Entries |
Document | Title | Date |
20080214940 | MEDICAL IMAGING LENS SYSTEM, AND METHOD WITH HIGH-EFFICIENCY LIGHT COLLECTION AND COLLINEAR ILLUMINATION - We have discovered an improved lens system for biomedical optical imaging applications for collecting light from tissue with an improved efficiency and geometry, and for delivering collinear, pre-aligned illumination to a the sample, for the purpose of enabling imaging applications in which a catadioptric lens and mirror system ( | 09-04-2008 |
20080221458 | Catheter and method for diagnosis and treatment of diseased vessels - The present invention provides a catheter for detecting and treating diseased tissue in a blood vessel or other hollow body organ. The catheter comprises an elongated tubular catheter shaft having a distal end comprising a light transmission zone. A first fiber lumen in the catheter shaft contains a diagnostic optical fiber having a distal end terminating within the light transmission zone for emitting and receiving light through the light transmission zone. A diagnostic subassembly at the proximal end and in communication with the diagnostic optical fiber processes diagnostic light for use in connection with a diagnostic method for detecting diseased tissue. A second fiber lumen can be provided in the catheter shaft for containing a treatment optical fiber for delivering treatment light from a light source at the proximal end of the catheter shaft to the light transmission zone. The treatment optical fiber has a distal end terminating within the light transmission zone for emitting light for treatment of the diseased tissue. An occlusion balloon is positioned on the distal end of the catheter shaft adjacent to the light transmission zone and in fluid communication with an inflation lumen. One or more infusion ports formed on or near the light transmission zone and in fluid communication with an infusion lumen deliver infusion fluid to the hollow body organ. | 09-11-2008 |
20080228085 | SINUS ILLUMINATION LIGHTWIRE DEVICE - An illuminating wire medical device may include an elongate flexible housing and an illuminating fiber and a core wire extending through at least part of the housing, the core wire providing desired pushability and torquability. The illuminating device may further include a connector assembly cooperating with the illuminating fiber to accommodate changes in length and to absorb forces applied during use of the device. | 09-18-2008 |
20080281209 | Optical Device - The present invention provides an optical device which comprises a light guide incorporating a Bragg grating. The apparatus also comprises a moveable wall portion which is coupled to the Bragg grating so that a movement of the wall portion causes a force that effects a change in strain of the Bragg grating and thereby effects a change in an optical period of the Bragg grating. A temperature related change in the optical period of the Bragg grating is reduced by a temperature related change in the force on the Bragg grating by the moveable wall portion. | 11-13-2008 |
20080287810 | Miniature actuator mechanism for intravascular optical imaging - The present invention relates to a new intravascular imaging device based on a Shape Memory Alloy (SMA) actuator mechanism embedded inside an elongate member such as a guide wire or catheter. The present invention utilizes a novel SMA mechanism to provide side-looking imaging by providing movement for an optical coherence tomography (OCT) element. This novel SMA actuator mechanism can be easily fabricated in micro-scale, providing an advantage over existing imaging devices by offering the ability to miniaturize the overall size of the device. Because the device does not require a rotating shaft or fiber optic along the length of the catheter, it also allows for a more flexible catheter or guide wire, and provides room for other interventional devices. The device simplifies the manufacture and operation of OCT by allowing a straight fiber optic directed by an independent, oscillating reflector or prism controlled by the actuator mechanism located only in the distal tip of the device. A variation uses the actuator mechanism to rotate only the distal end of the optical fiber, eliminating the need to spin the entire fiber via a remote mechanism. Also disclosed are methods of using the same. | 11-20-2008 |
20080306391 | MULTISENSOR PROBE FOR TISSUE IDENTIFICATION - A multisensor probe for continuous real-time tissue identification. The multisensor probe includes a tissue penetrating needle, a plurality of sensors useful in characterizing tissue and a position sensor to measure the depth of the needle into the tissue being diagnosed. The sensors include but are not limited to an optical scattering and absorption spectroscopy sensor, an optical coherence domain reflectometry sensor, an electrical impedance sensor, a temperature sensor, a pO | 12-11-2008 |
20080312540 | System and Method for Normalized Flourescence or Bioluminescence Imaging - A system and method provide normalized fluorescence epi-illumination images and normalized fluorescence transillumination images. The normalization can be used to improve two-dimensional (planar) fluorescence epi-illumination images and two-dimensional (planar) fluorescence transillumination images. The system and method can also provide normalized bioluminescence epi-illumination images and normalized bioluminescence transillumination images. In some arrangements, the system and method can provide imagine of small animals, into-operative imaging, endoscopic imaging, and/or imaging of hollow organs. | 12-18-2008 |
20090012405 | Imaging system - An imaging system | 01-08-2009 |
20090012406 | METHOD AND SYSTEM OF USING INTRINSIC-BASED PHOTOSENSING WITH HIGH-SPEED LINE SCANNING FOR CHARACTERIZATION OF BIOLOGICAL THICK TISSUE INCLUDING MUSCLE - Biological thick tissue such as skeletal and cardiac muscle is imaged by inserting a probe into the tissue and scanning the tissue at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without staining or otherwise introducing a foreign element used to generate or otherwise increase the sensed light. The probe includes a light generator for generating light pulses that are directed towards structures located within the thick tissue. The light pulses interact with intrinsic characteristics of the structures to generate a signal such as SHG or intrinsic fluorescence. Reliance on intrinsic characteristics of the structures is particularly useful for applications in which the introduction of foreign substances to the thick tissue is undesirable. | 01-08-2009 |
20090012407 | Spectroscopy of Deeply-Scattered Light - A spectroscope includes first and second beam redirectors in optical communication with first and second fibers respectively. The first and second beam redirectors are oriented to illuminate respective first and second areas. The second area is separated from the first area by a separation distance that exceeds the separation distance between the first and second beam redirectors. | 01-08-2009 |
20090043211 | MEMS BASED OPTICAL COHERENCE TOMOGRAPHY PROBE - A micro-electromechanical system (MEMS) probe package is provided including a first reflective element receiving a light beam directed into to the probe package and a second reflective element receiving light directed from the first reflective element. The second reflective element directs light in an optical path extending from the probe package. At least one of the reflective elements includes a MEMS mirror. An embodiment of the package is made with a monolithic housing having mounting surfaces formed therein for aligning the first reflective element with the second reflective element. The monolithic housing also includes a mounting surface for aligning at least one lens with at least one of the reflective elements. | 02-12-2009 |
20090054791 | Microendoscopy With Corrective Optics - Micro-optical imaging is facilitated. According to an example embodiment, a micro-optical probe arrangement includes a GRIN-type lens probe to direct light to and from a specimen. Compensation optics tailored to the probe and aberrations introduced by the lens are located in a light path through the lens, and compensate for the introduced aberrations. A light detector detects light from the specimen, as facilitated by the compensation optics, and generates data characterizing an image of the specimen. | 02-26-2009 |
20090062662 | Optical spectroscopic device for the identification of cervical cancer - A medical examination device used for the detection of pre-cancerous and cancerous tissue has an illumination source, a visualization unit, a contacting optical probe, a detector and a process unit. One embodiment of the apparatus includes both a non-contacting macroscopic viewing device (the visualization unit) for visualizing an interior surface of the cervix, as well as a fiber optic wand (contacting optical probe) for spectrally analyzing a microscopic view of the tissue. | 03-05-2009 |
20090099459 | Device, System And Method For Determining The Effect Of Photodynamic Or Photothermal Tumor Therapy - A device and method for determining the effect of therapy in a tumour tissue of a human or a mammal under interstitial photodynamic or photothermal therapy by analyzing a liquid flow in a tissue of a human or a mammal. A first fibre is interstitially inserted in a first position of said tissue and connected to a light source, and a second fibre is interstitially inserted in a second position of said tissue for receiving light emitted from the first fibre. A detector is arranged for receiving the light from said second fibre for producing an output signal. An analysator receives the output signal from the detector and determines if there is a frequency component in the frequency area below about 1 MHz in the output signal, which is indicative of blood cell movement in the tissue. If the frequency component is below a threshold value, it is determined that there is no blood flow. In photothermal therapy, no blood flow is interpreted as the fact that the blood has coagulated and the therapy may be finalized. In photodynamic tumour therapy, changes in blood flow may be used to evaluate the treatment progression. | 04-16-2009 |
20090099460 | Method and device for the optical spectroscopic identification of cervical cancer - A medical examination device used for the detection of pre-cancerous and cancerous tissue has an illumination source, a visualization unit, a contacting optical probe, a detector and a process unit. One embodiment of the apparatus includes both a non-contacting macroscopic viewing device (the visualization unit) for visualizing an interior surface of the cervix, as well as a fiber optic wand (contacting optical probe) for spectrally analyzing a microscopic view of the tissue. | 04-16-2009 |
20090131801 | SYSTEMS AND PROCESSES FOR OPTICAL IMAGING OF LUMINAL ANATOMIC STRUCTURES - Exemplary embodiments of an apparatus for obtaining data for at least one portion within at least one luminal or hollow sample can be provided. For example, the exemplary apparatus can include a first optical arrangement configured to transceive at least one electromagnetic radiation to and from the portion. A second arrangement may be provided that can at least partially enclose the first arrangement. At least one third arrangement may be provided which is configured to be actuated so as to expand, at least in part, beyond a periphery of the second arrangement. Such exemplary third arrangement can be structured to facilitate a fluid flow and/or a gas flow therethrough. Further, a fourth arrangement may be provided which can be structured to (i) actuate a particular number of the third arrangement and/or (ii) adjust a distance between at least two outer portions of the third arrangement. According to one exemplary embodiment, the third arrangement can be a plurality of the third arrangements. | 05-21-2009 |
20090131802 | Contact sensor for fiberoptic raman probes - The present invention relates to an optical contact sensor for a spectroscopic probe. The sensor detects contact of the distal end of a fiber optic probe to a surface being measured. The system can be used to correct Raman spectral measurements of tissue. | 05-21-2009 |
20090137910 | ORGAN OXYGENATION STATE MONITOR AND METHOD - One aspect of the invention provides a patient tissue state monitoring system with a light source; a light detector; a probe adapted to be inserted into a patient to transmit light from the light source to an organ tissue site and to direct light from the organ tissue site to the detector; and a processor programmed to determine tissue state with respect to a tissue site pre-dysoxia point from a fluorescence emission detected by the detector (such as by determining tissue NADH concentration) and to provide an indication of tissue state through an output device (such as by displaying a numerical value corresponding to the fluorescence emission). Another aspect of the invention provides a method of monitoring a patient tissue state including the following steps: monitoring an aerobic energy production level of an organ tissue site (such as tissue within the patient's gastro-intestinal tract, bladder and/or urethra); determining tissue state with respect to a tissue site pre-dysoxia point from the monitored aerobic energy production level; and providing an output of the tissue state (such as by displaying a numerical value corresponding to the fluorescence emission). | 05-28-2009 |
20090156942 | Resonance Energy Transfer Based Detection of Nosocomial Infection - Disclosed herein are methods and devices for detection of hospital acquired infections. Disclosed methods may be utilized for continuous in vivo monitoring of a potential infection site or for periodic in vitro monitoring of tissue or fluid from a patient and may be utilized to alert patients and/or health care providers to the presence of a pathogen at an early stage of infection. Disclosed methods utilize fluorophore pairs that optically interact with one another according to Forster resonance energy transfer (FRET) or bioluminescence resonance energy transfer (BRET) mechanism. One member of the pair or a cofactor that interacts with an enzyme to form a member of the pair may be tethered to a device by a substrate that is specific for an enzyme expressed by a targeted pathogen. Upon interaction of the enzyme with the substrate, an optically detectable signal may be altered or initiated, detection of which may then provide information as to the existence of the pathogen at the site. | 06-18-2009 |
20090156943 | FIBER OPTIC BASED DETECTION OF AUTOFLUORESCENT BACTERIAL PATHOGENS - Disclosed are methods and devices for continuous in vivo monitoring of a potential bacterial infection site. Disclosed devices may be utilized to alert patients and/or health care providers to the presence of pathogenic bacteria at an early stage of a hospital acquired infection, thereby providing for earlier intervention and improved recovery rates from bacterial infection. Disclosed methods utilize optical fibers to deliver an excitation signal to an area in which pathogenic bacteria may exist. In the presence of the excitation signal, bacterial pathogens may autofluoresce with a unique spectral signature. Upon generation of a fluorescent emission, an optically detectable emission signal may be transmitted to a detection/analysis device. Analysis of the characteristics of the emission signal produced in response to the excitation signal may be used to determine the presence or concentration of pathogens at the site of inquiry, following which real time information may be transmitted to medical personnel via a wireless transmission system. | 06-18-2009 |
20090177095 | TRIAXIAL FIBER OPTIC FORCE SENSING CATHETER - A fiber optic force sensing assembly for detecting forces imparted at a distal end of a catheter assembly. The structural member may include segments adjacent each other in a serial arrangement, with gaps located between adjacent segments that are bridged by flexures. Fiber optics are coupled to the structural member. In one embodiment, each fiber optic has a distal end disposed adjacent one of the gaps and oriented for emission of light onto and for collection of light reflected from a segment adjacent the gap. The optical fibers cooperate with the deformable structure to provide a change in the intensity of the reflected light, or alternatively to provide a variable gap interferometer for sensing deformation of the structural member. In another embodiment, the gaps are bridged by fiber Bragg gratings that reflect light back through the fiber optic at central wavelengths that vary with the strain imposed on the grating. | 07-09-2009 |
20090221921 | SIDE-FIRING LINEAR FIBER OPTIC ARRAY FOR INTERSTITIAL OPTICAL THERAPY AND MONITORING USING COMPACT HELICAL GEOMETRY - An optical probe has multiple side-firing optical fibers which terminate in a linearly staggered fashion. A central fiber can be used as well. In diagnostic techniques, one fiber can be used as an emitter, while the others are used as receivers, or various fibers can be used as emitters and receivers at different times to form a map of the area. In therapeutic techniques, the treatment light can be emitted from the fibers in parallel or in sequence, and the fluence can be independently adjusted for each of the fibers. | 09-03-2009 |
20090221922 | METHODS AND DEVICES FOR IN SITU TISSUE NAVIGATION - The “Smart Tool” includes a “Smart Tool Probe” and two processing modules. The Smart Tool Probe is a hand held, wired or wireless, device that a surgeon utilizes for interrogating and identifying a tissue site, such as the entrance to a pedicle. The processing units, an Electro-Optical Control (EOC) Module and a CDS Module, provide control and display capabilities enabling real-time tissue site (such as vertebra bone) interrogation. The Smart Tool Probe utilizes a system of optical fibers that carry the interrogating optical signal sent by the light source(s) and the reflected optical signal back to the optical receivers. The light source(s) and light receivers are located in the EOC Module. The data received from the EOC Module are processed and converted into an image which is displayed on the screen in real-time. The software installed on the machine allows the surgeon to adjust/enhance the image properties to suit the selected requirements. This mode of operation provides interactive image sharpening (to adjust image sharpness), threshold control (to adjust image contrast), segmentation (to delineate the density map in the image), and image calculus (to pin-point the center of a particular region in the image). | 09-03-2009 |
20090240154 | COMBINED OCT CATHETER DEVICE AND METHOD FOR COMBINED OPTICAL COHERENCE TOMOGRAPHY (OCT) DIAGNOSIS AND PHOTODYNAMIC THERAPY (PDT) - In a catheter device and a method for in vivo activation of a photosensitizing drug in a vessel, endovascular tissue, and/or intraluminal tissue, a catheter carrying both an optical coherence tomography (OCT) lens, from which OCT imaging light is emitted, and a photodynamic therapy (PDT) lens from which photosensitizing drug-activating light is emitted, is inserted into a vessel containing a lesion to be treated. A photosensitizing drug is caused to be placed in the vessel as well, such as in the form of a coating on a stent or a coating on an exterior of a balloon carried by the catheter. Light is emitted from the PDT lens to activate the photosensitizing drug while light is simultaneously emitted from the OCT lens to obtain an OCT image to monitor the drug activation. | 09-24-2009 |
20090275842 | STABILIZATION OF VISUALIZATION CATHETERS - Systems for the stabilization of visualization catheters are described herein which facilitate the deployment and retraction of an imaging hood from a catheter. Such systems may include a deployment catheter and an imaging hood having one or more structural elements which may be integrated or advanced into the hood independently of the hood itself. Moreover, additional features such as rapid exchange ports may be integrated along the hood or along the catheter proximal to the hood to facilitate intravascular procedures and treatments. | 11-05-2009 |
20090299196 | System and Method for Large Field of View, Single Cell Analysis - A method and system for medical imaging employs an excitation source configured to cause an object having a plurality of cells to at least one of emit, reflect, and fluoresce light. An optical receptor is employed that is configured to receive the light from the object. A filter assembly receives the light from the optical receptor and filters the light. An image processor having a field of view (FOV) substantially greater than a diameter of a cell of the object and an analysis resolution substantially matched to the diameter of a cell of the object that receives the filtered light from the filter and analyzes the filtered light corresponding to each cell in the FOV. A feedback system is provided that is configured to provide an indication of a state of each cell in the FOV and a location of a cell in the FOV meeting a predetermined condition. | 12-03-2009 |
20090306522 | Method and Apparatus for Detecting Abnormal Living Tissue - Light scattering and absorption techniques for the detection of possible abnormal living tissue. Apparatus and methods for utilizing multiple blood content detection sensors and/or contact sensors for beneficially providing data to better guide an endoscope or colonoscope to locate abnormal tissue, tumors, or tissues that precede the development of such lesions or tumors. | 12-10-2009 |
20090312646 | OPTICAL DETECTION OF SEIZURE, A PRE-SEIZURE STATE, AND CEREBRAL EDEMA AND OPTICAL FIBER DETECTION OF THE SAME - A method for using optical parameters to monitor for a physiological event and/or a state prior to the physiological event includes the steps of: illuminating neural tissue with diagnostic light of a predetermined frequency at a predetermined location; detecting magnitude of optical scattering by neural tissue of the diagnostic light as a function of time; and determining a signature signal of the optical scattering of the diagnostic light before the physiological event in the neural tissue becomes clinically manifested. An apparatus includes a source of diagnostic light of a predetermined frequency for illuminating neural tissue at a predetermined location, a detector of optical scattering and/or optical absorption by neural tissue of the diagnostic light as a function of time, and a signal processor for determining a signature signal of the optical scattering and/or optical absorption of the diagnostic light before the physiological event becomes clinically manifested. | 12-17-2009 |
20090318816 | LIGHT CATHETER FOR ILLUMINATING TISSUE STRUCTURES - A system for the illumination of tissue structures including tubular structures within the body and a method for the use of the system. The system includes a transparent, biocompatible catheter and a light source. | 12-24-2009 |
20090326385 | OBTAINING OPTICAL TISSUE PROPERTIES - This application describes a medical device ( | 12-31-2009 |
20100036262 | FLUORESCENCE ENDOSCOPE APPARATUS - The effect of noise light originating in a light guide portion is removed by simple calculations, and a clear fluorescence image that facilitates distinction between lesion tissue and normal tissue is acquired. Provided is a fluorescence endoscope apparatus including an insertion portion inserted into a body cavity; a light source unit that is disposed at a base end of the insertion portion and that emits excitation light and reference light that contains at least a part of the wavelength band of fluorescence produced by the excitation light; a light guide portion that guides the excitation light and the reference light emitted from the light source unit to a distal end of the insertion portion; an irradiation control unit that switches between a first irradiation state in which the excitation light guided by the light guide portion is radiated onto an inner wall of the body cavity and a second irradiation state in which the reference light is radiated onto the inner wall of the body cavity; an image-acquisition unit that acquires reflected light of the reference light and the fluorescence returning from the inner wall of the body cavity to the insertion portion; and an image computing unit that generates a fluorescence image signal by calculating the difference between a first image-acquisition signal acquired by the image-acquisition unit in the first irradiation state and a second image-acquisition signal acquired in the second irradiation state. | 02-11-2010 |
20100063404 | BIOPOLYMER OPTICAL WAVEGUIDE AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a biopolymer optical waveguide includes providing a biopolymer, unwinding the biopolymer progressively to extract individual biopolymer fibers, and putting the unwound fibers under tension. The tensioned fibers are then cast in a different polymer to form a biopolymer optical waveguide that guides light due to the difference in indices of refraction between the biopolymer and the different polymer. The optical fibers may be used in biomedical applications and can be inserted in the body as transmissive media. Printing techniques may be used to manufacture the biopolymer optical waveguides. | 03-11-2010 |
20100069760 | METHODS AND APPARATUS FOR ANALYZING AND LOCALLY TREATING A BODY LUMEN - A method and apparatus for analyzing and treating internal lumens is provided. The apparatus includes a catheterized device integrating an optical probe and local treatment delivery system. The probe component includes fiber optic lines that can be used in conjunction with visible and/or near infrared spectroscopy to analyze various characteristics of tissues, including chemical, blood, and oxygen content, in order to locate those tissues associated with diseased lumens, to determine the best location for applying treatment, and to monitor treatment and its effects. Physically integrated with the probe component is a treatment component for delivering localized treatments including stem cells, antibiotics, gene therapy, neoplasty, and sclerosant drugs, etc. A control system coordinates operation of the catheter, including performing chemometric analysis with the use of model data, and for providing control and visual feedback to an operator. | 03-18-2010 |
20100076320 | FLUSH CATHETER WITH FLOW DIRECTING SHEATH - In certain embodiments, the invention provides a method of flushing a lumen of interest having a first diameter and a lumen wall. The method can include the steps of selecting a flush solution such that the flush solution lowers a fluid removal rate of a plurality of terminating lumens, the terminating lumens branching from and in fluid communication with the lumen of interest, at least one of the terminating lumens having a second diameter, the second diameter smaller than the first diameter; flushing the lumen with the flush solution; and collecting optical tomography scan data relative to a portion of the lumen wall. | 03-25-2010 |
20100094138 | Imaging catheter using laser profile for plaque depth measurement - A device, system, and method for measuring the depth of a material layer such as a blood vessel plaque layer is disclosed. A fiber optic bundle housed in a balloon catheter projects a laser dot toward a conical mirror, which reflects the dot perpendicularly onto the surface of the plaque. The laser dot is reflected back from the plaque layer with a substantially Gaussian intensity profile. The conical mirror directs the reflected image back to the fiber optic bundle, which delivers the image to a sensor. The depth of the plaque layer can be determined by comparing the diameter of the image intensity profile to a pre-obtained normalized data set. | 04-15-2010 |
20100113941 | OPTICAL DEVICE FOR ASSESSING OPTICAL DEPTH IN A SAMPLE - The present invention relates to an optical device for assessing optical depth (D) in a sample ( | 05-06-2010 |
20100113942 | OPTICAL IMAGING PROBE CONNECTOR - An elongated optical guidewire assembly, such as for optically imaging a patient from within another catheter, can have a lead portion and a probe portion. A connector between the lead and probe portions can include a bore including first and second bore ends. The first bore end can include a substantially circular cross-sectional profile. The second bore end can include a substantially non-circular cross-sectional profile. The bore can be configured to receive the optical guidewire assembly at the first bore end and configured to deform the optical guidewire assembly at the second bore end such that probe and lead ends of the optical guidewire assembly are deformed into a substantially non-circular profile and located between the first and second bore ends. | 05-06-2010 |
20100121202 | SYSTEM AND METHOD FOR POSITIONING A PROBE - An adapter couples a length of optical fiber to a hollow probe and to an optical coherence tomography instrument. The length of optical fiber may be greater than the length of the adapter itself. The optical fiber is fixed to an optical coupler at a proximal end of the adapter and may be maintained in a curved configuration by features located in an internal cavity of the adapter. An optical fiber advance mechanism be used to advance and/or retract the length of optical fiber to align it within the hollow probe. | 05-13-2010 |
20100130872 | OPTICAL CABLE AND OPTICAL COHERENCE IMAGING DIAGNOSTIC APPARATUS USING THIS CABLE - An optical fiber is positioned in a lumen of a sheath so a gap exists between the sheath and optical fiber. A filling member fills part of the longitudinal extent of the gap and fixes the optical fiber. The gap is devoid of the filling member over a part of the longitudinal extent of the of the optical fiber so that an air gap exists between the optical fiber and the sheath. In the event bending, expansion and/or contraction are applied to the sheath, the stress is inhibited from being transmitted to the optical fiber. If the sheath is expanded and contracted, one end of the optical fiber is open and so the optical fiber is not expanded/contracted like the sheath expansion and contraction. Consequently, stress is not likely to be transmitted to the optical fiber and so it is possible to maintain a constant length of the optical fiber. | 05-27-2010 |
20100168587 | CATHETER IMAGING PROBE AND METHOD - A catheter imaging probe for a patient. The probe includes a conduit through with energy is transmitted. The probe includes a first portion through which the conduit extends. The probe includes a second portion which rotates relative to the conduit to redirect the energy from the conduit. A method for imaging a patient. The method includes the steps of inserting a catheter into the patient. There is the step of rotating a second portion of the catheter relative to a conduit extending through a first portion of the catheter, which redirects the energy transmitted through the conduit to the patient and receives the energy reflected back to the second portion from the patient and redirects the reflected energy to the conduit. | 07-01-2010 |
20100168588 | ENDOSCOPE SYSTEM FOR FLUORESCENT OBSERVATION - An endoscope system is disclosed for detecting fluorescent light emitted in the near-infrared region by a plurality of fluorescent labeling materials introduced into a living tissue. An illumination system generates illumination light in the wavelength range 600 nm-2000 nm which serves as excitation light for the plurality of fluorescent labeling materials, and a detection system that can separately detect different ones of the plurality of fluorescent light emissions that are emitted at different wavelengths from among the plurality of fluorescent labeling materials is provided. The endoscope system may include a conventional-type endoscope having an insertion section, or a capsule endoscope that wirelessly transmits image data. By superimposing the image data obtained using reflected light in the visible region and fluorescent light emitted by the fluorescent labeling materials, improved diagnostic capabilities are provided. | 07-01-2010 |
20100174197 | BIOLOGICAL INFORMATION IMAGING APPARATUS - A living body information imaging apparatus includes a member that is adapted to be introduced into an interior of a living body and has a light irradiation portion for irradiating light with an angle of irradiation equal to or more than 2π steradian to the interior of the living body, and a signal detector that is arranged outside the living body and detects a signal output based on light irradiation in the interior of the living body by the member having the light irradiation portion. | 07-08-2010 |
20100198081 | Scanning light imager - This invention describes the detection of atherosclerotic plaque or cancer cells by a light probe inside a blood vessel or internal to an elongate organ. In one embodiment, vessel wall is imaged by employing a scanning mechanism using one emitting and one receiving fiber, whereby light is directed at a spinning mirror, approximately normal to the vessel or elongate organ surface. The light is reflected circumferentially around the vessel or elongate organ surface as the mirror rotates and received by a low-numerical aperture (NA) fiber, which transmits it to a light detector, thereby generating a set of light amplitudes circumferentially around the vessel/elongate organ surface. Multiple rings are acquired by translating the probe within the vessel/elongate organ. In another embodiment, adding a piezoelectric transducer in proximity to the distal ends of the fibers permits simultaneous ultrasound and light images to be created. | 08-05-2010 |
20100217131 | MULTI-CHANNEL CATHETER TIP - A tip assembly for a catheter includes a housing having a recess that receives an optical bench. The optical bench accommodates adjacent fibers, one of which is in optical communication with a first beam re-director. The first beam re-director is oriented to cause a beam incident thereon to travel in a direction away from the optical bench. An engaging structure coupled to the optical bench provides torque coupling between the housing and an end of a torque cable extending axially along the catheter. | 08-26-2010 |
20100228132 | SYSTEMS FOR CONTROLLING OPTICAL PROBE FUNCTIONS DURING MEDICAL AND VETERINARY PROCEDURES - A device includes a handpiece having a probe tip disposed at an end thereof, and, an optical coherence tomography (OCT) probe connected to the handpiece such that, at the probe tip, a functionality of the OCT probe is provided. A sensor responsive to movement and/or handling of the handpiece for controlling the functionality of the OCT probe is disposed within or on the handpiece. | 09-09-2010 |
20100241008 | ECCENTRIC PRESSURE CATHETER WITH GUIDEWIRE COMPATIBILITY - There is herein described a catheter for measuring a pressure in a cardiovascular system. The catheter comprises: a guiding tube adapted for insertion into the cardiovascular system. The guiding tube defines a lumen for sliding a guidewire therethrough. The catheter further comprises a tip pressure sensor eccentrically mounted relative to the guiding tube and a signal communication means extending therefrom. The tip pressure sensor is for sensing a pressure in the cardiovascular system and the signal communicating means is for transmitting a signal indicative of the pressure to a processing device in order to obtain a pressure measurement reading. | 09-23-2010 |
20100262020 | PROBE APPARATUS FOR RECOGNIZING ABNORMAL TISSUE - The present invention relates to probe apparatuses and component combinations thereof that are used to recognize possibly abnormal living tissue using a detected early increase in microvascular blood supply and corresponding applications. In one embodiment there is disclosed an apparatus that emits broadband light obtained from a light source onto microvasculature of tissue disposed within a human body and receives interacted light that is obtained from interaction of the broadband light with the microvasculature for transmission to a receiver. Different further embodiments include combinations of optical fibers, polarizers and lenses that assist in the selection of a predetermined depth profile of interacted light. In another embodiment, a kit apparatus is described that has various probe tips and/or light transmission elements that provide for various combinations of predetermined depth profiles of interacted light. In a further embodiment, a method of making a spectral data probe for depth range detection selectivity for detection of blood within microvasculature of tissue is described. | 10-14-2010 |
20100268091 | FLUORESCENCE IMAGING APPARATUS AND ENDOSCOPE APPARATUS - A site to be observed, such as a lesion, is easily observed by means of bright fluorescence images without increasing the output of a light source. Provided is a fluorescence imaging apparatus ( | 10-21-2010 |
20100286530 | Photodynamic-based tissue sensing device and method - A system and method for diagnosis or treatment of tissue is provided. One or more optic fibers are disposed within a deformable, tubular body. An electronic control unit activates an electromagnetic radiation source to direct a first set of electromagnetic radiation through a first optic fiber to the tissue. The unit also receives a signal generated by an electromagnetic radiation sensor in response to a second set of electromagnetic radiation received through the first optic or a second fiber. The second set of electromagnetic radiation originates from the tissue in response to the first set of electromagnetic radiation and may be reflected or emitted by a substance contained in the tissue that alters radiation characteristics of the tissue. Finally, the unit is configured to determine a characteristic of the tissue (e.g. the distance from the tissue to the tubular body) responsive to the signal. | 11-11-2010 |
20100286531 | SYSTEMS AND METHODS FOR ANALYSIS AND TREATMENT OF A BODY LUMEN - A system for analyzing a body lumen including a flexible conduit that is elongated along a longitudinal axis, the flexible conduit having a proximal end and a distal end; at least one delivery waveguide and at least one collection waveguide extending along the flexible conduit, a transmission output of the at least one delivery waveguide and a transmission input of the at least one collection waveguide located along a distal portion of the conduit; a spectrometer connected to the at least one delivery waveguide and the at least one collection waveguide, the spectrometer configured to perform diffuse reflectance spectroscopy, wherein the spectrometer emits at least one primary radiation signal of a wavelength having an absorption coefficient of between about 8 cm | 11-11-2010 |
20100292582 | TISSUE PROBE WITH SPEED CONTROL - A single use needle-like probe contains optical fibers to deliver and collect light at the distal tip of the needle-like probe. The single use needle-like probe may connect to a handpiece that may contain sensors to monitor how the probe is being used. Sensors within the handpiece may, e.g., include a force sensor and a position sensor that detect the depth of the probe in tissue. The handpiece may include a mechanism for limiting the maximum probe velocity. The handpiece may be connected through a cable to a control unit that may include light sources, optical detectors, control electronics and one or more microprocessors to analyze the data collected. | 11-18-2010 |
20110009752 | ENDOSCOPIC LONG RANGE FOURIER DOMAIN OPTICAL COHERENCE TOMOGRAPHY (LR-FD-OCT) - An endoscopic swept-source Fourier Domain optical coherence tomographic system (FDOCT system) for imaging of tissue structure includes a Fourier Domain mode locked (FDML), high speed, narrow line-width, wavelength swept source, an OCT interferometer having a sample arm, a reference arm, a detection arm, and a source arm coupled to the swept source, an endoscopic probe coupled to the sample arm, and a data processing circuit coupled to the detection arm. The swept source includes a long optic fiber functioning as a cavity, a high optical gain lasing module, and a tunable narrow bandwidth bandpass filter for wavelength selection combined to form a unidirectional ring laser cavity, where the tunable narrow bandwidth bandpass filter is driven synchronously with the optical round-trip time of a propagating light wave in the cavity. | 01-13-2011 |
20110015529 | METHYLENE BLUE BASED FIBRED FLUORESCENCE MICROSCOPY - The invention relates to a method for the fabric using an acquisition system that includes at acquisition of in-vivo fluorescence imaging from a least one optical fibre exciting the fabric by scanning light beam. According to the invention, the system is used to detect fluorescence signals emitted by the Methylene Blue present in the fabric. | 01-20-2011 |
20110021926 | CATHETER-BASED OFF-AXIS OPTICAL COHERENCE TOMOGRAPHY IMAGING SYSTEM - Catheter-based Optical Coherence Tomography (OCT) systems utilizing an optical fiber that is positioned off-axis of the central longitudinal axis of the catheter have many advantage over catheter-based OCT systems, particularly those having centrally-positioned optical fibers or fibers that rotate independently of the elongate body of the catheter. An OCT system having an off-axis optical fiber for visualizing the inside of a body lumen may be rotated with the body of the elongate catheter, relative to a handle portion. The handle may include a fiber management pathway for the optical fiber that permits the off-axis optical fiber to rotate with the catheter body relative to the handle. The system may also include optical processing elements adapted to prepare and process the OCT image collected by the off-axis catheter systems described herein. | 01-27-2011 |
20110066035 | TEMPERATURE PROFILE MAPPING AND GUIDED THERMOTHERAPY - Techniques, apparatus and systems that use an optical probe head to deliver light to a target and to collect light from the target for imaging and monitoring a target while a separate radiation is applied to treat the target. | 03-17-2011 |
20110087112 | Medical apparatus system having optical fiber load sensing - Apparatus is provided for diagnosing or treating an organ or vessel, wherein a device having at optical fiber contact force sensors disposed in a distal extremity thereof and a deflection mechanism configured to deflect the elongate body at a location proximal of the distal extremity. The optical fiber contact force sensors are configured to be coupled to processing logic programmed which computes a force vector responsive to detected changes in the optical characteristics of the optical fiber contact force sensors arising from deflection of the distal extremity resulting from contact with the tissue of the wall of the organ or vessel. | 04-14-2011 |
20110112409 | ROTATING CATHETER PROBE USING A LIGHT-DRIVE APPARATUS - The invention is a rotating tip catheter-imaging probe where electromagnetic energy is delivered to the distal end of a catheter and converted to mechanical energy using a light drive apparatus. The mechanical energy is then used to rotate a mirror that redirects light in fixed pattern on a sample. The rotating element of the light drive apparatus contains vanes, which rotate about an axis and positioned with bearings to minimize friction. A chamber encompasses the rotating element and is set to a vacuum pressure. The rotational speed of the catheter tip can be controlled by varying the optical power delivered to the vanes, the vacuum pressure in the chamber, or by a braking mechanism applied to the rotating element. The vanes may be shaped in a particular geometry to increase forces on the vanes from thermally driven gas flow. | 05-12-2011 |
20110112410 | OPTICAL PROBE, DRIVE CONTROL METHOD THEREFOR, AND ENDOSCOPE APPARATUS - An optical probe, comprising:
| 05-12-2011 |
20110118611 | Module mounting mirror endoscopy - The present invention is directed to a two-dimensional scanning arrangement for a laser vein-illumination device that includes a base and a frame connected to the base using at least one flexible hinge. The hinge allows the frame to move angularly with respect to the base in a first direction. The invention further includes a means for exciting angular oscillations of the frame at or near said frame's resonant frequency. An elastic torsional element having a proximal end rigidly attached to said frame and a distal end rigidly attached to a mirror is also included. The torsional element allows the mirror to move angularly with respect to the frame in a second direction, generally perpendicular to the first direction. There may also be a means for exciting the angular oscillations of the mirror. | 05-19-2011 |
20110137180 | Systems and Methods for Fitting a Cochlear Implant System to a Patient Based on Stapedius Displacement - An exemplary system includes an implantable cochlear stimulator configured to be implanted within a patient, a sound processor communicatively coupled to the implantable cochlear stimulator and configured to direct the implantable cochlear stimulator to generate and apply electrical stimulation to one or more stimulation sites within a cochlea of the patient, and a displacement sensor assembly configured to measure a displacement of the stapedius of the patient that occurs in response to the application of the electrical stimulation and transmit displacement data representative of the measured displacement to the sound processor. Corresponding systems and methods are also disclosed. | 06-09-2011 |
20110178413 | INTRAVASCULAR OPTICAL COHERENCE TOMOGRAPHY SYSTEM WITH PRESSURE MONITORING INTERFACE AND ACCESSORIES - An optical coherence tomography system and method with integrated pressure measurement. In one embodiment the system includes an interferometer including: a wavelength swept laser; a source arm in communication with the wavelength swept laser; a reference arm in communication with a reference reflector; a first photodetector having a signal output; a detector arm in communication with the first photodetector, a probe interface; a sample arm in communication with a first optical connector of the probe interface; an acquisition and display system comprising: an A/D converter having a signal input in communication with the first photodetector signal output and a signal output; a processor system in communication with the A/D converter signal output; and a display in communication with the processor system; and a probe comprising a pressure sensor and configured for connection to the first optical connector of the probe interface, wherein the pressure transducer comprises an optical pressure transducer. | 07-21-2011 |
20110190640 | Pressure sensor with an interferometric sensor and an in-fiber Bragg grating reference sensor - A pressure sensor ( | 08-04-2011 |
20110218445 | NEEDLE WITH INTEGRATED FIBERS - Needles equipped with fibres allow tissue inspection based on optical spectroscopy to diagnose whether tissue is cancerous or not. This requires integration of optical fibers into needles. The problem is how to manufacture the needle having at least one fiber exit at the distal end of the needle, where the fiber does not obstruct the hollow part of the needle if present as well as does not extend beyond the outer cylinder geometry. To solve this problem we propose to manufacture the needle consisting of four parts: an inner cylinder tube, an outer hollow cylinder tube, a needle tip part with integrated fiber exit and a holder part, wherein the hollow spacing between the inner and the outer cylinder is larger or equal to the outer diameter of the fibers, the inner and the outer cylinder are mounted in the holder part and where the tip part is mounted on the two cylinders. | 09-08-2011 |
20110224554 | Optogenetic Fiber Optic Cannula and Adapted Fiber Optic Connector - A cannula can have a ferrule with two interspaced optical fiber passages extending therebetween, each securely housing an optical fiber therein having a first tip exposed at a connection end, and a second tip protruding from an opposite implant end by a penetration distance, and a bore extending into the ferrule from the connection end. The cannula can be removably connected by a patch cord having a ferrule with a guide pin, with a relatively high degree of optical alignment, by inserting both ferrules into corresponding ends of a sleeve and engaging the guide pin within the bore. | 09-15-2011 |
20110230770 | Catheter Probe Arrangement for Tissue Analysis by Radiant Energy Delivery and Radiant Energy Collection - A catheter tip apparatus arranged in a catheter for the delivery and collection of a light-energy signal to permit subsequent computerized analysis of body tissue by the collected signal. The apparatus comprises an elongated housing supporting a first reflective surface and a second reflective surface. The first reflective surface and the second reflective surface are longitudinally spaced apart from one another. A first flexible, elongated energy bearing delivery fiber has a distalmost end arranged adjacent the first reflective surface. A second flexible, elongated energy bearing collection fiber has a distalmost end arranged adjacent the second reflective surface. The housing is rotatably supported on a flexible catheter sheath for insertion of the catheter into a mammalian body for tissue analysis thereof. | 09-22-2011 |
20110251494 | NEEDLE WITH OPTICAL FIBERS - Needle interventions are widely used in the field of oncology for taking biopsies of tissue in order to inspect whether tissue is cancerous or not. To make these interventions more reliable feedback of what kind of tissue is in front of the needle is required. A way to achieve this is by making use of optical spectroscopy. This requires integration of fibers into the needle. These fibers are used to deliver light to illuminate the tissue in front of the needle and to collect back the reflected light from the tissue. The present invention proposes to integrate the fiber distal ends in the slanted bevel of the needle in such a way that at least one source-detector fiber pair has a distance that is larger than the outer diameter of the needle. | 10-13-2011 |
20110313298 | FIBER ARRAY FOR OPTICAL IMAGING AND THERAPEUTICS - The present invention relates to the field of optical imaging and therapeutics. More particularly, embodiments of the present invention provide minimally-invasive Fiberoptic Microneedle Devices (FMDs) for light-based therapeutics, which physically penetrate tissue and deliver light directly into the target area below the skin surface (FIG. | 12-22-2011 |
20110313299 | SEVERAL MEASUREMENT MODALITIES IN A CATHETER-BASED SYSTEM - The invention provides optical switching-based systems and methods for catheter-based optical diagnosis which are particularly well suited to determining the condition of blood vessels, including the state of the vessels with respect to atherosclerosis and its development. Various embodiments provide catheter-based spectroscopic systems that are configured to cycle between different optical interrogation techniques such as Raman spectroscopy, optical coherence tomography and time-resolved laser-induced fluorescence spectroscopy. One embodiment of the invention provides an intravascular catheter-based diagnostic system that cycles between fingerprint region (200-2,500 cm | 12-22-2011 |
20120029360 | NEEDLE WITH INTEGRATED FIBERS IN THE CUTTING FACETS OF THE BEVEL - A needle comprises a tip part, a holder part, a shaft, and fibers capable of transmitting light, wherein the shaft comprises a distal end connected to the tip part, and a proximal end connected to the holder part, wherein the tip part comprises a bevel, cutting facets, and at least one channel for accommodating a fiber, and wherein an end section of the fiber is located in the channel and an end surface of the fiber is located at one of the cutting facets. By way of the facets an introduction of the needle into tissue may be facilitated. A further aspect of the invention is a method for producing such a needle. | 02-02-2012 |
20120035484 | USE OF A SYSTEM FOR IMAGING BY FIBER-OPTIC CONFOCAL FLUORESCENCE IN VIVO IN SITU, SYSTEM AND METHOD FOR IMAGING BY FIBER-OPTIC CONFOCAL FLUORESCENCE IN VIVO IN SITU - A method for imaging a tissue includes collecting a light signal from at least part of said tissue, using a fiber optic probe for fluorescence imaging, wherein the fiber optic probe comprises a plurality of optic fibers, and wherein a distal tip of the fiber optic probe is placed at a distance from said tissue, said imaging being made confocal at a proximal tip of said fiber optic probe. A fluorescence imaging system includes an endoscope equipped with a working channel, in which a fiber optic probe has been inserted, wherein the fiber optic probe is movable between a retracted position and at least one position of extension, said fiber optic probe comprising a plurality of optic fibers for performing imaging of a tissue, said imaging being confocal via a processor located at a proximal tip of said fiber optic probe. | 02-09-2012 |
20120078118 | SINUS ILLUMINATION LIGHTWIRE DEVICE - An illuminating wire medical device may include an elongate flexible housing and an illuminating fiber and a core wire extending through at least part of the housing, the core wire providing desired pushability and torquability. The illuminating device may further include a connector assembly cooperating with the illuminating fiber to accommodate changes in length, to absorb forces applied during use of the device and to channel errant light away from the illuminating fibers of the device. | 03-29-2012 |
20120116234 | SHARP FIBROUS NEEDLE PROBE FOR THE IN-DEPTH OPTICAL DIAGNOSTICS OF TUMOURS BY ENDOGENOUS FLUORESCENCE - An optical sharp fibrous needle probe includes an optical fibre in a hollow needle ending in a cutting point. The optical fibre is inserted and bonded in the hollow of the needle and then polished to take on the exact needle cutting shape. The material to be explored is pricked by the needle. A light injection and recovery device is placed at the inlet of the fibre. The material located at the sharp end of the needle backscatters the incident light and generates an endogenous fluorescence signal. A part of this luminous flux is recovered by the point of the needle and sent back to the injection and recovery device. The same analyses the light in strength, duration and wavelength and enables a diagnostics without taking the in-depth explored material. An optical telemeter placed on the outer tip of the needle enables the depth of the explored area to be known. | 05-10-2012 |
20120136259 | POLARIZATION-SENSITIVE SPECTRAL INTERFEROMETRY - A polarization sensitive spectral interferometer apparatus and method for analyzing a sample by optical energy reflected from the sample. The polarization sensitive spectral interferometer apparatus and method determines polarization properties of the sample by optical energy reflected from the sample. | 05-31-2012 |
20120143065 | SYSTEM AND METHOD USEFUL FOR SARCOMERE IMAGING VIA OBJECTIVE-BASED MICROSCOPY - Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device. | 06-07-2012 |
20120150046 | TISSUE CONTRAST IMAGING SYSTEMS - Tissue contrast imaging systems are described which detect differences in tissue contrasts to obtain images of the tissue region. The systems may be used to obtain images of the cardiac tissues particularly in a blood-filled environment. | 06-14-2012 |
20120190990 | Probe, Diagnosis Device, and Method for Using the Diagnosis Device | 07-26-2012 |
20120197136 | SELF-PUNCTURING PERCUTANEOUS OPTICAL SENSOR FOR OPTICAL SENSING OF INTRAVASCULAR FLUID - The present invention is directed to a self-penetrating percutaneous optical sensing device for obtaining and transmitting optical signal from intravascular fluid in a blood vessel, the device comprising: (a) an elongated hollow rigid sensor sheath | 08-02-2012 |
20120220879 | Catheter and Catheter Arrangement - A catheter, in particular an ablation catheter, comprising force sensors integrated in a distal section, which are designed and disposed to measure the magnitude and direction of an external force acting on the distal section, and which can be connected to a signal processing unit for the combined processing of measurement signals, wherein a single FBG fiber fastened in a sensor holder is provided in the catheter and comprises three force sensor regions forming the force sensors which interact for the combined processing of measurement signals. | 08-30-2012 |
20120220880 | OPTICAL SPECTROSCOPIC DEVICE FOR THE IDENTIFICATION OF CERVICAL CANCER - A medical examination device used for the detection of pre-cancerous and cancerous tissue has an illumination source, a visualization unit, a contacting optical probe, a detector and a process unit. One embodiment of the apparatus includes both a non-contacting macroscopic viewing device (the visualization unit) for visualizing an interior surface of the cervix, as well as a fiber optic wand (contacting optical probe) for spectrally analyzing a microscopic view of the tissue. | 08-30-2012 |
20120226167 | Method and Device for the Optical Spectroscopic Identification of Cervical Cancer - A medical examination device used for the detection of pre-cancerous and cancerous tissue has an illumination source, a visualization unit, a contacting optical probe, a detector and a process unit. One embodiment of the apparatus includes both a non-contacting macroscopic viewing device (the visualization unit) for visualizing an interior surface of the cervix, as well as a fiber optic wand (contacting optical probe) for spectrally analyzing a microscopic view of the tissue. | 09-06-2012 |
20120232408 | Method and Apparatus for Cervical Cancer Screening - The present invention relates to an apparatus for cervical cancer screening, comprising one or more light sources aligned with a beginning of a first optical test path and a beginning of a second optical test path, one or more optical detectors aligned with an end of the first optical test path and an end of the second optical test path, and a processor coupled to the one or more light sources and the one or more optical detectors and methods for using the same. The present invention further relates to a method for cervical cancer screening. | 09-13-2012 |
20120283576 | Probe - A probe which is inserted into a lumen of inside of a body, irradiates an observation object part of a physiological tissue with excitation light, and detects fluorescence resulting from the excitation light, wherein the probe including: a plus lens arranged facing toward a tip side of the probe; and a plurality of optical fibers receiving the fluorescence at tip surfaces through the plus lens, wherein the tip surface are directed toward the plus lens and arranged in positions offset from an optical axis of the plus lens, wherein positions of the tip surface of at least optical fibers of which an amount of offset from the optical axis of the plus lens differ mutually among plurality of optical fibers are shifted mutually along the optical axis of the plus lens. | 11-08-2012 |
20120296218 | FLUORESCENCE ENDOSCOPE DEVICE - Provided is a fluorescence endoscope device that includes a light source; an image generating portion that captures an image of fluorescence generated at a subject due to irradiation with excitation light from the light source to obtain a fluorescence image and that captures an image of return light returning from the subject due to irradiation with reference light to obtain a reference image; an image-correcting portion that corrects the fluorescence image using the reference image to generate a corrected fluorescence image; an effective-area defining portion that defines an effective area having a brightness in a predetermined variation range in the corrected fluorescence image; a region-extracting portion that extracts a high-brightness region having a brightness higher than or equal to the predetermined threshold in the corrected fluorescence image; and an indication portion that shows whether or not the high-brightness region exists inside the effective area in an identifiable manner. | 11-22-2012 |
20120302893 | FLUORESCENCE ENDOSCOPE DEVICE - Provided is a fluorescence endoscope device that includes a light source; an image generating portion that captures an image of fluorescence generated at a subject due to irradiation with excitation light to obtain a fluorescence image and that captures an image of return light returning from the subject due to irradiation with white light to obtain a white-light image; a dividing portion that divides the fluorescence image by the white-light image to generate a divided fluorescence image; a coordinate extracting portion that extracts a second region of the divided fluorescence image having a gradation value higher than a second threshold; a fluorescence-image correcting portion that extracts a first region having a gradation value higher than a first threshold in the fluorescence image and generates a corrected fluorescence image in which an overlap region that overlaps the second region is extracted; and a monitor that displays the corrected fluorescence image. | 11-29-2012 |
20120330166 | SYSTEMS AND METHODS FOR ANALYSIS AND TREATMENT OF AN OCCLUDED BODY LUMEN - Systems and methods are provided for probing an occluded body lumen, including a flexible conduit insertable into the body lumen, at least one delivery waveguide and at least one collection waveguide integrated with the flexible conduit and arranged to deliver and collect radiation about a distal end of said flexible conduit, at least one radiation source connected to a transmission input of the at least one delivery waveguide, at least one optical detector connected to a transmission output of at least one collection waveguide, a spectrometer connected with the at least one optical detector, and constructed and arranged to scan radiation and perform spectroscopy, and a controller programmed to process data from said spectrometer and provide information for directing said flexible conduit through obstacles within the occluded body lumen. | 12-27-2012 |
20130066215 | APPARATUS AND METHOD FOR OBTAINING AND PROVIDING IMAGING INFORMATION ASSOCIATED WITH AT LEAST ONE PORTION OF A SAMPLE, AND EFFECTING SUCH PORTION(S) - Exemplary apparatus and process can be provided for imaging information associated with at least one portion of a sample. For example, (i) first different wavelengths of at least one first electro-magnetic radiation can be provided within a first wavelength range provided on the portion of the sample so as to determine at least one first transverse location of the portion, and (ii) second different wavelengths of at least one second electro-magnetic radiation within a second wavelength range can be provided on the portion so as to determine at least one second transverse location of the portion. The first and second ranges can east partially overlap on the portion. Further, a relative phase between at least one third electro-magnetic radiation electro-magnetic radiation being returned from the sample and at least one fourth electro-magnetic radiation returned from a reference can be obtained to determine a relative depth location of the portion. | 03-14-2013 |
20130085398 | BRAIN-MACHINE INTERFACE BASED ON PHOTONIC NEURAL PROBE ARRAYS - Method and apparatus for illuminating and imaging tissue is provided. In one version, the method includes illuminating a volume of a tissue with photons from a three-dimensional array of optical emitters inserted into the tissue. In another version, the method includes detecting photons from a volume of a tissue using a three-dimensional array of optical detectors inserted into the tissue. A probe device for illuminating tissue and/or detecting photons emitted from tissue includes elongated microsized probes containing optical emitters and optical detectors in a three dimensional array. | 04-04-2013 |
20130090563 | INTRAVASCULAR TEMPERATURE MONITORING SYSTEM - A system for monitoring one or more temperatures at a vessel wall of a vessel of a patient includes an optical fiber, an optical read-out mechanism, and a therapeutic device. The optical fiber may be deployed along an extent of the vessel and may include one or more fiber Bragg grating (FBG) temperature sensors disposed at one or more corresponding sensor locations along a length of the optical fiber. The optical read-out mechanism may be optically coupled to the optical fiber, and it may be configured to transmit light into the optical fiber and detect light reflected from the one or more FBG temperature sensors. The detected light reflected from the one or more FBG temperature sensors may encode local temperatures at each of the one or more corresponding sensor locations. The therapeutic device may be configured for performing a therapeutic procedure to or through the vessel wall. | 04-11-2013 |
20130096438 | METHOD AND DEVICE FOR DETECTING TUMOROUS TISSUE IN THE GASTROINTESTINAL TRACT WITH THE AID OF AN ENDOCAPSULE - In a method and apparatus for detecting tumorous cell tissue in a gastrointestinal tract, electromagnetic radiation is emitted in a locally defined manner from an endoscope onto cell tissue and, after deactivation of the radiation, the decay of the inherent fluorescence intensity of the irradiated cell tissue, excited by the electromagnetic radiation, is detected, with temporal and spectral resolution and with a known scanning rate for at least one wavelength. From the intensity measurement values obtained in this manner, the difference autocorrelation function of the intensity decay is determined, from which a fractal dimension for the irradiated cell tissue is determined. The value of the fractal dimension is used to classify the irradiated cell tissue as to a degree to which the cell tissue is tumorous. | 04-18-2013 |
20130123648 | MEDICAL DIAGNOSIS AND TREATMENT USING MULTI-CORE OPTICAL FIBERS - Devices and techniques are disclosed for delivering light from a plurality of single emitter lasers to a biological tissue and detecting light from a biological tissue with a plurality of detector components using multi-core optical delivery and detection fiber or fibers for minimally invasive treating and/or diagnosing conditions and/or diseases in an individual. | 05-16-2013 |
20130150731 | OPTICAL FIBER ARRAY PROBE IMAGING SYSTEM INTEGRATED WITH ENDOSCOPE - Provided is an imaging system which includes an optical fiber array probe unit integrated with an endoscope unit, thereby simultaneously measuring structural information and functional information of a sample. The optical fiber array probe unit includes an optical fiber array probe integrated with lenses including an optical fiber lens with a lens surface of a predetermined radius of curvature in which one ends of optical fibers are integrally connected with each other by heating a predetermined region including the one ends of two of the optical fibers using a heating means, as an optical fiber array probe integrated lens on which the light transmitted from the light source is incident and which guides light reflected from the sample, and a detector for selectively detecting the light transmitted from the optical fiber array probe integrated with lenses in a predetermined range of wavelength. | 06-13-2013 |
20130150732 | MAPPING SYSTEM AND METHOD FOR MEDICAL PROCEDURES - A system and method for mapping interluminal structures includes an elongated flexible instrument ( | 06-13-2013 |
20130158414 | MEDICAL DEVICE WITH SLOTTED MEMORY METAL TUBE - A series of medical instruments can be made with the use of shape memory tube with a transformation temperature that is above or below ambient temperature. In the first case, the material behaves with the shape memory effect and in the second case the behavior is superelastic. The wall of the tube has been provided with a plurality of slots in specific places, often near or at the distal end of the instrument, and in specific arrangements which allow local variations in diameter, shape, and/or length. These variations can either be caused by the memory effect during temperature change or by superelastic behavior during change of the mechanical influences on the memory metal by the surrounding material. | 06-20-2013 |
20130184593 | Implantable Devices And Methods For The Evaluation of Active Agents - Devices for the local delivery of microdose amounts of one or more active agents, alone or in combination, in one or more dosages, to selected tissue of a patient are described. The devices generally include multiple microwells arranged on or within a support structure. The microwells contain one or more active agents, alone or in combination, in one or more dosages and/or release pharmacokinetics. In an exemplary embodiment, the device has a cylindrical shape, having symmetrical wells on the outside of the device, each well containing one or more drugs, at one or more concentrations, sized to permit placement using a catheter, cannula, or stylet. Optionally, the device has a guidewire, and fiber optics, sensors and/or interactive features such as remote accessibility (such as WiFi) to provide for in situ retrieval of information and modification of device release properties. In the most preferred embodiment, the fiber optics and/or sensors are individually accessible to discrete wells. | 07-18-2013 |
20130204142 | OPTICAL FORCE SENSING ELEMENT AND MICROSURGICAL INSTRUMENT - An optical force sensing element for microsurgical instruments and methods measures force F in three orthogonal directions and includes a monolithic cylinder structure, a cylindrical surface and a top surface that absorbs and transmits the force F. Three punch-like notches, all being parallel to the y-direction, are spaced apart along the z-axis and form two blades between the first and second notch and between the second and the third notch. Three channels parallel to the z-axis extend from the bottom surface to the top surface and cross the first notch while bypassing the other two notches. Three optical fibres, each fixed in one of the three channels, all entering the structure from the bottom surface, cross the first notch and end at or near the top surface while being interrupted in the first notch and forming two surfaces of each fibre that define a Fabry-Perot interferometric cavity. | 08-08-2013 |
20130211262 | PROBE - A probe includes a plurality of optical fibers that includes an irradiation fiber and a light-receiving fiber; and an optical member of which a base end face is arranged to abut on leading end faces of the optical fibers, and a leading end face is exposed to an outer side. The leading end face of the optical member is perpendicular to a longitudinal direction of the probe. Light emitted from the irradiation fiber passes through a path inclined with respect to a perpendicular line of the leading end face. | 08-15-2013 |
20130211263 | INTUBATION GUIDE - Apparatuses for guiding an endotracheal tube during intubation and associated methods of their use; the apparatuses formed to contain a plastic element able to hold deformations so as to conform the apparatus to the shape of a patient's endotracheal airway. The plastic element has sufficient give so as to minimize traumatic engagement with the inner surface of the airway lumen. Methods for using the apparatuses exploit indirect visualization where the person performing the intubation can shape the apparatuses so as to place the distal end into the field of view of the indirect visualization instrument even with minimal alignment of the patient's airway. | 08-15-2013 |
20130218027 | IMAGING DEVICE AND METHODS OF USING THE SAME - In one embodiment, a medical device includes a first optical fiber, a second optical fiber, a third optical fiber, and a fourth optical fiber. The first optical fiber is operatively coupled to a first electromagnetic radiation source and is configured to transmit electromagnetic radiation to bodily tissue. The second optical fiber is configured to receive electromagnetic radiation from the first electromagnetic radiation source scattered by the bodily tissue. The third optical fiber is operatively coupled to a second electromagnetic radiation source and is configured to transmit electromagnetic radiation to bodily tissue. The second electromagnetic radiation source is different than the first electromagnetic radiation source. The fourth optical fiber is configured to receive electromagnetic radiation from the second electromagnetic radiation source scattered by the bodily tissue. | 08-22-2013 |
20130267857 | Probe - Probe with a light-receiving optical fiber having an entrance face on the tip orthogonal to first optical axis; a light-emitting optical fiber having an exit face on the tip that is orthogonal to a second optical axis; and a lens with a positive refractive power that projects light exiting from the exit face onto the measurement site of a living tissue and focuses light radiated from the measurement site of the living tissue onto the entrance face. Lens has convex surface facing the entrance face and exit face, a flat surface formed on the side opposite the convex surface, and a third optical axis. Distance from center of convex surface to first optical axis of optical fiber is shorter than distance from center to second optical axis of optical fiber. | 10-10-2013 |
20130310698 | Apparatus, Systems, and Methods of In-Vivo Blood Clearing in a Lumen - In one aspect, the invention relates to a computer-implemented method of triggering optical coherence tomography data collection. The method includes collecting optical coherence tomography data with respect to a vessel using an optical coherence tomography probe disposed in the vessel; determining a clearing radius and a quality value for each frame of optical coherence tomography data collected for the vessel using a computer; determining if a blood clearing state has occurred using at least one clearing radius and at least one quality value; and generating a trigger signal in response to the blood clearing state. | 11-21-2013 |
20130317372 | OPTICAL FIBER PRESSURE SENSOR GUIDEWIRE - In an example, this document discloses an apparatus for insertion into a body lumen, the apparatus comprising an optical fiber pressure sensor. The optical fiber pressure sensor comprises an optical fiber configured to transmit an optical sensing signal, a temperature compensated Fiber Bragg Grating (FBG) interferometer in optical communication with the optical fiber, the FBG interferometer configured to receive a pressure and modulate, in response to the received pressure, the optical sensing signal, and a sensor membrane in physical communication with the FBG interferometer, the membrane configured to transmit the received pressure to the FBG interferometer. | 11-28-2013 |
20130324858 | MULTI-PATH, MULTI-MAGNIFICATION, NON-CONFOCAL FLUORESCENCE EMISSION ENDOSCOPY APPARATUS AND METHODS - An optical scanner, scanner apparatus, or scanner assembly, which may be particularly advantageous for use in a multiphoton microscope, includes a first drivable bending component, a second drivable bending component mounted perpendicularly to the first component, and at least one optical waveguide coupled one or both of the first and second bending components, wherein the at least one optical waveguide provides both a propagation path for a multiphoton excitation radiation delivery between a light source and a target and a multiphoton-induced emission radiation delivery between the target and a detector. A GRIN relay lens. A multiphoton microscope incorporating the scanner and the GRIN relay lens. | 12-05-2013 |
20130331709 | GRIN LENS AND METHODS OF MAKING THE SAME - An imaging device includes a grin lens having a proximal end and a distal end, wherein the grin lens is made from a polymeric material, an optical fiber having a distal end coupled to the proximal end of the grin lens, and a beam director coupled to the distal end of the grin lens, wherein the beam director is configured to direct light at an angle relative to a longitudinal axis of the optical fiber. | 12-12-2013 |
20130338510 | APPARATUS FOR APPLYING A PLURALITY OF ELECTRO-MAGNETIC RADIATIONS TO A SAMPLE - An apparatus for applying electro-magnetic radiations to a sample is provided. The apparatus can include an arrangement which has a specific portion with a plurality of channels. One channel(s) can facilitate a first radiation to be forwarded to the sample within an anatomical structure, and another channel(s) can facilitate a second radiation to be forwarded to the sample. The first radiation can have a first wavelength band, and the second radiation can have a second wavelength band, which can be substantially different from the first wavelength band. The first radiation can be delivered to a first area of the sample, and the second radiation can be delivered to a second area of the sample. Each of the channels can facilitate a particular radiation(s) to be forwarded to the sample that is within an anatomical structure of the sample, the radiations being delivered to different areas of the sample. | 12-19-2013 |
20140024950 | FIBER OPTIC SENSOR ASSEMBLY FOR SENSOR DELIVERY DEVICE - Methods and sensor delivery devices for monitoring a fluid pressure within a vascular structure, the devices including an elongated sheath sized for sliding along a guidewire, a sensor assembly including a fiber optic sensor, a housing surrounding the sensor, a first cavity between the distal end of the sensor and a distal aperture of the housing, a filler extending from at least the distal end of the housing distally and tapering inward toward the outer surface of the sheath, a second cavity in the filler with an opening at the outer surface of the filler and adjoining the distal aperture of the housing, and an optical fiber. The sensor delivery device may also include an outer layer that partially covers the second cavity with an aperture over the opening of the second cavity. | 01-23-2014 |
20140024951 | ANNULAR VISION SYSTEM - A vision system that may be used in a catheter or similar guiding instrument includes receptors distributed in an annular area. Each of the receptors has a field of view covering only a portion of an object environment, and the field of view of each of the receptors overlaps with at least one of the fields of view of the other receptors. A processing system can receive image data from the receptors and combine image data from the receptors to construct a visual representation of the entirety of the object environment. | 01-23-2014 |
20140031702 | TWO-WAY PHOTODYNAMIC THERAPY STEREO COLPOSCOPE FOR DIAGNOSING AND TREATING DISEASES OF THE FEMALE GENITAL TRACT - A stereo colposcope having variable linearity filter systems for both the excitation step and the suppression step, and can be used universally with any fluorescent compound or drug, as is the case of photodynamic diagnosis (PDD). The colposcope is a two-way colposcope because the treatment can be administered by an optical system or by a light-producing radio-frequency electrical current with a diathermic effect which facilitates photodynamic treatment. The colposcope produces ozone, which has an antiseptic effect when applied to the genital tract. A monitor provides for three-dimensional viewing through the use of two video cameras with the DLP (Digital Light Processing) and HDTV (High Definition Television) systems with the use of active lenses. | 01-30-2014 |
20140039324 | Thorascopic Heart Valve Repair Method and Apparatus - An instrument for performing thorascopic repair of heart valves includes a shaft for extending through the chest cavity and into a heart chamber providing access to a valve needing repair. A movable tip on the shaft is operable to capture a valve leaflet and a needle is operable to penetrate a capture valve leaflet and draw the suture therethrough. The suture is thus fastened to the valve leaflet and the instrument is withdrawn from the heart chamber transporting the suture outside the heart chamber. The suture is anchored to the heart wall with proper tension as determined by observing valve operation with an ultrasonic imaging system. | 02-06-2014 |
20140039325 | GUIDEWIRE WITH INTERNAL PRESSURE SENSOR - The present document describes a pressure guidewire comprising: a shaft tube with a proximal section; a middle section extending from the proximal section of the shaft tube, the middle section having greater flexibility than the proximal section; an inner hypotube installed substantially within the middle section for optimal mechanical properties; a pressure sensor with a communication means routed through the middle section and the proximal section; and a sensor housing for receiving the pressure sensor. There are also described methods for joining the inner hypotube to the shaft tube. | 02-06-2014 |
20140073950 | SCANNING ENDOSCOPIC DEVICE AND METHOD OF DECREASING DIRECTIVITY OF BEAM LIGHT IN SCANNING ENDOSCOPIC DEVICE - A scanning endoscopic device includes an optical fiber allowing irradiation light guided from a proximal side fiber portion to a distal side fiber portion to exit from a distal end thereof, and an actuator section placed to a distal direction side of the proximal fiber portion. The scanning endoscopic device includes a light absorbing section absorbing beam light having directivity in one direction, and the light absorbing section includes a black filling member filling a space between the proximal side fiber portion and an outer envelope tube in radial directions. | 03-13-2014 |
20140081150 | METHODS FOR FABRICATION OF SUBSTRATES FOR SURFACE ENHANCED RAMAN SPECTROSCOPY - Methods for fabricating metal nano-particle embedded enhancement substrates used for surface enhanced Raman spectroscopy (SERS) including ion implanting metal nano-particles into the substrate and etching the substrate to partially expose the metal nano-particles. The resulting material is useful as a SERS substrate for detection of molecules adsorbed on it by surface enhanced Raman spectroscopy. | 03-20-2014 |
20140081151 | CATARACT REMOVAL DEVICE AND INTEGRATED TIP - The present invention is directed to an apparatus and method for assisted removal of the cortex, capsule polishing and destruction and/or removal of other intraocular structures. More particularly, the present invention is directed to a surgical apparatus configurable for removal of the cortex and the polishing of the capsule during cataract extraction surgery. | 03-20-2014 |
20140107496 | SENSING CATHETER EMITTING RADIANT ENERGY - A sensing catheter having an outer flexible sheath and a proximal section containing a sensing system having a sensing means, a radiant energy providing means and radiation transmitting means, preferably all housed within a fluid channel. | 04-17-2014 |
20140114196 | MEASUREMENT PROBE, BIO-OPTICAL MEASUREMENT APPARATUS AND BIO-OPTICAL MEASUREMENT SYSTEM - A measurement probe has a fiber bundle formed by irregularly bundling a plurality of optical fibers, is detachably connected to a bio-optical measurement apparatus performing optical measurement to a biological tissue that is an object to be measured, and includes a recording unit | 04-24-2014 |
20140114197 | Probe - A probe is shown. According to one implementation, the following is included at a tip of the probe, as the optical system. A first optical fiber system forms an irradiating light guiding path to guide irradiating light. A second optical fiber system forms a receiving light guiding path to guide measuring light. A condenser lens system is positioned opposed to the first optical fiber system and the second optical fiber system, and the irradiating light is irradiated thereon and the measuring light is condensed. An optical axis of the condenser lens system, a central axis of a light emitting end of the first optical fiber system, and a central axis of a light receiving end of the second optical fiber system are positioned so a straight line which passes through two axes does not pass through a remaining axis. | 04-24-2014 |
20140114198 | Optical Connector Plug, Optical Probe, And Optical System - Provided is an optical connector plug of which housing is provided with: a first member that has at least a lower surface section that covers the lower side of a providing space in which an optical fiber and a ferrule are provided, a half of a back surface section from which the optical fiber is led out, and a half of a front surface section from which the ferrule is led out, and is composite-molded out of a thermoplastic resin; and a second member that has at least an upper surface section that covers the upper side of the providing space, the remaining half of the back surface section and the remaining half of the front surface section, and is composite-molded out of a thermoplastic resin into the same shape as the first member. | 04-24-2014 |
20140121535 | CONNECTOR FOR USE WITH A PROSTATE MEASUREMENT SYSTEM - Systems and methods are provided herein that generally involve measuring a prostate or other object. In some embodiments, a membrane can be sealed over a digit extension to form a closed volume. The closed volume can be inflated via an inflation tube, and a reference pattern can be disposed within the closed volume along with a measurement assembly. In use, a user can put on the glove, position the membrane in proximity to a rectal wall overlying a prostate, and inflate the membrane. As the user slides their finger across the rectal wall, optical fibers in the measurement assembly can move relative to a reference pattern, and a controller can sense light reflected through the fibers from the reference pattern. The controller can calculate or estimate various attributes of the prostate based on the reflected light, such as the palpable surface width or volume. | 05-01-2014 |
20140121536 | CONTROLLER FOR MEASURING PROSTATE VOLUME - Systems and methods are provided herein that generally involve measuring a prostate or other object. In some embodiments, a membrane can be sealed over a digit extension to form a closed volume. The closed volume can be inflated via an inflation tube, and a reference pattern can be disposed within the closed volume along with a measurement assembly. In use, a user can put on the glove, position the membrane in proximity to a rectal wall overlying a prostate, and inflate the membrane. As the user slides their finger across the rectal wall, optical fibers in the measurement assembly can move relative to a reference pattern, and a controller can sense light reflected through the fibers from the reference pattern. The controller can calculate or estimate various attributes of the prostate based on the reflected light, such as the palpable surface width or volume. | 05-01-2014 |
20140121537 | TRIAXIAL FIBER OPTIC FORCE SENSING CATHETER - A fiber optic force sensing assembly for detecting forces imparted at a distal end of a catheter assembly. The structural member may include segments adjacent each other in a serial arrangement, with gaps located between adjacent segments that are bridged by flexures. Fiber optics are coupled to the structural member. In one embodiment, each fiber optic has a distal end disposed adjacent one of the gaps and oriented for emission of light onto and for collection of light reflected from a segment adjacent the gap. The optical fibers cooperate with the deformable structure to provide a change in the intensity of the reflected light, or alternatively to provide a variable gap interferometer for sensing deformation of the structural member. In another embodiment, the gaps are bridged by fiber Bragg gratings that reflect light back through the fiber optic at central wavelengths that vary with the strain imposed on the grating. | 05-01-2014 |
20140121538 | NEEDLE WITH AN OPTICAL FIBER INTEGRATED IN AN ELONGATED INSERT - A needle is proposed including a cannula or hollow shaft with a multilumen insert inside. The insert comprises at least two lumen. Both the insert as well as the cannula have bevelled ends. In the insert substantially straight cleaved fibers are present that may be connected at the proximal end to a console. At least one of the distal fiber ends in the insert may protrude more than half the fiber diameter out of the insert. Furthermore, the bevel angle of the insert is different from the bevel angle of the cannula such that combination cannula and insert is such that the fiber ends do not protrude the bevel surface of the cannula. | 05-01-2014 |
20140135630 | OPTICAL SPECTROSCOPIC INJECTION NEEDLE - An optical spectroscopic injection needle assembly. According to one embodiment, the assembly may include an injection needle, a light source, a spectrometer, a computer and an indicator. The injection needle, in turn, may include a hollow outer needle, a hollow inner needle, a pair of optical fibers, an inner catheter, an outer catheter, an inner hub and an outer hub. The proximal end of the outer needle may be fixedly mounted within the distal end of the inner catheter. The distal end of the inner hub may be fixedly mounted on the proximal end of the inner catheter, the proximal end of the inner hub being suited for connection to a syringe. The inner needle, as well as the distal ends of the optical fibers, may be positioned within the outer needle and may be held in place by an optical bonding material. The proximal ends of the optical fibers may extend from a side arm of the inner hub, one fiber may be coupled to the light source, the other fiber may be coupled to the spectrometer. The inner catheter and the outer needle may be slidably mounted within the outer catheter to permit the outer needle to be selectively extended or retracted from the distal end of the outer catheter. The outer hub may be fixedly mounted on the proximal end of the outer catheter. In use, as the outer needle may be inserted into a tissue, the tissue may be illuminated and the reflected light may be detected and compared to standards for various tissue types. The results of the comparison may then be indicated. | 05-15-2014 |
20140142436 | Interface Devices, Systems and Methods for Multimodal Probes - In one aspect, the invention relates to one or more rotatable elements and one or more stationary element such that the elements are arranged along a common axis of rotation co-linear with or substantially parallel to an optical path. The optical path is a portion of a sample arm of an interferometer. Further, the rotatable and stationary elements are configured to couple electrical signals and optical signals between a data collection probe and an interface unit or other component of an imaging system. In one embodiment, the data collection probe is a combination ultrasound and OCT probe. In one aspect, the invention relates to a rotary joint in which the optical fiber and a fiber optic rotary joint lie in the center of one or more conductive elements of an electrical rotary joint which are annularly disposed around one or both of the optical fiber and optical rotary joint. | 05-22-2014 |
20140180133 | SCANNING ENDOSCOPIC IMAGING PROBES AND RELATED METHODS - An injection device with integrated imaging capability may include a hollow, tubular needle, an optical fiber disposed in parallel to the needle, a detector, a lens structure for focusing light coupled into the lens structure from the optical fiber at a focus beyond the distal end of the needle, and an imaging engine for processing a signal received from the detector via the optical fiber and the lens structure so as to generate an image of a region about the focus. | 06-26-2014 |
20140180134 | IMAGING CATHETER FOR IMAGING FROM WITHIN BALLOON - The invention generally relates to balloon catheters for vascular intervention and particularly to devices for imaging from within a balloon. The invention provides a balloon catheter with an imaging device inside the balloon and capable of viewing a treatment site through a wall of the balloon. The device allows a physician to both view the affected site within the vessel and to inflate the balloon at the location that is in view, thus allowing the balloon to be deployed with good positioning and efficiency while minimizing a stiff length of the catheter to give it good maneuverability. | 06-26-2014 |
20140180135 | CHRONIC TOTAL OCCLUSION CATHETER - The present invention generally relates to forward imaging devices for imaging the inside of a vessel and associated methods. The invention can involve an elongated body configured to fit within the vessel of a lumen and at least one imaging sensor located on the elongated body configured to image an object in a forward direction. | 06-26-2014 |
20140187970 | OPTICAL PROBE APPARATUS, SYSTEMS, METHODS FOR GUIDING TISSUE ASESSMENT - An exemplary system can be provided for obtaining information associated with at least one tissue. The exemplary system can include at least one waveguide first arrangement which can provide at least one first radiation to the tissue(s), and which can receive at least one optical second radiation from the at least one tissue. Further, at least one configuration can be provided that can transceive at least one electrical signal to and from at least one portion of the system. In addition, at least one computing second arrangement can be provided which may configured to obtain the information based on the second radiation and data corresponding to the electrical signal(s). The data can comprise a position of the portion(s). | 07-03-2014 |
20140213911 | NEEDLE DEVICE WITH AN OPTICAL FIBER INTEGRATED IN A MOVABLE INSERT - A needle device according to the invention comprises a hollow shaft, an elongated insert and an operating means. The hollow shaft has a first distal end portion with a bevel, the elongated insert has a second distal end portion and is movably arranged within the hollow shaft, and the operating means is shiftable between a first condition and a second condition. Furthermore, the operating means is interconnected with the elongated insert, so that the second distal end portion is located within the hollow shaft and proximally to the bevel, when the operating means is in the first condition, and that the second distal end portion is located outside the hollow shaft and distally to the bevel, when the operating means is in the second condition. | 07-31-2014 |
20140236024 | MEDICAL PROBE WITH MULTI-FIBER LUMEN - The present invention relates to a medical probe which consists of a cannula with a multilumen stylet inside. The multilumen contains at least two lumen. Both the multilumen as well as the cannula may have beveled ends. In the lumen straight optical fibers (i.e.no angle end face) are present that can be connected at the proximal end to a console. The cannula, multilumen, fiber system forming the medical probe comprises at least in one of the lumen of the multilumen more than one optical fiber. Preferably the source and detector fibers for the fluorescence detection are contained in one single lumen of the multilumen. | 08-21-2014 |
20140243687 | SHAPE SENSING DEVICES FOR REAL-TIME MECHANICAL FUNCTION ASSESSMENT OF AN INTERNAL ORGAN - A system and method for functioning organ assessment include a sensing enabled flexible device ( | 08-28-2014 |
20140243688 | FLUID TEMPERATURE AND FLOW SENSOR APPARATUS AND SYSTEM FOR CARDIOVASCULAR AND OTHER MEDICAL APPLICATIONS - Apparatus ( | 08-28-2014 |
20140276108 | TISSUE IMAGING AND IMAGE GUIDANCE IN LUMINAL ANATOMIC STRUCTURES AND BODY CAVITIES - Navigational imaging system and method for use in branched luminal structure. Flexible, spatially steerable probe is equipped with forward- and side-imaging mutually complementing means to enable sub-surface imaging, quantitative determination of probe's positioning with respect to anatomical identifiers of structure, forming 3D image of structure in a volume defined by the imaging means, and positioning of probe in registration with a 3D coordinate system that is independent from the structure. Method includes determining anatomical identifiers of luminal structure branches based on 3D and sub-surface images, assigning such identifiers as fiducial points, and correlating the determined identifiers with those obtained from anatomical model to select target branch for further steering the probe. Optionally, data representing a distance between a branch of lumen from fiducial point and angular orientation of the branch is extracted from complete 3D and quantitative image of lumen obtained during a pull-back of probe along the lumen. | 09-18-2014 |
20140276109 | PRESSURE SENSING GUIDEWIRE - Medical devices and methods for making and using medical devices are disclosed. An example medical device includes a pressure sensing guidewire. The pressure sensing guidewire may include a tubular member having a proximal portion and a distal portion. The distal portion may have a plurality of slots formed therein. The distal portion may have a first wall thickness along a first region and a second wall thickness different from the first wall thickness along a second region. A pressure sensor may be disposed within the distal portion of the tubular member. | 09-18-2014 |
20140276110 | IMAGING GUIDEWIRE SYSTEM WITH FLOW VISUALIZATION - The invention is a system comprising a guidewire having expanded imaging capabilities and a processor for processing the image data and causing relevant information, such as flow, to be displayed. The system is configured to cause image data to be processed and reconfigured in a user friendly format, e.g., color-coded, to provide details of flow and device placement within a biological lumen. | 09-18-2014 |
20140276111 | LOW COST MEDICAL IMAGING SYSTEMS AND METHODS - A medical imaging system, the medical imaging system may include a non-coherent fiber bundle that comprises multiple fibers; wherein each of the multiple fibers has a distal end and a proximal end; at least one lens optically coupled to the non-coherent fiber bundle; an imaging sensor that is arranged to receive light received from the non-coherent fiber bundle and to generate detection signals; and a non-volatile memory module that stores mapping information that associates between locations of distal ends and proximal ends of the multiple fibers. | 09-18-2014 |
20140309536 | CATHETER WITH FLUSH VALVE AND RELATED SYSTEMS AND METHODS - In part, the invention relates to a catheter suitable for flushing a vessel. The catheter can include separated lumens and components that improve image data collection. In one embodiment, the catheter includes a catheter wall; a distal portion defining a distal lumen ( | 10-16-2014 |
20140316281 | NOISE SUBTRACTION FOR INTRA-BODY FIBER OPTIC SENSOR - An optical source can generally provide optical energy having phase noise. Such phase noise, when demodulated using an intravascularly-deliverable optical fiber transducer, can be indistinguishable from a signal of interest. Apparatus or techniques can include using one or more of a reference optical cavity or a delay line, such as to obtain information indicative of the phase noise of the optical source. Such information can then be reduced or suppressed from other information obtained from the intravascularly-deliverable optical fiber transducer, such as to improve a signal-to-noise (SNR) ratio of a sensing system including the intravascularly-deliverable optical fiber transducer. | 10-23-2014 |
20140316282 | OPTICAL MICROSCOPY PROBE FOR SCANNING MICROSCOPY OF AN ASSOCIATED OBJECT - The present invention discloses an optical microscopy probe ( | 10-23-2014 |
20140323877 | MEDICAL IMAGING PROBE WITH ROTARY ENCODER - The present invention provides minimally invasive imaging probe having an optical encoder integrated therewith for accurately measuring or estimating the rotational velocity near the distal end of the medical device, such as an imaging probe which undergoes rotational movement during scanning of surrounding tissue in bodily lumens and cavities. | 10-30-2014 |
20140323878 | SCANNING PROBE, SCANNING OBSERVATION SYSTEM, INTEGRATED ENDOSCOPE, AND INTEGRATED ENDOSCOPE SYSTEM - An optical fiber that transmits scanning light to a subject; a housing holding the optical fiber; a vibration element fixed to an exit end part of the fiber and vibrating periodically the exit end part so that the scanning light emitted from the exit end part scans on the subject in a predetermined trajectory; a hollow tube formed so an inner circumferential surface of the hollow tube positioned outside a moving range of the exit end part and the vibration element surrounds an entire circumference of the exit end part and a movable part of the vibration element; a thermal detection sensor detecting temperature in a hollow space of the hollow tube; and a heating element laid on one of the inner and outer circumferential surface of the hollow tube and increases the temperature in the hollow space in response to the temperature detected by the thermal detection sensor. | 10-30-2014 |
20140330131 | METHOD OF AND A SYSTEM FOR CHARACTERISING A MATERIAL - A system for characterising a material is provided. The system includes an optical sensor including an optical waveguide, the optical waveguide having first and second ends and being characterised by having a numerical aperture greater than or equal to 0.2, and a microresonator including an optically active material, the microresonator being positioned in an optical near field of an end face of the first end of the optical waveguide such that the optically active material is excitable by light. The system further includes a light source for exciting the optically active material of the microresonator so as to generate whispering gallery modes (WGMs) in the microresonator and a light collector for collecting an intensity of light that is associated with the WGMs excited in the microresonator. | 11-06-2014 |
20140350412 | Delivery Of Biological Compounds To Ischemic And/Or Infarcted Tissue - The delivery of biological compounds to ischemic and/or infarcted tissue are described herein where such a system may include a deployment catheter and an attached imaging hood deployable into an expanded configuration. In use, the imaging hood is placed against or adjacent to a region of tissue to be imaged in a body lumen that is normally filled with an opaque bodily fluid such as blood. A translucent or transparent fluid, such as saline, can be pumped into the imaging hood until the fluid displaces any blood, thereby leaving a clear region of tissue to be imaged via an imaging element in the deployment catheter. Additionally, any number of therapeutic tools can also be passed through the deployment catheter and into the imaging hood for performing any number of procedures on the tissue for identifying, locating, and/or accessing ischemic and/or infarcted tissue. | 11-27-2014 |
20140371602 | OPTICAL MEASURING DEVICE AND FIBER BUNDLE ASSOCIATION METHOD - An optical measuring device includes: a light source unit; a measurement probe including a fiber bundle, an illumination fiber that illuminates a living tissue with a illumination light, and a plurality of light-receiving fibers that receives return light of the illumination light reflected and/or scattered at the living tissue; a detection unit that receives the return light of the illumination light detected by the plurality of respective light-receiving fibers, and performs photoelectric conversion to detect respective signal intensities; and an association unit that associates the respective signal intensities detected by the detection unit with distances from the illumination fiber to the respective light-receiving fibers on an end face of a distal end portion of the measurement probe, when light having an intensity gradient around the illumination fiber is projected to the end face of the distal end portion of the measurement probe. | 12-18-2014 |
20140378845 | APPARATUS, DEVICES AND METHODS FOR OBTAINING OMNIDIRECTIONAL VIEWING BY A CATHETER - An apparatus for obtaining information regarding a biological structure(s) can include, for example a light guiding arrangement which can include a fiber through which an electromagnetic radiation(s) can be propagated, where the electromagnetic radiation can be provided to or from the structure. An at least partially reflective arrangement can have multiple surfaces, where the reflecting arrangement can be situated with respect to the optical arrangement such that the surfaces thereof each can receive a(s) beam of the electromagnetic radiations instantaneously, and a receiving arrangement(s) which can be configured to receive the reflected radiation from the surfaces which include speckle patterns. | 12-25-2014 |
20140378846 | OMNI-DIRECTIONAL VIEWING APPARATUS - There is provided a new apparatus, system, and method of use for laser speckle imaging that allows for omni-directional viewing. The omni-directional viewing can include a reflector and switches configured for switching the illumination on the lumenal tissue such that the light reflected from the lumenal tissue at any given time is reflected from one or more substantially non-overlapping sections of a lumenal tissue. This apparatus may be particularly useful for tissue analysis such as analysis of vulnerable plaque. | 12-25-2014 |
20140378847 | MEASUREMENT PROBE - A measurement probe is configured to be detachably connected to an optical measurement apparatus for optically measuring a living tissue and includes: an illuminating fiber configured to apply illumination light to the living tissue; a plurality of light receiving fibers configured to receive, at different positions, the backscattering light which is applied by the illuminating fiber and backreflected and/or backscattered from the living tissue; and a support section that is substantially cylindrical and configured to make a distance from each distal end of the illuminating fiber and the plurality of light receiving fibers to the living tissue constant, and permit the illumination light to pass through at least a part of a side surface thereof. An illumination area of the illumination light applied by the illuminating fiber on the living tissue is larger than the area of a distal end of the support section. | 12-25-2014 |
20150045678 | Probe - At the leading end of a probe ( | 02-12-2015 |
20150051499 | MEDICAL DEVICE SYSTEMS INCLUDING AN OPTICAL FIBER WITH A TAPERED CORE - A medical device system may include a guidewire including a distal pressure sensor and a proximal end. A connector cable may be coupled to the proximal end of the guidewire and may have a proximal end. A signal conditioning unit may be coupled to the proximal end of the connector cable. One or more of the guidewire, the connector cable, and the signal conditioning unit may include an optical fiber having a core with a tapered outer diameter. | 02-19-2015 |
20150057553 | INTERNAL OPTICAL SPECTROSCOPE AND METHOD FOR REAL TIME IN-SITU DIAGNOSIS IN LIVING CELLS - The present application relates to an internal optical spectroscope comprising: a needle sleeve insertable into and removable from targeted living tissue; a shaft housed by the needle sleeve including at least one v-shaped trough including an aft side and a next-to-aft side; a light source comprising variable light wave lengths of both visible and near infrared light; at least one light transmission fiber comprising a transmitting end; at least one light detector fiber comprising a receptive end; and data processor. The present application also relates to a method of performing an optical biopsy in situ. | 02-26-2015 |
20150080743 | INTRAVASCULAR ROTARY BLOOD PUMP - An intravascular rotary blood pump possesses a catheter ( | 03-19-2015 |
20150080744 | METHOD AND SYSTEM FOR ASSESSING PRETERM BIRTH AND OTHER PATHOLOGIES - The present invention is directed to an all-fiber-optic scanning endomicroscope capable of high-resolution second harmonic generation (SHG) imaging of biological tissues. The endomicroscope has an overall 2.0 mm diameter and consists of a single customized double-clad fiber, a compact rapid two-dimensional beam scanner, and a miniature compound objective lens for excitation beam delivery, scanning, focusing, and efficient SHG signal collection. Endomicroscopic SHG images of murine cervical tissue sections at different stages of normal pregnancy reveal progressive, quantifiable changes in cervical collagen morphology with resolution similar to that of bench-top SHG microscopy. A device according to an embodiment of the present invention can also be used to assess other pathologies, such as cancer. fibrosis, and inflammation. The present invention allows for diagnosis, monitoring of the effect of therapeutics, and surgical or interventional guidance. The present invention enables visualization of histology in-vivo, in the patient, and is label-free. | 03-19-2015 |
20150088001 | Illumination System for Endoscopic Applications - The present disclosure relates to an illumination system for endoscopic applications comprising at least one substantially monochromatic light source having a predefined central wavelength between 400 and 500 nm or between 500 and 550 nm, an optical transmission path adapted to guide light emanating from the light source to an endoscopic region of examination, and an optical band-rejection filter, wherein the illumination system is adapted to illuminate at least a part of the region of examination by generating autofluorescence in surrounding tissue, and the band-rejection filter is adapted to attenuate at least said light source wavelength to a viewer and wherein said light source is the single light source in the illumination system. A further embodiment relates to an endoscope for examining a body cavity comprising tissue, the endoscope comprising a source of light consisting of a substantially monochromatic light source having a predefined central wavelength between 400 and 550 nm, means for guiding light from the substantially monochromatic light source towards at least a part of the tissue, and at least one band-rejection filter adapted to attenuate at least said central wavelength, wherein the substantially monochromatic light source is configured to generate autofluorescence in the irradiated tissue such that the irradiated tissue is observable, and wherein the endoscope is configured to display at least a part of the irradiated tissue through said band-rejection filter. A system for photodynamic diagnosis and/or therapy of bladder cancer is further disclosed herein. | 03-26-2015 |
20150099983 | Tapered Optical Guide - Disclosed are various embodiments for a tapered optical guide which may be used to guide light from a light source to a tubular element. Light guided through the tubular element may be projected onto a cavity surface for imaging. The tapered optical guide may comprise multiple optical fibers defining an elongated body having an elongated channel. The elongated body may converge from a first end to a second end such that a first end body diameter is larger than a second end body diameter. | 04-09-2015 |
20150099984 | OPTICAL COHERENCE TOMOGRAPHY WITH GRADED INDEX FIBER FOR BIOLOGICAL IMAGING - A system for optical coherence tomography includes a source of optical radiation, an optical fiber, and a graded index fiber attached to a distal end of the optical fiber. The optical fiber and the graded index fiber are together configured to provide a common path for optical radiation reflected from a reference interface at a distal end of the graded index fiber and from a target. | 04-09-2015 |
20150105669 | Optoelectronic Device for The Detection of Uterine Cervical Cancer, Comprising A Self-Positioning Attachment - The present invention relates to a portable device which analyses cervical tissue using two simultaneous measurements, namely an electrical measurement and an optical measurement. The aforementioned device examines different areas of cervical tissue, taking electrical measurements from same in different frequency ranges and optical measurements in three different wavelengths. Once the measurements have been obtained, they are processed by a configurable device or microcontroller in accordance with mathematical formulae obtained from multiple measurements taken from healthy and cancerous tissues. Three possible responses can be obtained from the processing of the measurements: healthy tissue, cancerous tissue or the presence of human papilloma virus. The inventive device can be used as a self-detection device since it is equipped with an attachment for positioning same upon detection of proximity to the cervix in order to take a correct measurement. The aforementioned attachment also comprises an accessory which can he used to perform the alternative method in which a cell sample is taken and sent for laboratory analysis in order to obtain an immediate response, which can be used by the user or by another person. The purpose of the invention is to provide a minimally-invasive diagnostic device for Papanicolaou testing and to offer an alternative method to the examination that requires the taking of a cell sample. | 04-16-2015 |
20150119723 | DIAGNOSTIC PROBE AND INSPECTION APPARATUS COMPRISING SAME - A diagnostic probe includes a tube having a predetermined length; a deformable cylinder installed by being fitted into the tube such that both ends thereof are exposed to an outside; a guide needle formed in a hollow shape, having a predetermined length, and arranged to surround an outer circumference of the tube; a direction controller connected with an end of the tube, and positioning or vibrating the tube in a radial direction by receiving power from the outside; a vibration generator vibrating the cylinder in an axial direction by receiving power from the outside; and a handle unit connected with the other end of the tube, and connected with the direction controller and the vibration generator. | 04-30-2015 |
20150119724 | CATHETER SYSTEMS AND METHODS FOR DETERMINING BLOOD FLOW RATES WITH OPTICAL SENSING - Catheter systems and methods for determining blood flow rates based on light reflection measurements. The catheter may include a lumen extending between a proximal end of the catheter and a distal end of the catheter. The catheter may include fluid infusion openings at the distal end region of the catheter that are configured to permit the indicator fluid to exit the catheter from the lumen. The catheter system may include an optical fiber having one or more sensors thereon for sensing light reflected by blood particles in a body vessel lumen. A blood flow rate may be determined based on the sensed light reflected by blood particles in the body vessel lumen. | 04-30-2015 |
20150126874 | OPTICAL SWITCHING UNIT, OPTICAL PROBE INCLUDING THE SAME, AND MEDICAL IMAGING APPARATUS INCLUDING OPTICAL PROBE - Provided are an optical switch, an optical probe including the optical switch, and a medical imaging apparatus including the optical probe. The optical probe includes a probe body that is configured to be insertable into a body cavity, and an optical switch that is disposed in the probe body and includes a first region formed of a material having a first refractive index, and a second region that forms an interface with the first region and is configured to have a fluid is introduced into the second region, wherein the optical switch is configured to change a path of propagation of incident light according to a second refractive index of the second region. | 05-07-2015 |
20150141842 | INTRAVASCULAR ROTARY BLOOD PUMP - An intravascular rotary blood pump possesses a catheter ( | 05-21-2015 |
20150141843 | OPTICAL FIBER PRESSURE SENSOR - The disclosure includes an apparatus for insertion into a body lumen. The apparatus can comprise an optical fiber pressure sensor. The optical fiber pressure sensor can comprise an optical fiber configured to transmit an optical sensing signal. A temperature compensated Fiber Bragg Grating (FBG) interferometer can be in optical communication with the optical fiber. The FBG interferometer can be configured to receive a pressure and modulate, in response to the received pressure, the optical sensing signal. A compliant member such as a sensor membrane can be in physical communication with the FBG interferometer. The membrane configured to transmit the received pressure to the FBG interferometer. | 05-21-2015 |
20150141844 | OPTOGENETIC PROBE - An optogenetic probe, an optogenetic system, and a method for fabricating an optogenetic probe are provided. The optogenetic probe has a proximal and a distal end, and includes an elongated body made of a body glass material and extending longitudinally between the proximal and distal ends. The optogenetic probe also includes at least one optical channel, each including an optical channel glass material having a refractive index larger than a refractive index of the body glass material, so as to guide light therealong. The optogenetic probes also includes at least one electrical channel, each including an electrical channel structure having an electrical conductivity larger than the electrical conductivity of the body glass material, so as to conduct electricity therealong. The optogenetic probe further includes at least one fluidic channel, each adapted for transporting fluid therealong. Each optical, electrical and fluidic channel extends longitudinally within the elongated body. | 05-21-2015 |
20150141845 | SYSTEM AND METHOD FOR VISUALIZING TISSUE DURING ABLATION PROCEDURES - Systems for visualizing cardiac tissue during an ablation procedure are provided. In general, the systems include an imaging module configured to measure absorbance data at first and second wavelengths wherein the ratio of these absorbance values identifies the nature of the tissue (e.g., lesion, de novo tissue, etc.). The imaging module can also include a video system having at least two chips with corresponding bandpass filters centered at the first and second target wavelengths. The system can also include a processor and/or video monitor for combining the images produced by the various chips, determining treated and non-treated tissue based on the ratio of absorbance values at the target wavelengths, and displaying images of the treatment area. Methods of visualizing cardiac treatment areas during ablation procedures are also provided herein. | 05-21-2015 |
20150141846 | SYSTEM AND METHOD USEFUL FOR SARCOMERE IMAGING VIA OBJECTIVE-BASED MICROSCOPY - Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device. | 05-21-2015 |
20150141847 | SYSTEMS AND METHODS FOR HYPERSPECTRAL ANALYSIS OF CARDIAC TISSUE - Systems and methods for hyperspectral analysis of cardiac tissue are provided. In some embodiments, a method for visualizing ablation lesions includes illuminating at one or more illumination wavelengths a surface of tissue having an ablation lesion; collecting a spectral data set comprising spectral images of the illuminated tissue acquired at multiple spectral bands each at one or more acquisition wavelengths; distinguishing between the ablation lesion and an unablated tissue based on one or more spectral differences between the ablation lesion and unablated tissue; and creating a composite image of the tissue showing the ablation lesion and the unablated tissue. | 05-21-2015 |
20150141848 | TISSUE ILLUMINATION SYSTEM, DEVICE, AND METHOD - Implementations of the tissue illumination systems, devices, and methods disclosed herein take advantage of the translucent nature of tissue to reveal properties by light transmission, for example, tissue type, tissue transition locations, underlying structures, and the like, that are not easily distinguished by reflected light. Illuminating a back-side of a translucent tissue permits a user to distinguish between different types of tissue, tissue transition locations, and/or structures that are difficult or impossible to discern under overhead or front-side illumination. Implementations include a light source that is positionable behind a tissue or disposable within a body cavity or duct, for example, within a heart ventricle. | 05-21-2015 |
20150148688 | NEURAL PROBE ARRAY HAVING WAVEGUIDE MEMBER WITH IMPROVED WAVEGUIDE CHARACTERISTICS AND MANUFACTURING METHOD THEREOF - A neural probe array includes a probe body that is implanted into a subject, a fixture body to support a rear end of the probe body, a cladding extending in a lengthwise direction of the probe body in an upper part of the probe body, and an optical waveguide member installed on the cladding along the cladding, and the cladding is embedded in a recessed cavity formed in the upper part of the probe body. A method for manufacturing the neural probe array includes forming the cavity in an upper part of a first substrate, embedding the cladding in the cavity, forming the optical waveguide member on the cladding along the cladding, and forming the probe body by cutting the first substrate off. | 05-28-2015 |
20150148689 | Optical Fiber Assembly, Method Of Fabricating Same, And Probe - An optical fiber assembly includes optical fibers, an array member, an adhesive part, a cylindrical member and a fixing member. The fibers are inserted into the array member, and the array member is inserted into a cylindrical part of the cylindrical member. The adhesive part is disposed on one-end side of the array member. The fibers extend through the one end. The cylindrical part and the fixing member are fixed to each other in a state in which (i) the array member is sandwiched between a terminal part of the cylindrical member and the fixing member in an axial direction and (ii) the array member is positioned in the axial direction in relation to the cylindrical part. Thereby, the array member and the adhesive part are housed in a structure constituted of the cylindrical member and the fixing member. | 05-28-2015 |
20150148690 | METHOD AND SYSTEM FOR DETERMINING A SHAPE OF A LUMEN IN AN ANATOMICAL STRUCTURE - A medical system provides navigation assistance to a surgeon so that the surgeon may navigate a flexible medical device through linked passages of an anatomical structure to a target in or adjacent to the anatomical structure. As the medical device moves through the linked passages, images are captured by an image capturing element at its distal end and pose and shape information for the medical device are received from sensors disposed in the medical device. A 4-D computer model of the anatomical structure is registered to the medical device using one or both of 4-D shape registration and virtual camera registration so that the captured image and a virtual image generated from the perspective of a virtual camera are registered to each other and displayed while providing an indication of a navigational path to the target. | 05-28-2015 |
20150289766 | ORBITAL ANGULAR MOMENTUM AND FLUORESCENCE-BASED MICROENDOSCOPE SPECTROSCOPY FOR CANCER DIAGNOSIS - An apparatus for performing an endoscopic procedure for detecting cancerous tissue includes a detection probe for detecting the cancerous tissue. The detection probe includes a first fiber for emitting an ultraviolet light beam having an orthogonal function applied thereto and a second fiber for receiving emissions from tissues responsive to the ultraviolet light beam emitted for the first fiber. An ultraviolet emission source generates the ultraviolet light beam. Orthogonal function circuitry applies the orthogonal function twist to the ultraviolet light beam. Detection circuitry detects fluorescence and orthogonal function within the emissions from the tissues received over the second fiber. | 10-15-2015 |
20150289772 | Implantable Pressure Monitor - There is provided an implantable pressure monitor having a fluid sack in contact with a body part of a patient where the fluid sack is retained to the body part by a pressure monitor housing that may have various attachment means. The fluid sack is filled with a liquid such as silicone oil. The pressure monitor housing has an opening that provides access to a fistula with a fluid valve that terminates through the fluid sack. A fiber optic pressure sensor is in contact with the liquid in the fluid sack by way of the fistula and fluid valve. In some embodiments of the present invention, an electronics module is incorporated with the implantable pressure monitor to provide telemetry, power, and the like. | 10-15-2015 |
20150289816 | DEVICE CONFIGURED FOR REAL-TIME PRESSURE SENSING - Medical devices, perfusion systems, and methods for detecting a pressure within a space in a subject and for perfusion of fluid into a space in a subject. The space may be a fluid-filled space, or a space that is depleted of fluid due to an obstruction to fluid flow into the space. Methods for forming the medical devices. | 10-15-2015 |
20150297088 | DISTRIBUTED PRESSURE SENSING SYSTEM FOR A MEDICAL DEVICE - The present disclosure describes a device and method for detecting distributed pressures along a medical device. The device includes an optical fiber that is helically wound around the flexible shaft of the medical device. Responsive to microbends caused by the application of a pressure to the optical fiber, attenuation occurs as light propagates down the optical fiber. The device detects the light attenuation and calculates the pressure exerted on the device. Accordingly, a physician can ensure pressure induced by the medical device does not surpass clinically safe levels. | 10-22-2015 |
20150327932 | Diagnostic and Feedback Control System for Efficacy and Safety of Laser Application for Tissue Reshaping and Regeneration - The efficacy and safety of laser medical treatments are ensured by performing a combination of measurement techniques to examine tissue properties in order to control characteristics of the laser treatments of cartilaginous tissues. In some aspects, a treatment tool is provided that is capable of taking and providing feedback relating to multiple measurements, including temperature measurements (in particular, radiometry), mechanical measurements, light scattering, speckle interferometry, optoacoustic measurements, and monitoring tissue electrical characteristics. The device is capable of providing feedback during the course of laser treatment of tissue to increase the safety and efficacy of treatment. | 11-19-2015 |
20150342530 | MINIMALLY INVASIVE MEDICAL INSTRUMENT - The present invention relates to a minimally invasive medical instrument ( | 12-03-2015 |
20150359525 | Optical guided vacuum assisted biopsy device - An interventional device, e.g. a Vacuum Assisted Biopsy (VAB) needle, incorporating optical fibers such that biological tissue in a volume at a side of the interventional device can be substantially completely optically probed by optical spectroscopy. In a VAB embodiment, a plurality of optical fiber pairs connected to respective optical ports, are placed at opposite positions along the suction cavity, and they are readout subsequently allowing to make a map of the tissue properties along the place where the tissue will be cut by the VAB needle. Based on decision software in an optical console, it can be determined whether the tissue present in the cutting cavity is completely normal tissue or not, prior to actually performing the biopsy on the tissue. In this way a well defined end point for VAB is created. In one embodiment, the optical fibers are arranged in a wall structure of a thin sleeve which fits onto existing VAB needles, thus allowing the VAB needle to be upgraded with an optical probing capability. | 12-17-2015 |
20160022159 | APPARATUS, SYSTEM AND METHODS FOR MEASURING A BLOOD PRESSURE GRADIENT - An apparatus, control system and methods are disclosed for directly measuring a blood pressure gradient, i.e. by real-time pressure measurements, with particular application for in situ measurement of transvalvular blood pressure gradients for the aortic valve and other heart valves, using minimally-invasive techniques. The apparatus takes the form of a multi-sensor assembly, enclosed within a micro-catheter or a steerable guidewire, and comprises a plurality of optical pressure sensors arranged along a length of the distal end portion, for measuring pressure simultaneously at each sensor location. For example, four MOMS optical pressure sensors, and optionally, a temperature and/or flow sensor, are incorporated into a distal end portion having a diameter of 0.89 mm or less, and preferably 0.46 mm or less. Beneficially, all sensors are optically coupled, via respective optical fibers, to an optical coupler at the proximal end of the multi-sensor apparatus, without requiring electrical connections. | 01-28-2016 |
20160029902 | CHRONIC TOTAL OCCLUSION CROSSING DEVICES WITH IMAGING - An imaging device includes a hollow flexible shaft having a central longitudinal axis and an imaging window therein. An optical fiber extends within the hollow flexible shaft substantially along the central axis. A distal tip of the optical fiber is attached to the hollow flexible shaft and aligned with the imaging window so as to transfer an optical coherence tomography signal through the imaging window. A handle is attached to the hollow flexible shaft configured rotate the hollow flexible shaft at speeds of greater than 1,000 rpm. | 02-04-2016 |
20160029961 | PRESSURE SENSING GUIDEWIRES - Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a medical device for measuring blood pressure. The medical device may include an elongated shaft having a proximal region and a distal region. An optical fiber may extend along the proximal region. An optical pressure sensor may be coupled to the optical fiber. The optical pressure sensor may be disposed along the distal region. A centering member may be coupled to the optical fiber and positioned adjacent to the optical pressure sensor. | 02-04-2016 |
20160038031 | Optical Coherence Tomography Probe for Crossing Coronary Occlusions - Systems and methods for controlling a guide with the aid of optical coherence tomography (OCT) data are described. A guide wire includes at least one optical fiber, a flexible substrate, and one or more optical elements. The at least one optical fiber transmits a source beam of radiation. The flexible substrate includes a plurality of waveguides. At least one of the plurality of waveguides transmits one or more beams of radiation away from the guide wire, and at least one of the plurality of waveguides receives one or more beams of scattered radiation that have been reflected or scattered from a sample. The multiplexer generates the one or more beams of exposure radiation from the source beam of radiation. The one or more optical elements at least one of focus and steer the one or more beams of radiation. | 02-11-2016 |
20160045101 | GUIDEWIRE - [Problem] To provide a guidewire that has good operability and that can perform procedures efficiently. | 02-18-2016 |
20160051131 | SCANNER FOR TWO-DIMENSIONAL OPTICAL SCANNING, MANUFACTURING METHOD THEREOF, AND MEDICAL IMAGING APPARATUS USING THE SAME - Provided are a scanner for two-dimensional optical scanning capable of implementing two-dimensional driving by one input signal without an additional structure for modulating a resonance frequency using modulation of the resonance frequency through asymmetry of the scanner itself, and a manufacturing method thereof. In addition, there is provided a manufacturing method of a scanner for two-dimensional optical scanning capable of implementing compact packaging through a micro electro mechanical systems (MEMS) process to miniaturize the scanner, such that it may be used in a micro-miniature system such as an endoscope and capable of increasing precision of the scanner and manufacturing the scanner in various shapes and at a low cost. Further, there is provided a medical imaging apparatus using a scanner for two-dimensional optical scanning capable of providing a medical image having improved quality without crosstalk between axes through separation of resonance frequencies. | 02-25-2016 |
20160066802 | PRESSURE-SENSING INTRAVASCULAR DEVICES, SYSTEMS, AND METHODS WITH WRAPPED PRESSURE-SENSING COMPONENT - Pressure-sensing intravascular devices, systems, and methods are provided. In some instances, the pressure-sensing intravascular devices include a cylindrical body having a proximal portion and a distal portion; a pressure-sensing component coupled to the distal portion of the cylindrical body, the pressure-sensing component being at least partially wrapped around a circumference of the cylindrical body; and a communication cable coupled to the pressure sensing component. The intravascular devices can be catheters and/or guidewire. Associated systems and methods are also provided. | 03-10-2016 |
20160081555 | MULTI-RANGE OPTICAL SENSING - The depth of an ablation lesion is assessed using a differential optical response of a catheter with multiple fiberoptic transmitters and receivers at the tip. To detect tissue optical response at shallow depths, closely-spaced transmitter/receiver pairs of optical fibers are used. To detect deeper tissue response, the same or a different transmitter can be used with another receiver that is relatively farther away. The distance between the transmitter and receiver is chosen depending on the desired depth of sensing. Plateauing or peaking of the optical signal during the course of ablation indicates an end point at a selected tissue depth. | 03-24-2016 |
20160089032 | PROBE ASSEMBLY AND END COVER - A probe assembly includes: a measurement probe having a plurality of optical fibers configured to propagate light, emit the light to a measurement target, and receive scattered light returned from the measurement target; and an end cover having: an endoscope holding portion configured to hold an insertion portion of an endoscope, the insertion portion being configured to be inserted into a body cavity of a subject; and a probe position defining portion configured to define a position of a distal end surface of the plurality of optical fibers of the measurement probe. | 03-31-2016 |
20160100762 | CATHETER FOR OPTICAL BIOPSY - A catheter for optical biopsy includes a forceps for tissue sampling on its distal end and a forceps control device, a light source and a device for imaging and analysis of a scanned tissue on its proximal end, with the distal and the proximal ends interconnected with an elongated sheath containing a Bowden with a control cable or wire and at least one optical fibre. The sheath, made of flexible plastic, provides a lengthwise channel for the Bowden placement, whereas the channel is open with a fissure along the full length of the sheath. | 04-14-2016 |
20160157727 | FIBER OPTIC SENSOR ASSEMBLY FOR SENSOR DELIVERY DEVICE - Methods and sensor delivery devices for monitoring a fluid pressure within a vascular structure, the devices including an elongated sheath sized for sliding along a guidewire, a sensor assembly including a fiber optic sensor, a housing surrounding the sensor, a first cavity between the distal end of the sensor and a distal aperture of the housing, a filler extending from at least the distal end of the housing distally and tapering inward toward the outer surface of the sheath, a second cavity in the filler with an opening at the outer surface of the filler and adjoining the distal aperture of the housing, and an optical fiber. The sensor delivery device may also include an outer layer that partially covers the second cavity with an aperture over the opening of the second cavity. | 06-09-2016 |
20160157738 | PRESSURE SENSING GUIDEWIRES - Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a medical device for measuring blood pressure. The medical device may include an elongated shaft having a proximal region and a distal region. An optical fiber may extend along the proximal region. The optical fiber may be secured to an inner surface of the shaft. An optical pressure sensor may be coupled to the optical fiber. The optical pressure sensor may be disposed along the distal region. A sealing member may be attached to the optical fiber and may have a surface engaged with the inner surface of the shaft. | 06-09-2016 |
20160183844 | Intra-Vascular Device With Pressure Detection Capabilities Using Pressure Sensitive Material - A laser catheter with a pressure sensor is provided according to embodiments of the invention. The pressure sensor may be coupled with the distal end of the laser catheter and may comprise any of various piezoelectric materials, for example Polyvinylidene Difluoride (PVDF). In various embodiments of the invention the pressure sensor is configured to detect pressure longitudinally and coaxially. The pressure sensor may provide an electric potential that is proportional to the vessel pressure and may be used to monitor and/or adjust laser parameters. In other embodiments the results from the pressure sensor may be used to determine the vessel size and/or the type of material being ablated. | 06-30-2016 |
20160374559 | Methods, Systems, and Devices for Imaging Microscopic Tumors - An imager for in vivo viewing of diseased tissue by way of fluorescently conjugated molecules. A generally planar imaging surface with a microlens array. The imager may be modular, such that a plurality of generally planar imaging surfaces can be used to image various aspects of disease tissue simultaneously. Certain implementations include an angle-selective imager, wherein light from substantially perpendicular to the plane of the imager is received, while incident light is selectively eliminated. | 12-29-2016 |
20160374563 | NEEDLE WITH OPTICAL FIBERS - Needle interventions are widely used in the field of oncology for taking biopsies of tissue in order to inspect whether tissue is cancerous or not. To make these interventions more reliable feedback of what kind of tissue is in front of the needle is required. A way to achieve this is by making use of optical spectroscopy. This requires integration of fibers into the needle. These fibers are used to deliver light to illuminate the tissue in front of the needle and to collect back the reflected light from the tissue. The present invention proposes to integrate the fiber distal ends in the slanted bevel of the needle in such a way that at least one source-detector fiber pair has a distance that is larger than the outer diameter of the needle. | 12-29-2016 |
20220133152 | METHOD FOR RELEASING A SUBSTANCE INTO A SUBJECT USING AN INSERTION ARRANGEMENT (as amended) - An exemplary tissue detection and location identification apparatus can include, for example, a first electrically conductive layer at least partially (e.g., circumferentially) surrounding a lumen, an insulating layer at least partially (e.g., circumferentially) surrounding the first electrically conductive layer, and a second electrically conductive layer circumferentially surrounding the insulating layer, where the insulating layer can electrically isolate the First electrically conductive layer from the second electrically conductive layer. A further insulating layer can be included which can at least partially surrounding the second electrically conductive layer. The first electrically conductive layer, the insulating layer, and the second electrically conductive layer can form a structure which has a first side and a second side disposed opposite to the first side with respect to the lumen, where the first side can be longer than the second side thereby forming a sharp pointed end via the first side at a distal-most portion. The exemplary configuration can be used for (a) determination/detection of a tissue type using impendence of the electrically conductive layers, and/or (ii) determination of a location of at least one portion or the insertion device/apparatus. Another exemplary apparatus can include, for example, a base structure comprising a lumen extending along a length thereof, and at least one optically-transmissive layer circumferentially surrounding the base structure and provided at least at a distal end of the base structure. For example, in operation, the optically-transmissive layer can be configured to transmit a particular optical radiation at the distal end thereof toward a target tissue. | 05-05-2022 |