Class / Patent application number | Description | Number of patent applications / Date published |
606017000 | With beam shaping or redirecting (e.g., lens) | 22 |
20090005768 | Catheter with omni-directional optical lesion evaluation - A catheter is adapted to ablate tissue and provide lesion qualitative information on a real time basis, having an ablation tip section with a generally omni-directional light diffusion chamber with one openings to allow light energy in the chamber to radiate the tissue and return to the chamber. The chamber is irrigated at a positive pressure differential to continuously flush the opening with fluid. The light energy returning to the chamber from the tissue conveys a tissue parameter, including without limitation, lesion formation, depth of penetration of lesion, cross-sectional area of lesion, formation of char during ablation, recognition of char during ablation, recognition of char from non-charred tissue, formation of coagulum around the ablation site, differentiation of coagulated from non-coagulated blood, differentiation of ablated from healthy tissue, tissue proximity, and recognition of steam formation in the tissue for prevention of steam pop. | 01-01-2009 |
20090105699 | Scanner Laser Handpiece with Shaped Output Beam - A method for delivering electromagnetic radiation onto tissue to be ‘treated with the radiation includes delivering the radiation onto the tissue in a treatment-spot having a polygonal shape such as a rectangle or a hexagon. The polygonal shape is selected such that a region of the tissue to be treated’ can be completely covered by a plurality of such shapes essentially without overlapping the shapes. The radiation to be delivered is passed through a lightguide having a cross-section of the polygonal shape. Radiation exiting the lightguide is projected onto the tissue via a plurality of optical elements to provide the treatment-spot. | 04-23-2009 |
20090187176 | Laser Surgical Apparatus - A laser surgical apparatus for performing treatment by irradiating a part to be treated by a laser beam is disclosed. This apparatus includes a laser source which emits the treatment laser beam; a multi-articulated arm for delivering the treatment laser beam emitted from the laser source, the arm including a plurality of light delivery pipes, a joint part for jointing the light delivery pipes, the joint part being rotatable with respect to at least one of the pipes jointed by the joint part, a reflection mirror disposed in the joint part; and a surgical instrument is connected to an end of the arm and used for irradiating the treatment laser beam delivered therein through the arm to the treatment part. | 07-23-2009 |
20100049183 | SKULL CUTTING DEVICE - A skull cutting device for cutting a skull by means of laser comprises a body for emitting the laser introduced from a laser oscillator through an optical fiber from an exit opening arranged at a distal end thereof, a contact portion arranged in the body to determine the posture of the body such that a predetermined distance is set between a surface of the skull and the exit opening by touching the surface of the skull in a predetermined mode, a support bar of a predetermined length extending from the body toward the emitting direction of the laser while avoiding the optical path of the laser (R), and a light interception board arranged at a distal end of the support bar to block farther advance of the laser by interfering with the laser beam path. | 02-25-2010 |
20110137303 | SELF-CONTAINED HANDPIECE AND METHOD FOR OPTICAL TISSUE SURFACE TREATMENT - A handpiece for treatment of the surface of a target tissue with at least one light beam is provided, the handpiece including a housing, at least one light source for generating at least one light beam, an opening for allowing the emission of the at least one light beam out of the housing and towards the target surface, a mechanism for controlled displacement of the at least one light source to move the at least one light beam across the target surface; and a controller for controlling the mechanism. A method is provided for treating a tissue surface with a light beam that includes directing a light beam towards the tissue surface, focusing the light beam at the tissue surface so that the focal point is positioned proximate the surface of the tissue so that the diameter of the light beam is smaller at the surface of the tissue than below the surface. The light beam is moved to create a pattern on the tissue, and it is moved in response to manual movement of the handpiece to overcome unwanted movements and provide a desired spot pattern on the tissue surface. | 06-09-2011 |
20110306957 | LASER DRILLING DEVICE AND PROTECTIVE MEMBER AND CARTIDGE FOR LASER DRILLING DEVICE - The present invention is directed to a laser perforation apparatus including a laser light oscillator for emitting laser light that radiates skin, and a protection member | 12-15-2011 |
20130172865 | TARGET STRUCTURE USED FOR GENERATING CHARGED PARTICLE BEAM, METHOD OF MANUFACTURING THE SAME AND MEDICAL APPLIANCE USING THE SAME - Provided are a target structure used for generating a charged particle beam, a method of manufacturing the same, and a medical appliance using the same. The target structure includes a target layer and a support having a through hole used as a progressing path of a laser beam or a charged particle beam. | 07-04-2013 |
20130190742 | SYSTEM AND METHOD FOR MODIFICATION AND/OR SMOOTHING OF TISSUE WITH LASER ABLATION - Disclosed is an improved system and method for efficiently removing tissue using laser ablation. A first laser emits a first laser beam with a variable first integrated fluence sufficient to ablate tissue. The first laser beam is movably positioned over one or more surfaces of the tissue and the first integrated fluence varies over different levels with position, so different thicknesses of tissue are ablated at different surface positions in order to modify the contour of the surface of the tissue. Modifications include tissue smoothing, removing, feathering, sharpening, and roughening. In one preferred embodiment the tissue is eschar that is removed, unveiling viable tissue. In alternate preferred embodiments, one or more additional lasers beams with different wavelengths, with integrated fluence sufficient to ablate tissue, are moved over the surface of the tissue until a second ablation reaches a second self-termination point, e.g., determined by affects of chemicals below the termination point that absorb the second laser beam without producing the temperature increase necessary for ablation to continue. | 07-25-2013 |
20130190743 | Non-Contact Handpiece for Laser Tissue Cutting - A non-contact laser handpiece contains optical components modified to provide a high density uniform later beam at a distance from the handpiece that minimizes effects of back reflection. | 07-25-2013 |
20130197494 | RECONFIGURABLE HANDHELD LASER TREATMENT SYSTEMS AND METHODS - In one embodiment, a handheld laser treatment apparatus comprises: a handset including a treatment chamber, the treatment chamber having an open treatment aperture; a laser array arranged to project optical energy into the treatment chamber and coupled to a power source; at least one vacuum channel positioned within the treatment chamber and coupled to a vacuum source; a trigger sensor coupled to logic that controls activation of the laser array and the vacuum channel; an attachment sensor arranged to detect which of a plurality of attachments are inserted into the treatment chamber through the treatment aperture. The logic enables activation of the vacuum channel when the attachment sensor detects a first attachment of the plurality of attachments inserted into the treatment aperture. The logic disables activation of the vacuum channel when the attachment sensor detects a second attachment of the plurality of attachments inserted into the treatment aperture. | 08-01-2013 |
20130197495 | RECONFIGURABLE HANDHELD LASER TREATMENT SYSTEMS AND METHODS - Systems and methods for reconfigurable handheld laser treatment systems are provided. In one embodiment, a reconfigurable handheld laser treatment system comprises: a base unit; a handset that includes a attachment chamber having an attachment aperture, and a laser source arranged to project optical energy into the attachment chamber, the handset coupled to the base unit; an attachment having an adapter interface compatible with insertion into the attachment chamber; a trigger sensor coupled to logic that controls activation of the laser array; and an attachment sensor arranged to detect insertion of the adapted interface into the attachment chamber through the attachment aperture. The logic enables activation of the laser array when the attachment sensor detects an authorized attachment inserted into the attachment aperture. The logic disables activation of the laser array when the attachment sensor fails to detect an authorized attachment inserted into the attachment aperture. | 08-01-2013 |
20140088577 | DEVICES AND METHODS FOR LASER SURGERY - Small diameter tools are provided, and methods of use described, to facilitate less invasive surgical procedures employing laser beams. Such tools include distal tips that enhance the precise placement of optical waveguides, as well as enable cutting and dissecting procedures. A rotary coupler allows precise control of flexible conduits in which waveguides may be disposed. Waveguide tips with conical features protect waveguide ends and allow unobstructed propagation of the laser beam out of the waveguide. A preferentially bending jacket for waveguides may be used to control an orientation of a waveguide disposed therein. Surgical waveguide assemblies may include various combinations of these components. | 03-27-2014 |
20140200566 | MULTI-SPOT LASER PROBE WITH MICRO-STRUCTURED DISTAL SURFACE - An optical surgical probe, configured to optically couple to a light source; comprising a cannula; a light guide within the cannula, configured to receive a light beam from the light source, to guide the light beam to a distal end of the light guide, and to emit the light beam at the distal end of the light guide; and a multi-spot generator at a distal end of the cannula, the multi-spot generator having a faceted proximal surface with oblique facets, configured to receive the light beam emitted at the distal end of the light guide and to split the received light beam into multiple beam-components, and a distal surface through which the multiple beam-components exit the multi-spot generator, wherein the distal surface is micro-structured with a modulation length smaller than a wavelength of the light beam in order to reduce the reflectance of light back into the probe. | 07-17-2014 |
606018000 | Mirror | 9 |
20100137852 | NON-CONTACT HANDPIECE FOR LASER TISSUE CUTTING - A non-contact laser handpiece contains optical components modified to provide a high-density uniform laser beam at a distance from the handpiece that minimizes effects of back reflection. | 06-03-2010 |
20100249764 | LASER UNIT - It is possible to provide a laser unit which can sting a skin with a small-diameter hole causing a small pain. The laser unit ( | 09-30-2010 |
20120232542 | LASER BEAM ALIGNING UNIT AND LASER TREATMENT DEVICE FOR TREATING A MATERIAL - The disclosure relates to a laser beam aligning unit comprising an outer sleeve and an inner sleeve arranged inside the outer sleeve such that a laser beam may be guided through an inner chamber thereof in a direction of an area of material to be treated. A laser treatment device may comprise the laser beam aligning unit and/or a distribution device for distributing an ectoine solution. | 09-13-2012 |
20130345687 | Low Profile Apparatus and Method for Phototherapy - Disclosed herein are optical assemblies having thin, low profile shapes. These optical assemblies may be used with fiber coupled lasers and other light sources, including high power sources, to irradiate tissue at a wavelength suitable for inducing ablation or coagulation to a target depth, denaturation, thermal modification of a tissue, and/or preferential injury to a target tissue structure. Example optical assemblies can produce substantially uniform illumination patterns that are useful for treating superficial tissue, including the internal or luminal (e.g., esophageal) tissue. Some examples may have capability for cooling superficial tissue or skin, such as a detachable, reusable heat sink for active cooling without consumables, fluid pumps, or other cooling equipment. | 12-26-2013 |
20140046311 | Optical Speculum - A system for direct imaging and diagnosing of abnormal cells in a target tissue includes a disposable optical speculum and an image acquisition system having the speculum assembled on and mechanically secured thereto. The image acquisition system is arranged to capture at least one of a single image or multiple images or video of cells within the target tissue using at least one of bright field or dark field ring illumination divided into independently operated segments to obtain a plurality of data sets. An image analysis and control unit in communication with the image acquisition system analyzes the data sets and applies algorithms to the data sets for diagnosing abnormal cells. | 02-13-2014 |
20140188097 | Method and Apparatus for Dielectric Barrier Discharge Wand Cold Plasma Device - A cold plasma device having a broad surface of plasma generation allowing for the efficient treatment of larger areas with the benefit of being durable, portable and able to treat almost any anatomical structure. The cold plasma device has a constant radius surface, which creates a tangential surface with an infinite number of distances between the surface edge of the substrate under treatment and the device. | 07-03-2014 |
20150057649 | TISSUE TREATMENT APPARATUS AND METHODS - Disclosed are apparatus, method, devices and instruments, including an apparatus that includes a flexible waveguide coupled to a supporting structure, and further coupled to a treatment tip. The apparatus also includes a beam controller to control application of a radiation beam emitted from the flexible waveguide to distribute the beam over an area different than an area covered by direct application of the beam to a single location on a target tissue. Further disclosed is an apparatus that includes a waveguide, coupleable to a laser source, and a thermal protection instrument. The thermal protection instrument includes a tissue contacting member to contact a part of an area of a tissue irradiated by laser radiation, and a beam blocking element to absorb at least some of radiation not absorbed by the area of the tissue, the beam blocking element being thermally isolated from the area of the tissue. | 02-26-2015 |
20160184015 | DEVICE AND METHOD FOR THE TREATMENT OF THE VAGINAL CANAL AND RELEVANT EQUIPMENT - A device and method for the treatment of the vaginal canal by a laser beam, includes a vaginal canal wall retractor, associated to a system for directing the laser beam towards a wall of the vaginal canal. | 06-30-2016 |
20190142516 | DUAL WAVELENGTH LASER TREATMENT DEVICE | 05-16-2019 |