leakage inductance for the tank. | 04-30-2015 |
20150119872 | SPECTRAL SENSING OF ABLATION - A method for tissue assessment includes ablating tissue at a site within a body of a living subject using an invasive probe applied to the site. At a first stage in ablation of the tissue, first measurements are made of scattered light intensities from the site at a plurality of different wavelengths. At a second stage in the ablation of the tissue, subsequent to the first stage, second measurements are made of the scattered light intensities from the site at the plurality of different wavelengths. Progress of the ablation is assessed by computing different, respective measures of change in the scattered light intensities at the different wavelengths occurring between the first and second measurements, and comparing the respective measures. | 04-30-2015 |
20150126992 | Helical DeNervation Ablation Catheter Apparatus - A catheter apparatus carrying RF ablation electrodes on a helically configured portion of a flexible tube that can be inserted into the femoral artery of a patient, advanced into a renal artery, and then be manipulated to properly position electrodes carried by the helical tube to contact the endoluminal surface of the artery. While instrumentally monitoring the endoluminal surface's temperature and impedance (measured with electrodes that are in an intimate contact with the surface), a low level of RF energy can be applied to selected sites on the interior (endoluminal) surface of the artery in order to ablate the renal sympathetic nerves without affecting the abdominal, pelvic, or lower-extremity nerves. | 05-07-2015 |
20150126993 | APPARATUS AND METHOD FOR INTRA-CARDIAC MAPPING AND ABLATION - An intra-cardiac mapping system is based on locating the ports through which blood flows in or out of the heart chambers. For many procedures, such as ablation to cure atrial fibrillation, locating the pulmonary veins and the mitral valve accurately allows to perform a Maze procedure. The location of the ports and valves is based on using the convective cooling effect of the blood flow. The mapping can be performed by a catheter-deployed expandable net or a scanning catheter. The same net or catheter can also perform the ablation procedure. | 05-07-2015 |
20150133911 | FIBROID ABLATION POSITIONING DEVICE AND METHODS - A method of treating a patient with a bioelectrical system is provided. The method may include inserting a probe into a first position in an anatomy of the patient, the system being provided with a plurality of electrodes; energizing a first electrode of the plurality of electrodes with a measurement level of power; determining a complex impedance in the patient's anatomy; determining whether the first position is a desired position of the probe for ablating a predetermined portion of tissue of the patient, based on the complex impedance determined; and energizing one of the plurality of electrodes with an ablation level of power, the ablation level of power being greater than the measurement level of power. An apparatus for performing BIA on a patient is also provided. | 05-14-2015 |
20150133912 | SURGICAL DEVICE WITH IMPROVED MAINS MODULE - A surgical device having a step-up converter, a power supply unit and a control arrangement. The step-up converter converts a mains AC voltage to an intermediate circuit voltage and energizes a DC intermediate circuit. The power supply unit includes an inverter connected to the intermediate circuit. The power supply unit also includes a transformer that has a primary coil connected to the inverter and a secondary coil for energizing a load. The control arrangement includes a PFC control circuit connected in a controlling manner to the step-up converter. The control arrangement further includes an operation control circuit connected in a controlling manner to the power supply unit. The PFC control circuit and operation control circuit are connected to each other via a digital communication interface. | 05-14-2015 |
20150133913 | SYSTEM AND METHOD FOR POWER SUPPLY NOISE REDUCTION - An electrosurgical system includes an electrosurgical generator, a power source configured to deliver power to at least one load connected to the generator, a master configured to generate an initial pulse, and a plurality of slaves connected in series to the master. The initial pulse cooperates with a first floating power supply configured to create an electrical connection between at least one first load and the power source. A first slave is configured to generate a subsequent pulse based on the initial pulse. The subsequent pulse cooperates with a second floating power supply configured to create an electrical connection between at least one second load and the power source. The subsequent pulse is configured to cause an ensuing slave to generate an additional pulse. The additional pulse cooperates with a corresponding floating power supply configured to create an electrical connection between at least one additional load and the power source. | 05-14-2015 |
20150133914 | HIGH RESOLUTION ELECTROPHYSIOLOGY CATHETER - An electrophysiology medical probes, which may be incorporated into a system and used to perform an electrophysiology procedure, is provided. The medical probe comprises an elongated member (e.g., a flexible elongated member), and a metallic electrode mounted to the distal end of the elongated member. In one embodiment, the metallic electrode is cylindrically shaped and comprises a rigid body. The medical probe further comprises a plurality of microelectrodes (e.g., at least four microelectrodes) embedded within, and electrically insulated from, the metallic electrode, and at least one wire connected to the metallic electrode and the microelectrodes. | 05-14-2015 |
20150141978 | ABLATION MEDICAL DEVICES AND METHODS FOR MAKING AND USING ABLATION MEDICAL DEVICES - Ablation devices and methods for determining a degree of contact between an electrode and a target tissue are disclosed. An example ablation device for treating body tissue may include a catheter having a proximal end region and a distal end region. An electrode may be disposed adjacent to the distal end region of the catheter. The device may also include a processing unit having a memory. The processing unit may be in electrical communication with the electrode. The processing unit may be capable of determining a degree of contact between the electrode and a target tissue. | 05-21-2015 |
20150141979 | ENERGY-HARVESTING SYSTEM, APPARATUS AND METHODS - An electrosurgical energy delivery apparatus includes an energy delivery circuit, a control circuit and an energy-harvesting system with a plurality of energy-harvesting circuits and a voltage regulator that provides a regulated DC voltage to the energy delivery circuit and/or the control circuit. The energy delivery circuit receives an electrosurgical energy signal having a primary frequency and selectively provides the electrosurgical energy signal to an energy delivery element. The control circuit connects to the energy delivery circuit and selectively enables the flow of electrosurgical energy to the energy delivery element. The plurality of energy-harvesting circuits each include an energy-harvesting antenna tuned to a particular frequency, a matched circuit configured to receive an RF signal from the energy-harvesting antenna, rectify the RF signal and generate a DC signal, and an energy storage device that connects to the voltage regulator to receive and store the DC signal. | 05-21-2015 |
20150148793 | ENERGY-DELIVERY DEVICES WITH FLEXIBLE FLUID-COOLED SHAFT, INFLOW / OUTFLOW JUNCTIONS SUITABLE FOR USE WITH SAME, AND SYSTEMS INCLUDING SAME - An energy-delivery device suitable for delivery of energy to tissue includes an antenna assembly, a chamber defined about the antenna assembly, and a cable having a proximal end suitable for connection to an electrosurgical energy source. The energy-delivery device also includes a flexible, fluid-cooled shaft coupled in fluid communication with the chamber. The flexible, fluid-cooled shaft is configured to contain a length of the cable therein and adapted to remove heat along the length of the cable during delivery of energy to the antenna assembly. | 05-28-2015 |
20150289923 | TREATMENT PLANNING FOR ELECTRICAL-ENERGY BASED THERAPIES BASED ON CELL CHARACTERISTICS - A method for treating a target tissue in a patient in need thereof is provided. The method includes the steps of identifying one or more characteristics of one or more cells of a target tissue; calculating a threshold electric field for inducing IRE in the target tissue based on the one or more characteristics; constructing a treatment protocol of one or more pulse parameters, wherein the treatment protocol is capable of inducing IRE in the target tissue; and delivering the treatment protocol to the target tissue. Systems for treatment planning for medical therapies involving administering electrical treatment energy are also provided. | 10-15-2015 |
20150289924 | ENFORCEMENT DEVICE FOR LIMITED USAGE PRODUCT - A surgical device employs a longevity circuit for preventing operation after a specified time based on safe use expectations. The surgical device delivers a therapy signal via a handpiece having electrodes in proximity to the surgical site. The therapy signal is a high frequency electrical signal delivered from a generator coupled to the handpiece, and activated by a control signal. A therapy circuit established by coupling the handpiece and generator delivers the therapy signal, and is monitored for activation based on a time since a first activation, a number of activations, or an aggregate time of activated intervals. A usage limit defines the activation lifespan, and is employed for monitoring either the therapy circuit or the control circuit, to determine a usage history. Following expiration of a safe usage limit, a longevity circuit in the handpiece disables the handpiece for successive uses, and is independent of a connection to a particular generator. | 10-15-2015 |
20150297282 | GENERATOR ASSEMBLIES FOR NEUROMODULATION THERAPY AND ASSOCIATED SYSTEMS AND METHODS - Generator assemblies and systems for neuromodulation therapies are disclosed herein. A generator system configured in accordance with a particular embodiment of the present technology can include a stand assembly, a generator assembly carried by the stand assembly, and a display operably coupled to the generator assembly. The generator assembly can include at least one port configured to operably couple the generator assembly to a neuromodulation device such that the generator assembly can provide radio frequency (RF) energy to the neuromodulation device. The display can be configured to indicate operating conditions of the generator system during energy delivery. The generator system can further include a user interface operably coupled to the generator assembly and configured to activate and/or modulate the RF energy. | 10-22-2015 |
20150297283 | METHOD AND APPARATUS FOR FRACTIONAL SKIN TREATMENT - An apparatus for cosmetic RF skin treatment where the RF energy supply is isolated from the patient treated, such that in course of treatment no undesired current flows through the subject body. | 10-22-2015 |
20150297290 | ABLATION CATHETER WITH DEDICATED FLUID PATHS AND NEEDLE CENTERING INSERT - An irrigated needle electrode ablation catheter has a distal tip section with a tip electrode, a needle electrode assembly longitudinal movable relative to the catheter, and a needle centering insert in a channel in the tip electrode. The assembly has a proximal tubing and a distal needle electrode, and the insert supports the needle electrode in the channel at a predetermined separation distance from the tip electrode while enabling irrigation to flow circumferentially around the needle electrode through the channel and exit at the distal end of the tip electrode. The catheter also provides a first dedicated fluid pathway through the assembly and exits at the distal end of the needle electrode, and a second dedicated fluid pathway to supply fluid to the channel in the tip electrode, wherein the second pathway is defined by a guide tube and directed by a plunger member. | 10-22-2015 |
20150313663 | CONTROLLER FOR ELECTROSURGICAL MEDICAL DEVICES - A control unit controls delivery of RF energy generated by an RF generator to a medical device configured to perform a medical procedure. The control unit may be separate from the RF generator, and may have an input that may be attached to an output of the RF generator. The control unit includes switching circuitry that is closed while an amount of RF energy is transmitted through the control unit to the medical device. The switching circuitry opens when the amount of RF energy reaches a threshold level. | 11-05-2015 |
20150313665 | WAKE-UP SYSTEM AND METHOD FOR POWERED SURGICAL INSTRUMENTS - The present disclosure is directed to an electromechanical surgical system having an end effector and an adapter assembly for selectively interconnecting the end effector and a hand-held surgical instrument. A one-wire bidirectional serial communications interface or bus extends through the end effector, the adapter assembly, and the hand-held surgical instrument. The hand-held surgical instrument includes a master circuit coupled to the bus and configured to identify or control the adapter assembly or the end effector. A power source is couplable to the bus and configured to provide power to the adapter assembly or the end effector. A first switch connects the master circuit to the bus and a second switch connects the power source to the bus. A processor controls operation of the hand-held surgical instrument. The controller has a wake-up pin connected to the bus and is configured to receive a presence pulse from the adapter or end effector. | 11-05-2015 |
20150320474 | BATTERY PACK ATTACHED TO A CABLE - An article comprising: (i) a handheld device including (a) a housing, (b) a powered element within the housing; (ii) a battery pack, wherein the handheld device is connected by an external cable to a functional system, wherein the battery pack is attached to the external cable, and wherein the battery pack supplies power to the powered element. | 11-12-2015 |
20150320478 | ELECTROSURGICAL GENERATOR - This invention relates to high-frequency ablation of tissue in the body using a cooled high-frequency electrode connected to a high frequency generator including a computer graphic control system and an automatic controller for control the signal output from the generator, and adapted to display on a real time graphic display a measured parameter related to the ablation process and visually monitor the variation of the parameter of the signal output that is controlled by the controller during the ablation process. In one example, one or more measured parameters are displayed simultaneously to visually interpret the relation of their variation and values. In one example, the displayed one or more parameters can be taken from the list of measured voltage, current, power, impedance, electrode temperature, and tissue temperature related to the ablation process. The graphic display gives the clinician an instantaneous and intuitive feeling for the dynamics and stability of the ablation process for safety and control. This invention relates to monitoring and controlling multiple ground pads to optimally carry return currents during high-frequency tissue ablation, and to prevent of ground-pad skin burns. This invention relates to the use of ultrasound imaging intraoperatively during a tissue ablation procedure. This invention relates to the use of nerve stimulation and blocking during a tissue ablation procedure. | 11-12-2015 |
20150320480 | ELECTROSURGICAL GENERATOR - This invention relates to high-frequency ablation of tissue in the body using a cooled high-frequency electrode connected to a high frequency generator including a computer graphic control system and an automatic controller for control the signal output from the generator, and adapted to display on a real time graphic display a measured parameter related to the ablation process and visually monitor the variation of the parameter of the signal output that is controlled by the controller during the ablation process. In one example, one or more measured parameters are displayed simultaneously to visually interpret the relation of their variation and values. In one example, the displayed one or more parameters can be taken from the list of measured voltage, current, power, impedance, electrode temperature, and tissue temperature related to the ablation process. The graphic display gives the clinician an instantaneous and intuitive feeling for the dynamics and stability of the ablation process for safety and control. This invention relates to monitoring and controlling multiple ground pads to optimally carry return currents during high-frequency tissue ablation, and to prevent of ground-pad skin burns. This invention relates to the use of ultrasound imaging intraoperatively during a tissue ablation procedure. This invention relates to the use of nerve stimulation and blocking during a tissue ablation procedure. | 11-12-2015 |
20150327906 | VOLUMETRICALLY OSCILLATING PLASMA FLOWS - Volumetrically oscillating plasma flows, the volume of which controllably expands and contracts with time, are disclosed. Volumetrically oscillating plasma flows are generated by providing an energy with a power density that changes with time to the plasma-generating gas to form a plasma flow. The changes in the energy power density result in plasma flow volumetric oscillations. Volumetric oscillations with a frequency of above 20,000 Hz results in ultrasonic acoustic waves, which are known to be beneficial for various medical applications. System for providing volumetrically oscillating plasma flows and a variety of surgical non-surgical applications of such flows are also disclosed. | 11-19-2015 |
20150327908 | ELECTROSURGICAL GENERATOR - An electrosurgical system for performing an electrosurgical procedure is provided and includes an electrosurgical generator and a calibration computer system. The electrosurgical generator includes one or more processors and a measurement module including one or more log amps that are in operative communication with the processor. The calibration computer system configured to couple to a measurement device and is configured to measure parameters of an output signal generated by the electrosurgical generator. The calibration computer system is configured to compile the measured parameters into one or more data look-up tables and couple to the electrosurgical generator for transferring the data look-up table(s) to memory of the electrosurgical generator. The microprocessor is configured to receive an output from the log amp(s) and access the data look-up table(s) from memory to execute one or more control algorithms for controlling an output of the electrosurgical generator. | 11-19-2015 |
20150327944 | TREATMENT PLANNING FOR ELECTROPORATION-BASED THERAPIES - The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue. | 11-19-2015 |
20150335374 | SYSTEMS AND METHODS OF DISCRIMINATING BETWEEN ARGON AND HELIUM GASES FOR ENHANCED SAFETY OF MEDICAL DEVICES - Systems and methods for discriminating between various gases, e.g., argon and helium, for enhanced safety of medical devices are provided. The present disclosure may take the form of a dedicated-use embodiment where a specific gas, helium for example, is expected, and an enabling or “Go” signal is issued when that gas is detected, or an inhibitory or “No-Go” signal when a gas is present that is not identified as helium. Alternately, a control line or input command can be used to select between helium and argon as the expected gas and then issue the appropriate “Go/No-Go” signal, depending on which gas is identified. | 11-26-2015 |
20150335380 | SYSTEMS AND METHODS FOR PERFORMING ENDOMETRIAL ABLATION - A method and system of providing therapy to a patient's uterus is provided, which can include any number of features. The method can include the steps of inserting a uterine device into the uterus and performing a uterine integrity test to determine that the uterus is intact and not perforated. If it is determined that the uterus is not perforated, a patency test can be performed to determine that the uterine device is not clogged or embedded in tissue. If the uterus is intact and the device is not clogged or embedded in tissue, the uterus can be treated with the uterine device, e.g., uterine ablation. Systems for performing these methods are also disclosed. | 11-26-2015 |
20150342662 | IDENTIFICATION AND VISUALIZATION OF GAPS BETWEEN CARDIAC ABLATION SITES - A method includes receiving locations of multiple ablation sites formed on a surface of a heart. Distances are measured among at least some of the ablation sites based on the locations. One or more gaps between the ablation sites, which meet an alerting criterion, are identified. The identified gaps are indicated to an operator. | 12-03-2015 |
20150342663 | Integrated Cold Plasma and High Frequency Plasma Electrosurgical System and Method - A system that does conversion from regular hot plasma produced by ESU to cold plasma which is thermally harmless for the tissue. The system is comprised of Conversion Unit and Cold Plasma Probe. Output signal for ESU connects to CU along with Helium flow. The CU converts signal from ESU and send it to the output connector along with helium flow. Cold Plasma Probe is connected directly to the CU output. At the end of the CPP probe cold plasma is produced. | 12-03-2015 |
20150342665 | Medical Probe And Method Of Using Same - The present invention resides in one aspect in a device for monitoring luminal esophageal temperatures in a patient. The device includes a probe adapted to be inserted into an esophagus of the patient. The probe extends between a proximal end and a distal end. A first temperature sensor and a second temperature sensor are coupled to the probe. An electrode is also coupled to the probe. The second temperature sensor is displaced from the first temperature sensor along a longitudinal axis of the probe. A controller processes information received by the electrodes and the temperature sensors. The controller generates a live and continuously updating three dimensional anatomic map and three dimensional thermal map of the esophagus based at least in part on the information received from the temperature sensors and the electrodes. The thermal map and the anatomic map are displayed on a video monitor. | 12-03-2015 |
20150342667 | BIPOLAR ELECTROSURGERY ACTUATOR - A system for selectively actuating a heating current conductible from a bipolar generator to a surgical tool may comprise an actuator assembly having an output receptacle, an input plug, and an actuating component. The output receptacle may be configured to receive a complementary tool plug of the surgical tool. The input plug may be configured for mating with a generator receptacle receivable of the heating current from the bipolar generator. The generator receptacle may be complementary to the tool plug. The actuating component may have at least one of a switch and a lever arm and may be configured to communicate with the bipolar generator for selectively actuating the heating current to flow from the input plug to the output receptacle upon engagement of the switch or the lever arm. | 12-03-2015 |
20150359584 | DEVICE AND METHOD FOR DETECTING FAULTS IN A SHIELDED INSTRUMENT - A device and method for detecting faults in a shield of an electrosurgical instrument is described. The device has a relay configured to selectively interrupt power to the electrosurgical instrument, monitoring circuitry configured to monitor a shield in the electrosurgical instrument, control circuitry to control the relay, and a battery power source. The monitoring circuitry has an envelope detector and an detected average shield current detector. The monitoring circuitry is configured to compare a shield current peak value to a shield current peak threshold value, and to compare an detected average shield current value to an detected average shield current threshold value. The device is further configured to operatively couple an active electrode of an electrosurgical instrument and a return electrode to an electrosurgical generator. | 12-17-2015 |
20150366604 | SYSTEMS AND METHODS FOR TREATING TISSUE WITH RADIOFREQUENCY ENERGY - A device for applying radiofrequency energy for sphincter treatment comprising a flexible outer tube, an expandable basket having a plurality of arms movable from a collapsed position to an expanded position, and a plurality of electrodes movable with respect to the arms from a retracted position to an extended position. An advancer is slidably disposed within the outer tube to move the plurality of electrodes to the extended position. An actuator moves the advancer from a first position to a second position to advance the plurality of electrodes. An aspiration tube extends within the outer tube. An assembly includes an aspiration disabler having a first position to enable aspiration from a distal portion of the aspiration tube to a proximal portion and a second position to disable aspiration. | 12-24-2015 |
20150366605 | ADJUSTABLE CLAMP SYSTEMS AND METHODS - Tissue treatment systems include an actuator handle assembly coupled with a clamp assembly having a first jaw mechanism and a second jaw mechanism. A first jaw mechanism includes a first flexible boot, a first flexible ablation member coupled with the first flexible boot, and a first rotatable jawbone disposed within the first flexible boot. A second jaw mechanism comprises a second flexible boot, a second flexible ablation member coupled with the second flexible boot, and a second rotatable jawbone disposed within the second flexible boot. | 12-24-2015 |
20150366629 | Surgical Manipulator Having a Feed Rate Calculator - A surgical manipulator for manipulating a surgical instrument and an energy applicator extending from the surgical instrument. The surgical manipulator further includes at least one controller configured to operate the surgical manipulator in a manual mode or a semi-autonomous mode. The at least one controller including a feed rate calculator configured to calculate an instrument feed rate. The instrument feed rate is a velocity at which a distal end of the energy applicator advances along a path segment of a tool path in the semi-autonomous mode. | 12-24-2015 |
20150374427 | DETECTING IMPROPER ENERGY TRANSMISSION CONFIGURATION IN MEDICAL DEVICE SYSTEM - A medical device system may be configured to detect an improper energy transmission configuration therein. The condition may be detected by way of a detection of a condition where an energy-transmitting electrode of the medical device system becomes too close to or becomes in contact with an object resulting in an inability of the electrode to properly transmit energy. For example, if the energy-transmitting electrode is a first electrode configured in its operational state to transmit energy to bodily tissue adjacent the first electrode, but the first electrode is inadvertently contacting a second electrode, such contact may cause at least some energy transmitted by the first electrode to follow an unintended path away from its intended path to the adjacent tissue. Such a condition may be detected based at least upon an analysis of information acquired from a sensing device system. | 12-31-2015 |
20150374431 | Electrosurgical Device having a distal aperture - A method and apparatus are disclosed for providing forward fluid delivery through an energy delivery device that avoids coring when it delivers energy to a tissue. The device has a distal face defining an opening, with the distal face including at least one electrically exposed portion and at least one electrically insulated portion. An embodiment of the energy delivery device includes an elongate member defining a lumen structured to receive a fluid, and a distal face defining an aperture in communication with the lumen. The distal face includes an electrically exposed conductive portion and an electrically insulated portion. The electrically exposed conductive portion is configured such that the energy it delivers while the energy delivery device is advanced into a tissue punctures the tissue without the tissue substantially occluding the lumen and without creating embolic particles. | 12-31-2015 |
20150374435 | RADIO FREQUENCY ABLATION METHOD, SYSTEM AND RADIO FREQUENCY ABLATION DEVICE THEREOF - A radio frequency ablation device, comprising a radio frequency ablation tube ( | 12-31-2015 |
20160000494 | SYSTEM AND APPARATUS FOR AUTOMATIC ACTIVATION USING RADIO FREQUENCY SENSOR - A system and apparatus for automatic smoke evacuation using an RF sensor. The system and apparatus utilizes an RF sensor for automatic activation of an evacuator that evacuates smoke and/or debris during the use of any electrosurgical instrument or surgical instrument that is capable of generating smoke and/or debris and capable of producing a radiofrequency during its operation. Exemplary embodiments of the system and apparatus for automatic smoke evacuation include both wired and wireless embodiments. | 01-07-2016 |
20160000495 | ELECTROSURGICAL SYSTEM - An electrosurgical generator arranged to supply radio frequency (RF) energy to fuse tissue is provided. The generator is arranged to supply RF energy through a removably coupled electrosurgical instrument to fuse tissue grasped by the instrument. The generator monitors a phase angle of the supplied RF energy and adjusts or terminates the supplied RF energy based on the monitored phase angle in comparison to predetermined thresholds and conditions to optimally fuse the tissue. The electrosurgical instrument conducts radio frequency energy to fuse tissue captured between the jaws and a blade to mechanically cut tissue between the jaws. A conductive post positioned on the jaw adjacent to the blade | 01-07-2016 |
20160008065 | MACHINE LEARNING IN DETERMINING CATHETER ELECTRODE CONTACT | 01-14-2016 |
20160015408 | Medical Manipulator - A medical manipulator includes: a manipulator body that has a handle; a drive unit that can be detachably attached to the handle and has a drive source; a guide mechanism that guides the movement of the drive unit when the drive unit is attached to or detached from the handle; a motive force-transmitting coupling that has a driving member and a driven member, and transmits the drive force from the drive source to the handle side; and an electrical connection mechanism that electrically connects the handle and the drive unit when the drive unit is mounted to the handle. | 01-21-2016 |
20160015409 | Medical Manipulator - A medical manipulator wherein a first section provided with a driven coupling is detachably attached to a second section provided with a driving coupling that includes a drive source and is driven by the drive source. The driving coupling and the driven coupling are fitted to each other to transmit the drive force from the drive source to a tip-end operation part. In at least one coupling among the driving coupling and the driven coupling, tooth ends on the side where the fitting of the driving coupling and the driven coupling begins when the first section and the second section are connected become thinner towards the axial-direction end surface. | 01-21-2016 |
20160015464 | Medical Manipulator - A medical manipulator includes: a manipulator body that has a handle; a drive unit that can be detachably attached to the handle; and an attachment limiting mechanism that is provided to the handle. When the number of times that the drive unit has been attached to and detached from the handle reaches a set number, the attachment limiting mechanism prevents the mounting of the drive unit to the handle. The attachment limiting mechanism has a counting mechanism and a stopper. The counting mechanism counts the number of times that the drive unit is attached and detached. When the count reaches a set number, the stopper is made to protrude into a mounting hole in the handle so as to prevent the insertion of the drive unit into the mounting hole. | 01-21-2016 |
20160022299 | Medical Manipulator - A switch mechanism for a medical manipulator, the switch mechanism including a moveable switching operation part, moving-side contacts provided to the switching operation part, and fixed-side contacts capable of contacting the moving-side contacts. At least the electrical-contact sections of the moving-side contacts and of the fixed-side contacts are formed from a corrosion-resistant material. | 01-28-2016 |
20160022349 | ELECTROSURGICAL SYSTEM AND METHOD HAVING ENHANCED ARC PREVENTION - Electrosurgical systems and methods are described herein, the system including an electrosurgical probe with an active electrode disposed near the probe distal end, a system with a power supply for delivery of voltage to the active electrode and a controller that receives and processes a signal from a current sensor and a temperature sensor. The current sensor measures the current output of the power supply and the temperature sensor is adjacent an electrically conductive fluid located at a target site. The controller may be programmed to operate in a low voltage mode that limits the power supply to a low voltage output so as to determine whether the current output from the current sensor is within a current output range. This range is defined by predetermined upper and lower limits that are modified by at least one measured value. | 01-28-2016 |
20160022350 | METHOD AND SYSTEM RELATED TO ELECTROSURGICAL PROCEDURES - Electrosurgical procedures. At least some of the example methods that include: supplying energy to an active electrode of an electrosurgical wand, the supplying energy to the active electrode by an electrosurgical controller; monitoring an electrical parameter associated with the energy; and determining, based on the electrical parameter, the presence of a wand condition of the electrosurgical wand, the wand condition being at least one selected from the group consisting of: a surface area of the active electrode is less than a predetermined threshold surface area; the surface area of the active electrode is approaching the predetermined threshold surface area; and that the electrosurgical wand is affected by a blockage. | 01-28-2016 |
20160022353 | MULTIPLE LEAD ELECTRODE PROBE FOR CONTROLLED TISSUE ABLATION - Tissue regions are treated using a multiple lead electrode probe. A plurality of electrodes may be disposed about an elongate shaft. The elongate shaft may be slidably disposed within a lumen of a delivery sheath. One or more probes including one or more electrically active regions may also be slidably disposed within the delivery sheath. The one or more probes may be configured to extend radially about the elongate shaft. The plurality of electrodes and the electrically active regions may be individually connected to a control and power unit through individual channels. | 01-28-2016 |
20160022355 | Medical Manipulator - A slip ring mechanism for a medical manipulator, the slip ring mechanism including: a rotating rod that rotates together with a drive shaft; rotating terminals that are positioned so as to be coaxial to the rotating rod; conductive members that contact the rotating terminals and are electrically connected to an end effector; holding members that hold the conductive members such that the conductive members are sandwiched between the holding members and the rotating terminals; and contact terminals that contact the rotating terminals so as to be capable of rotating and sliding relative thereto. | 01-28-2016 |
20160030104 | METHODS FOR IMPROVING HIGH FREQUENCY LEAKAGE OF ELECTROSURGICAL GENERATORS - The present disclosure is directed to an electrosurgical generator an H-bridge and a tank driven by the H-bridge. The tank includes a transformer having a primary winding and a secondary winding. The secondary winding includes a first coil and a second coil. In the electrosurgical generator, a capacitor is connected in series between the first coil and the second coil. | 02-04-2016 |
20160038039 | Cardiac tissue elasticity sensing - A system and method are provided for assessing the compliance of internal patient tissue for purposes of catheter guidance and/or ablation procedures. Specifically, the system/method provides for probing internal patient tissue in order to obtain force and/or tissue displacement measurements. These measurements are utilized to generate an indication of tissue elasticity. In one exemplary embodiment, the indication of elasticity is correlated with an image of the internal tissue area and an output of this image including elasticity indications is displayed for a user. | 02-11-2016 |
20160038229 | TISSUE CONTACT DETECTION PRIOR TO AND DURING AN ABLATION PROCEDURE - The present invention provides systems and methods for radiometrically measuring temperature and detecting tissue contact during ablation. An interface module includes a first input/output (I/O) port for receiving radiometer and thermocouple signals from an integrated catheter tip (ICT) that includes a radiometer; a second I/O port for receiving ablative energy from an electrosurgical generator; a temperature display; a patient relay; a computer-readable medium storing radiometer and thermocouple parameters and instructions for causing the processor to: calculate a temperature adjacent to the ICT based on the radiometer and thermocouple signals and the parameters; causing the temperature display to display the calculated temperature; closing the patient relay to pass ablative energy from the second to the first I/O port; determining whether the ICT is in contact with tissue based on the radiometer signal. An output device indicates whether the ICT is determined to be in contact with the tissue. | 02-11-2016 |
20160058492 | MANAGING TISSUE TREATMENT - Various embodiments are directed to systems and methods for providing a drive signal to a surgical device for treating tissue. A surgical generator may deliver the drive signal according to a first composite load curve. The surgical generator may receive a first tissue measurement indicating a property of the tissue at a first time during the delivery of the drive signal, receive a second tissue measurement indicating the property of the tissue at a second time during the delivery of the drive signal after the first time, and based on the first and second tissue measurements, determine a difference in the property of the tissue between the first time and the second time. When the difference in the property of the tissue exceeds a difference threshold, the generator may deliver the drive signal according to a second composite load curve that is more aggressive than the first composite load curve. | 03-03-2016 |
20160058493 | SYSTEM AND METHOD FOR ABLATING A TISSUE SITE BY ELECTROPORATION WITH REAL-TIME PULSE MONITORING - A medical system for ablating a tissue site by electroporation with real-time pulse monitoring during an electroporation treatment procedure is provided. The treatment control module monitors applied pulses and detect an abnormal condition that indicates either an ineffective electroporation of the tissue or an imminent excessive current such as a spark event that may exceed the capacity of the pulse generator. Rather than terminating the procedure entirety, the treatment control module temporarily pauses the procedure to allow the user to adjust the pulse parameters so as to complete the procedure without starting the procedure over again. | 03-03-2016 |
20160066977 | System and Method for Ablating a Tissue Site by Electroporation with Real-Time monitoring of Treatment Progress - A medical system for ablating a tissue site with real-time monitoring during an electroporation treatment procedure. A pulse generator generates a pre-treatment (PT) test signal having a frequency of at least 1 MHz prior to the treatment procedure and intra-treatment (IT) test signals during the treatment procedure. A treatment control module determines impedance values from the PT test signal and IT test signals and determines a progress of electroporation and an end point of treatment in real-time based on the determined impedance values while the treatment progresses. | 03-10-2016 |
20160066984 | ABLATION APPARATUS AND SYSTEM TO LIMIT NERVE CONDUCTION - A method of managing a system of minimally invasive surgery. The management method includes providing a practitioner with a minimally invasive surgery system including a controller. One or more use parameters is stored to memory associated with the controller. In addition, an electrosurgical probe having its own memory is provided to mate with the remaining elements of the system. Complementary use parameters are stored in the memory of the probe. The management method also includes communicating and comparing the use parameters of the controller with the complementary use parameters of the probe and managing the use of the electrosurgical probe according to the use parameters. | 03-10-2016 |
20160074091 | METHOD AND APPARATUS FOR CONTROLLING POWER DELIVERED BY ELECTROSURGICAL PROBE - A method of controlling RF power delivered from a bipolar electrosurgical instrument into a biological tissue. The method comprises controlling the profile of a RF waveform by: setting a maximum voltage limit for a voltage applied across the bipolar electrosurgical instrument; calculating a tissue resistance, the calculating step including a correction for an impedance associated with the RF channel; determining an objective tissue current limit from the calculated tissue resistance and a predetermined power dissipation target; and dynamically adjusting the current limit based on the determined objective tissue current limit. This control method may ameliorate the impact of an increased cable length on the accuracy of control of RF waveforms delivered to the tip of the probe. | 03-17-2016 |
20160074092 | ELECTROSURGICAL SYSTEM FOR COMMUNICATING INFORMATION EMBEDDED IN AN AUDIO TONE - An electrosurgical system is provided. The electrosurgical system includes an electrosurgical generator including a computer having one or more microprocessors in operable communication with memory for storing information pertaining to the electrosurgical generator. An audio output module is in operable communication with the computer and configured to generate an audio output having the information pertaining to the electrosurgical generator embedded therein. A speaker is in operable communication with the audio output module for outputting the audio output. A recording device is configured to record the audio output. An audio collector is configured to receive the audio output from the recording device and decipher the embedded audio so that the information pertaining to the electrosurgical generator may be utilized for future use. | 03-17-2016 |
20160074132 | SURGICAL SYSTEM HAVING DETACHABLE COMPONENT AND STATE DETECTION CIRCUIT FOR DETECTION OF STATE OF ATTACHMENT OF DETACHABLE COMPONENT - A surgical system and a method of providing and enabling a surgical system. The surgical system having a console and a first component configured to be directly or indirectly detachably attached to the console. The surgical system having a sensor circuit arranged to the console, and a first target state identifying circuit arranged to the first component. The sensor circuit outputs a feedback signal indicative of a state of electrical connection of the first target state identifying circuit to the sensor circuit. A controller arranged in the console is configured to control a therapy signal generator based on the feedback signal. | 03-17-2016 |
20160074133 | SYSTEM AND METHODS FOR CONTROLLING USE AND OPERATION OF A FAMILY OF DIFFERENT TREATMENT DEVICES - A system for controlling a treatment device generates a graphical interface that visually prompts a user in a step-wise fashion to use the treatment device to perform a process of forming a pattern of lesions that extends both circumferentially and axially in different levels in a body region. The graphical interface displays for the user a visual record of the progress of the process from start to finish and guides the user so that so that individual lesions desired within a given level are all formed, and that a given level of lesions is not skipped. | 03-17-2016 |
20160081739 | SYSTEM AND METHOD FOR CONTROLLING OPERATION OF AN ELECTROSURGICAL SYSTEM - An electrosurgical system including or connected to an output circuitry comprising an electrosurgical device and an electrical cable is modelled during a cable interrogation phase using a transfer matrix in order to determine a leakage capacitance in the electrosurgical system. After the leakage capacitance is assigned or set to a virtual capacitor in the transfer matrix, an output parameter of the electrosurgical system, such as output voltage, output current, output impedance or output electrical power, may be determined by applying an actual input voltage to the output circuitry and measuring a resulting input current, and multiplying the input voltage and measured current by the transfer matrix. | 03-24-2016 |
20160081740 | SYSTEM AND METHOD FOR CONTROLLING OPERATION OF AN ELECTROSURGICAL SYSTEM - An electrosurgical system including or connected to an output circuitry comprising an electrosurgical device and an electrical cable is modelled during a cable interrogation phase using a transfer matrix in order to determine a leakage capacitance in the electrosurgical system. After the leakage capacitance is assigned or set to a virtual capacitor in the transfer matrix, an output parameter of the electrosurgical system, such as output voltage, output current, output impedance or output electrical power, may be determined by applying an actual input voltage to the output circuitry and measuring a resulting input current, and multiplying the input voltage and measured current by the transfer matrix. | 03-24-2016 |
20160089533 | SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES - Various examples are directed to systems and methods comprising receiving a control signal at a control circuit of a surgical device. The control circuit may comprise a first circuit portion coupled to at least one switch operable between an open state and a closed state. The first circuit portion may be configured to communicate with a surgical generator over a conductor pair to receive the control signal and may comprise at least one resistor coupled to the at least one switch. Methods may also comprise determining the state of the at least one switch based on the value of the resistor. | 03-31-2016 |
20160100878 | EFFECTIVE PARASITIC CAPACITANCE MINIMIZATION FOR MICRO ABLATION ELECTRODE - A flexible catheter has an ablation electrode disposed in its distal segment. The ablation electrode a cavity formed in its external surface, a microelectrode configured to fit into the cavity, a conductive wire lead connecting the microelectrode to receiving circuitry, and an electrical shield surrounding the wire lead. A power generator is connected to the ablation electrode and the electrical shield in a generator circuit. A back patch electrode adapted to contact with the subject is connected in the generator circuit. The microelectrodes can be active while energizing the ablation electrode. | 04-14-2016 |
20160106493 | SYSTEM AND METHOD FOR SELECTIVELY ENERGIZING CATHETER ELECTRODES - The present invention is directed to a system, a method and a catheter that provide improved ablation capabilities and improved energy efficiency by selectively energizing catheter electrodes on the basis of impedance measurements. In particular, the invention is directed to the selective energization of catheter radial electrodes that together with a tip electrode form a generally continuous tissue contact surface, wherein the selection is made on the basis of impedance measurement as an indication of the amount of tissue contact of each radial electrode. | 04-21-2016 |
20160113702 | DEVICE FOR DETECTING METAL WHEN BIOLOGICAL TISSUE IS ACTED ON BY MEANS OF A SPARKING ELECTROSURGICAL INSTRUMENT - A device for detecting metal with sparking electrosurgical instruments contains a metal detector, which decides, on the basis of the current (and the voltage) delivered to the instrument, whether a spark originating from the instrument contacts biological tissue or a metal part. This is preferably implemented by determining the component of the current that is inconsistent with a linear equivalent circuit. The elements of the linear equivalent circuit are determined previously or during the operation in a regression calculation. As first decision criterion, the spark characteristic variable F | 04-28-2016 |
20160120589 | RF OUTPUT STAGE SWITCHING MECHANISM - An electrosurgical unit including a radio frequency generator configured to generate electrosurgical energy. The radio frequency generator includes a first receptacle configured to electrically couple with an electrosurgical hand piece configured to deliver bipolar radiofrequency energy. A second receptacle is included and configured to electrically couple with an electrosurgical hand piece configured to deliver monopolar radiofrequency energy. The radiofrequency generator includes a relay circuit configured to allow simultaneous radiofrequency energy delivery to the electrosurgical hand pieces in the first receptacle and the second receptacle. | 05-05-2016 |
20160120591 | POWER MONITORING CIRCUITRY AND METHOD FOR REDUCING LEAKAGE CURRENT IN RF GENERATORS - An electrosurgical unit having power monitoring circuitry for reducing leakage current in an electrosurgical unit. The electrosurgical unit includes a power source configured to produce direct current, an RF waveform generator configured to convert the direct current into an RF signal, a voltage sensor configured to measure DC input voltage to the RF waveform generator, a current sensor configured to measure output current feedback, and a processor. The processor is configured to estimate output voltage feedback based at least upon the measured DC input voltage and the measured output current feedback, and output a control signal to control the DC input voltage to the RF waveform generator, the control signal based at least upon the estimated output voltage and the output current feedback. | 05-05-2016 |
20160120598 | ABLATION THERAPY TO DISRUPT COORDINATED BLADDER CONTRACTIONS - The disclosure describes devices, systems, and techniques for identifying and treating bladder dysfunction. In one example, a method includes identifying one or more focal points at respective locations of bladder tissue of a bladder of a patient, the one or more focal points initiating coordinated contractions of a detrusor muscle. The method may also, or alternatively, include ablating, for each of the one or more focal points, a respective portion of the bladder tissue at the respective location of the focal point. Ablation of these targeted portions of the bladder tissue may reduce the coordinated contractions of the detrusor muscle and alleviate overactive bladder symptoms. | 05-05-2016 |
20160128770 | System and method for presenting information representative of lesion formation in tissue during an ablation procedure - A method and system for presenting information representative of lesion formation is provided. The system comprises an electronic control unit (ECU). The ECU is configured to acquire a value for an ablation description parameter and/or a position signal metric, wherein the value corresponds to a location in the tissue. The ECU is further configured to evaluate the value, assign it a visual indicator of a visualization scheme associated with the parameter/metric corresponding to the value, and generate a marker comprising the visual indicator such that the marker is indicative of the acquired value. The method comprises acquiring a value for the parameter/metric, and evaluating the value. The method further includes assigning a visual indicator of a visualization scheme associated with the parameter/metric corresponding to the value, and generating a marker comprising the visual indicator. | 05-12-2016 |
20160128772 | SYSTEMS AND METHODS FOR ACTIVATING TRANSDUCERS - Transducer-based systems and methods may be configured to display a graphical representation of a transducer-based device, the graphical representation including graphical elements corresponding to transducers of the transducer-based device, and also including between graphical elements respectively associated with a set of the transducers and respectively associated with a region of space between the transducers of the transducer-based device. Selection of graphical elements and/or between graphical elements can cause activation of the set of transducers associated with the selected elements. Transducer activation characteristics, such as initiation time, activation duration, activation sequence, and energy delivery characteristics, can vary based on numerous factors. Visual characteristics of graphical elements and between graphical elements can change based on an activation-status of the corresponding transducers. Activation requests for a set of transducers can be denied if it is determined that a transducer in the set of transducers is unacceptable for activation. | 05-12-2016 |
20160135868 | MULTI-FUNCTION SURGICAL INSTRUMENTS - A surgical instrument includes a housing, an energizable member, a powered deployment assembly, and a cable assembly. The energizable member is configured to supply electrosurgical energy to tissue, and is movable between a storage position and a deployed position. The powered deployment assembly is configured to selectively move the energizable member between the storage position and the deployed position. The cable assembly having a cable coupled to the housing at a first end and having a plug coupled to the cable at a second, opposite end. The cable housing one or more first wires for selectively providing electrosurgical energy to the energizable member and one or more second wires for selectively providing power to the powered deployment assembly. The plug is configured to house a battery therein for powering the powered deployment assembly via the one or more second wires. | 05-19-2016 |
20160135872 | ENERGY DELIVERY DEVICE HAVING A TRANSLATING OUTER SHEATH - Devices and methods for applying energy to tissue are provided. In one exemplary embodiment, a surgical device includes a monopolar end effector, a cannulated, insulated outer sheath, a translating nozzle coupled to the proximal end of the sheath, and a handle portion coupled to a proximal end of the end effector. Various translating means, such as switches, thumbwheels, rings, and buttons, are associated with the handle portion, and are effective to advance the outer sheath to cover a distal end of the end effector and retract the outer sheath to expose the distal end of the end effector. The translating means are configured in a manner that allows a user to operate the translating means without having to adjust a location of the user's hand on the device. A variety of translating means are provided for, as are methods for cutting, coagulating, irrigating, and suctioning tissue. | 05-19-2016 |
20160135878 | SYSTEM AND METHOD FOR NERVOUS SYSTEM MODULATION - A method for nervous system modulation includes operatively connecting an ECG cable having a plurality of surface electrodes to a body of a patient, introducing a catheter having a plurality of catheter electrodes into a blood vessel of the patient, probing a target location within the patient with the catheter to identify nerve tissue with maximum signal propagation in real-time, and reducing signal propagation in the identified nerve tissue. | 05-19-2016 |
20160138006 | System And Method For Selective Ablation Of Cancer Cells With Cold Atmospheric Plasma - A method for elevating a TRAIL-R1 expression in cancer cells to induce apoptosis. The method comprises the steps of receiving electrical energy having a specific voltage, frequency and power from an electrosurgical generator, up-converting the voltage and down-converting the frequency with a high voltage transformer having a primary coil and a secondary coil, the secondary coil having a larger number of turns than the primary coil, applying said converted electrical energy to an electrode in an electrosurgical hand piece, flowing an inert gas through said electrosurgical hand piece to produce a cold plasma at a distal end of said electrosurgical hand piece; and applying said cold plasma to cancer cells for 1 to 3 minutes. The inert gas may comprise, for example, helium or argon. In a preferred embodiment the cold plasma is applied to cancer cells for about 2 minutes. | 05-19-2016 |
20160143685 | ELECTROSURGICAL SYSTEM FOR MULTI-FREQUENCY INTERROGRATION OF PARASITIC PARAMETERS OF AN ELECTROSURGICAL INSTRUMENT - An electrosurgical system includes an electrosurgical generator and an instrument coupled to the electrosurgical generator. The electrosurgical generator includes an output stage configured to generate the electrosurgical energy at a plurality of radio frequencies, a plurality of sensors configured to sense a voltage waveform and a current waveform of the electrosurgical energy, and a controller coupled to the output stage and the plurality of sensors. The instrument supplies the electrosurgical energy to the tissue. The controller of the electrosurgical generator is further configured to calculate at least one parasitic parameter based on the electrosurgical energy at the plurality of frequencies and control the output stage based on the at least one parasitic parameter. | 05-26-2016 |
20160143686 | INTER-ELECTRODE IMPEDANCE FOR DETECTING TISSUE DISTANCE, ORIENTATION, CONTACT AND CONTACT QUALITY - A method of determining the distance between an electrode catheter disposed in a body fluid adjacent an internal body surface, and the internal body surface, the method comprising: applying an alternating voltage or an alternating current that alternates at between about 10 kHZ and about 100 kHz between at least one pair of electrodes on the electrode catheter; determining the impedance between at least one pair of electrodes on the electrode catheter; and determining the distance between the electrode catheter and the internal body surface based at least in part on the determined impedance. | 05-26-2016 |
20160143698 | SYSTEM AND METHOD FOR ESTIMATING A TREATMENT VOLUME FOR ADMINISTERING ELECTRICAL-ENERGY BASED THERAPIES - The invention provides for a system for estimating a 3-dimensional treatment volume for a device that applies treatment energy through a plurality of electrodes defining a treatment area, the system comprising a memory, a display device, a processor coupled to the memory and the display device, and a treatment planning module stored in the memory and executable by the processor. In one embodiment, the treatment planning module is adapted to generate an estimated first 3-dimensional treatment volume for display in the display device based on the ratio of a maximum conductivity of the treatment area to a baseline conductivity of the treatment area. The invention also provides for a method for estimating 3-dimensional treatment volume, the steps of which are executable through the processor. In embodiments, the system and method are based on a numerical model which may be implemented in computer readable code which is executable through a processor. | 05-26-2016 |
20160151105 | CONTROLLING COAGULUM FORMATION | 06-02-2016 |
20160151374 | METHOD OF USING VASOCONSTRICTIVE AGENTS DURING ENERGY-BASED TISSUE THERAPY | 06-02-2016 |
20160166310 | TIMED ENERGY DELIVERY | 06-16-2016 |
20160166311 | ELECTROSURGICAL SYSTEM ENERGY SOURCE | 06-16-2016 |
20160166312 | SYSTEM AND METHOD FOR DETECTING AND SUPRESSING ARC FORMATION DURING AN ELECTROSURGICAL PROCEDURE | 06-16-2016 |
20160166315 | ELECTROSURGICAL INSTRUMENT WITH REMOVABLE COMPONENTS FOR CLEANING ACCESS | 06-16-2016 |
20160166317 | ENERGIZABLE ATTACHMENT FOR SURGICAL DEVICES | 06-16-2016 |
20160175024 | HIGH POWER BATTERY POWERED RF AMPLIFIER TOPOLOGY | 06-23-2016 |
20160192980 | ENHANCED CONTROL SYSTEMS INCLUDING FLEXIBLE SHIELDING AND SUPPORT SYSTEMS FOR ELECTROSURGICAL APPLICATIONS | 07-07-2016 |
20160199126 | BALLOON CATHETER ABLATION SYSTEM | 07-14-2016 |
20160374745 | SYSTEMS AND METHODS FOR CONTROLLING USE AND OPERATION OF A FAMILY OF DIFFERENT TREATMENT DEVICES - A system for controlling a treatment device generates a graphical interface that visually prompts a user in a step-wise fashion to use the treatment device to perform a process of forming a pattern of lesions that extends both circumferentially and axially in different levels in a body region. The graphical interface displays for the user a visual record of the progress of the process from start to finish and guides the user so that so that individual lesions desired within a given level are all formed, and that a given level of lesions is not skipped. | 12-29-2016 |
20160374748 | Energy Delivery Device and Methods of Use - The present disclosure is directed to an expandable energy delivery assembly adapted to deliver electrical energy to tissue. The assembly includes an elongate device including an irrigation shaft defining a irrigation lumen fluidly couplable to an irrigation source and a rapid exchange shaft defining a guidewire lumen configured for reception and passage of a guidewire. The assembly also includes an inflatable element that is secured to the elongate device. The inflatable element includes a double helical electrode disposed on the inflatable element that makes between about 0.5 to about 1.5 revolutions around the inflatable element. | 12-29-2016 |
20170231680 | DEVICE FOR GENERATING A COLD ATMOSPHERIC PRESSURE PLASMA | 08-17-2017 |
20170231683 | SYSTEMS AND METHODS FOR ACTIVATING TRANSDUCERS | 08-17-2017 |
20170231684 | RESONANT INVERTER WITH A COMMON MODE CHOKE | 08-17-2017 |
20170231685 | METHOD AND SYSTEM FOR CONTROLLING AN OUTPUT OF A RADIO-FREQUENCY MEDICAL GENERATOR HAVING AN IMPEDANCE BASED CONTROL ALGORITHM | 08-17-2017 |
20190142490 | FORCE FEEDBACK DEVICE AND METHOD FOR CATHETERS | 05-16-2019 |
20190142499 | ADAPTIVE ELECTRODE FOR BI-POLAR ABLATION | 05-16-2019 |
20190142500 | ADAPTIVE ELECTRODE FOR BI-POLAR ABLATION | 05-16-2019 |
20190142508 | TREATMENT DEVICES AND METHODS | 05-16-2019 |
20190142509 | TIMING SYSTEM FOR USE DURING ABLATION PROCEDURE | 05-16-2019 |
20190142510 | APPARATUSES AND METHODS FOR INJURING NERVE TISSUE | 05-16-2019 |
20220133385 | MODULAR DOCKING SYSTEM FOR ELECTROSURGICAL EQUIPMENT - A docking system for electrosurgical equipment where a first docking interface is a recess in the housing of a smoke evacuator and a second docking interface is a raised portion of an electrosurgical unit. The first and second docking interfaces have corresponding ground, power, and communication contacts, so that the two devices can be physically and electrically interconnected by mating the first docking interface with the second docking interface. The first docking interface is on the top of the smoke evacuator and the second docking interface is on the bottom of the electrosurgical unit so that the devices may be stacked and interconnected using a minimum amount of space without the need for cabling. | 05-05-2022 |
20220133388 | SUPPLYING ELECTRICAL ENERGY TO ELECTROSURGICAL INSTRUMENTS - An end effector for a surgical tool includes a distal clevis, first and second jaws rotatably mounted to the distal clevis at a first axle, a proximal clevis rotatably coupled to the distal clevis at a second axle, and an electrical conductor extending through and electrically bypassing the proximal clevis and terminating at the distal clevis to supply electrical energy to at least one of the first and second jaws via conduction. A portion of the electrical conductor provides a conductive spring member that allows the electrical conductor to flex as the distal clevis articulates. | 05-05-2022 |