Entries |
Document | Title | Date |
20080269615 | TRANSDUCER WITH MULTIPLE RESONANT FREQUENCIES FOR AN IMAGING CATHETER - A single transducer element that is capable of oscillation at a plurality of natural resonant frequencies may be used in an ultrasonic imaging catheter assembly including a catheter body configured to be inserted and guided through the vascular system of a living being, a lumen and a rotatable imaging core adapted to pass through the lumen, the imaging core including a flexible drive-shaft. Because the transducer element is capable of oscillation at a plurality of natural resonant frequencies, a user can switch from one frequency to another in order to improve the depth of field or resolution without having to switch out the catheter or imaging core. | 10-30-2008 |
20080287803 | INTRACARDIAC ECHOCARDIOGRAPHY IMAGE RECONSTRUCTION IN COMBINATION WITH POSITION TRACKING SYSTEM - A system and method to display a four-dimensional (4D) model of an imaged anatomy is provided. The system comprises a controller, and an imaging system including an imaging probe in communication with the controller. The imaging probe can acquire generally real-time, 3D image data relative to a direction of image acquisition along an imaging plane. The system also includes a tracking system in communication with the controller. The tracking system includes at least one tracking element integrated with the imaging probe. The system is operable to process the generally real-time, 3D image data acquired by the imaging probe relative to generally real-time tracking information acquired by the tracking system so as to display the 4D model of the imaged anatomy. | 11-20-2008 |
20080287804 | Ultrasound catheter having improved distal end - An ultrasound catheter has an elongate flexible catheter body having a lumen extending longitudinally therethrough, and an ultrasound transmission member extending longitudinally through the lumen of the catheter body. The ultrasound transmission member has a proximal end that is coupled to a separate ultrasound generating device, and a distal tip that is attached to the distal end of the ultrasound transmission member and which is located at the distal end of the catheter body. The distal tip has at least one dimensional step. The ultrasound transmission member is directly attached to the catheter body and/or to a guidewire tube, either directly or via an attachment device. The catheter has an additional radiopaque marker positioned on the distal end the catheter. | 11-20-2008 |
20090005689 | ULTRASOUND ENDOSCOPE - An ultrasound endoscope including, at a distal end of an insertion portion to be inserted to a body cavity, a distal rigid portion arranged forward of a flexible tube portion, an ultrasound transducer portion for scanning a plane which is parallel to forward side of a longitudinal center axis L1 of the distal rigid portion, and a treatment instrument insertion channel port opening in a distal-side end face of the distal rigid portion, with a longitudinal center axis L4 being parallel to the longitudinal center axis L1 of the distal rigid portion. | 01-01-2009 |
20090088648 | Methods and devices for image-guided manipulation or sensing or anatomic structures - Forward-looking ultrasound transducers are positioned at the tip of a transseptal catheter to facilitate transseptal puncture and interventions within the left atrium, pulmonary veins and mitral valve. Catheter devices and systems are guided by forward-looking ultrasound or optical coherence tomography imaging for penetrating from one location within a mammalian patient's body to another location, and/or performing diagnostic or therapeutic interventions. A penetrator, diagnostic, or interventional device (eg. probe, biopsy apparatus, electrode, needle) is positioned at the catheter tip and is advanceable from the catheter to a target location outside of the lumen in which the catheter is positioned. The imaging probe uses forward-looking ultrasound or optical coherence tomography that allows one to locate both the target and the medical device. The operator may then adjust the position and/or rotational orientation of the catheter such that when the medical device is subsequently advanced it will either enter or be deployed at the target location. | 04-02-2009 |
20090093726 | CARDIOVASCULAR ULTRASOUND PROBE AND ULTRASOUND IMAGE SYSTEM - An ultrasound image system includes: an ultrasound probe; a signal-transmitting-and-receiving section for transmitting signals to the ultrasound probe and receiving signals from the ultrasound probe; and an image-displaying section for displaying an ultrasound image obtained by means of the signal-transmitting-and-receiving section, wherein the ultrasound probe includes: a tip section which is provided with: a plurality of ultrasound-wave-transmitting sections for transmitting ultrasound waves to an tissue; and a plurality of ultrasound-wave-receiving sections for receiving signals reflected by the tissue and obtained by means of the ultrasound-wave-transmitting section; and a flexible catheter tube provided with: a first lumen capable of inserting an instrument for treating the tissue from a proximal end section of the ultrasound probe therethrough and exposing the instrument at a position facing the tip section; and a second lumen having an maneuvering wire inserted therethrough and being capable of moving the tip section. | 04-09-2009 |
20090105597 | Image guided catheter having remotely controlled surfaces-mounted and internal ultrasound transducers - A remotely manipulatable ultrasound transducer element or transducer array permits an operator of an ultrasound system to be remotely located from a patient and yet remotely control the location of the element or array on a patient's body such as on the skin surface or within a body cavity. The transducer element or transducer array associated with motors and control circuits comprises an assembly within a housing for fixation to or within a human body. The transducer assembly may be fixed to a ring surrounding an image guided catheter and may rotate about the image guided catheter or move along its length to an anchoring position proximate the surface skin. Two embodiment systems for pericardial access may comprise surface and internal vision or ultrasound guidance systems that are wireless or wired one operating on suction and another on mechanical grasping of the pericardial lining. | 04-23-2009 |
20090118621 | TRANSESOPHAGEAL ULTRASOUND PROBE WITH AN ADAPTIVE BENDING SECTION - When transesophageal echocardiography is used to obtain a transgastric short axis view of the left ventricle of the heart, the best place to position the transducer is in the fundus of the stomach, aimed up through the left ventricle. The probes disclosed herein facilitate placement of the transducer in the optimum position within the fundus, despite wide variations in the distance between the lower esophageal sphincter and the fundus among different subjects. In one preferred embodiment, the ultrasound probe uses a bending section with a series of vertebrae and stiffening that is more flexible proximally and less flexible distally, which causes the probe to bend relatively sharply at the point where the probe exits the lower esophageal sphincter. The flexibility of the proximal-most portion of the bending section is preferably greater than or equal to the flexibility of the interface between the bending section and the shaft. | 05-07-2009 |
20090264770 | Medical Systems and Related Methods - This disclosure relates to medical systems and related methods. In some embodiments, the medical systems include a catheter having a coiled section that is radially displaceable relative to a waveguide. | 10-22-2009 |
20090270737 | IMAGING CATHETER - Described herein are imaging catheter system. In an exemplary embodiment, a catheter comprises a handle assembly having distal and proximal ends, a catheter sheath connected to the distal end of the handle assembly, and an elongated flexible tube connected to the proximal end of the handle assembly. The catheter further comprises an imaging core slidably received within the catheter sheath, the handle assembly and the elongated tube. The imaging core also includes a slide member, e.g., knob, extending from the imaging core and passing through an elongated slot in the handle assembly, allowing a physician to manually pullback and advance the imaging core within the catheter by sliding the slide member back and forth. Preferably, the elongated tube is long enough so that the motor drive coupled to the proximal end of the catheter is kept outside the sterile field during the imaging procedure. | 10-29-2009 |
20090287089 | Methods, devices and apparatus for imaging for reconstructing a 3-D image of an area of interest - Featured are methods, devices and apparatuses for imaging tissue, such as cardiac tissue, using any of a number of imaging techniques (e.g., ultrasonic imaging techniques) and a 3-D tracking system. In embodiments, such methods, devices and apparatuses are configured so that a 3-D image can be reconstructed from image data acquired at different locations from the image data and three dimensional coordinates that are determined for each location whereat the imaging device was located. | 11-19-2009 |
20090299195 | Multimodal Catheter System and Method for Intravascular Analysis - Methods, apparatus, and systems for intravascular analysis combine at least three analytical modalities. In one implementation, intravascular ultrasound, optical coherence tomography, and near infrared spectroscopy are combined to enable detection of multiple, different abnormalities in the arterial morphology during a single intravascular procedure. | 12-03-2009 |
20090306518 | TRANSDUCERS, DEVICES AND SYSTEMS CONTAINING THE TRANSDUCERS, AND METHODS OF MANUFACTURE - A catheter assembly for an intravascular ultrasound system includes a catheter and an imaging core. The catheter includes a lumen extending along the longitudinal length of the catheter from the proximal end to the distal end and the imaging core is configured and arranged for inserting into the lumen. The imaging core includes a rotatable driveshaft, at least one transducer mounted to the distal end of the rotatable driveshaft, and a twisted wire cable coupled to the at least one transducer. In addition, a number of different transducer arrangements and methods of making transducers are presented | 12-10-2009 |
20100036258 | REAL TIME ULTRASOUND CATHETER PROBE - An ultrasound catheter probe assembly capable of scanning a three-dimensional volume is provided. The ultrasound catheter probe assembly contains a plurality of ultrasonic transducers disposed along a central axis of the ultrasound catheter probe assembly. The plurality of ultrasonic transducers is disposed on a mechanism operable to reciprocally pivot the plurality of ultrasonic transducers enabling the plurality of ultrasonic transducers to scan a three-dimensional volume. A helically disposed electrical interconnection member may be disposed about a pivot axis of the plurality of ultrasonic transducers and may electrically interconnect the plurality of ultrasonic transducers to an ultrasound imaging system. The ultrasound transducer catheter probe assembly may be fluid-filled and contain bubble position control and fluid expansion compensation features. | 02-11-2010 |
20100049054 | ULTRASONIC PROBE - An electronic radial ultrasonic probe comprising an electronic radial array which comprises a plurality of ultrasonic transducers being continuously arrayed circularly around an insertion axis as center and also for which a transmission/reception of an ultrasonic wave is controlled by electronically selecting the plurality of ultrasonic transducer, comprises: a support member equipped on the electronic radial array; a lock member featured with a cavity in which the support member is inserted and with a lock groove for locking a balloon which is mounted in a manner to cover the electronic radial array and in which an ultrasonic medium is filled; and a filler member which is constituted by an adhesive material converting from a fluid state to a solid state, and is filled in the cavity. | 02-25-2010 |
20100063400 | METHOD AND APPARATUS FOR CATHETER GUIDANCE USING A COMBINATION OF ULTRASOUND AND X-RAY IMAGING - An apparatus for tracking movement of a foreign object within a subject has an X-ray fluoroscopic system with an X-ray detector and an ultrasound system that has a probe with a position sensor. A display is configured to display a static X-ray image acquired by the X-ray fluoroscopic system and a real-time ultrasound image acquired by the ultrasound system. The X-ray image and the ultrasound image each display at least a portion of the foreign object and at least a portion of surrounding area. A tracking module is configured to track movement of the foreign object within the ultrasound image and the display is further configured to display an indication of the movement of the foreign object on the X-ray image | 03-11-2010 |
20100063401 | ULTRASOUND ENDOSCOPE SYSTEM AND ULTRASOUND OBSERVATION METHOD - When an ultrasound endoscope arrives at an objective area, a puncture needle is located in a scan area of a first ultrasound image. Thereby, an image of the puncture needle is delineated on the first ultrasound image. Furthermore, an ultrasound probe is inserted into the puncture needle and an ultrasound transducer of the ultrasound probe is arranged in the objective area through the puncture needle. Then, the ultrasound probe is driven and a second ultrasound image is delineated. Detailed observation inside the objective area in which the puncture needle is punctured is possible with the second ultrasound image. | 03-11-2010 |
20100076317 | CATHETER WITH ULTRASOUND TRANSDUCER AND VARIABLE FOCUS LENS USED IN ANEURYSM ASSESSMENT - A catheter having ultrasound capability and a distal end extending along a longitudinal axis, the end being situated adjacent to a tissue of interest inside of a patient; at least one ultrasound transducer located in the end to direct ultrasound waves along the axis in a generally forward direction relative to the end; a variable-focus lens system located in the end, downstream of the transducer in the generally forward direction, the lens system being capable of variably focusing the ultrasound waves emitted by the transducer at various positions downstream of the lens and catheter end; optionally, a mirror located in the end, downstream of the transducer and the lens system in the generally forward direction, whereby the emitted ultrasound waves from the lens system are either reflected from the mirror and focused at a position substantially perpendicular to the longitudinal axis; or the emitted ultrasound waves from the lens system substantially bypass the mirror in unreflected form and are focused at a position downstream of the transducer, the lens system and the mirror in the generally forward direction along the longitudinal axis; and imaging means for translating the focused ultrasound waves from the lens system reflected and/or unreflected by the mirror into three-dimensional images and communicating the images in viewable form to a human operator that is external to the patient. A method of measuring, imaging and viewing blood flow velocity and patterns in a blood vessel and aneurysm, as well as monitoring vaso-occlusive coil placement in an aneurysm during a surgical intervention using the catheter, is also disclosed. | 03-25-2010 |
20100076318 | MICROMACHINED IMAGING TRANSDUCER - The present invention generally relates to medical devices, and more particularly to an improved medical imaging device. In one embodiment, an imaging device includes a drive shaft having proximal and distal ends received within the lumen; and an imaging transducer assembly. coupled to the distal end of the drive shaft and positioned at the distal portion of the elongate member. The imaging transducer assembly includes one or more imaging transducers formed with a piezoelectric composite plate using photolithography based micromachining. | 03-25-2010 |
20100152590 | SYSTEM AND CATHETER FOR IMAGE GUIDANCE AND METHODS THEREOF - A catheter-based imaging system comprises a catheter having a telescoping proximal end, a distal end having a distal sheath and a distal lumen, a working lumen, and an ultrasonic imaging core. The ultrasonic imaging core is arranged for rotation and linear translation. The system further includes a patient interface module including a catheter interface, a rotational motion control system that imparts controlled rotation to the ultrasonic imaging core, a linear translation control system that imparts controlled linear translation to the ultrasonic imaging core, and an ultrasonic energy generator and receiver coupled to the ultrasonic imaging core. The system further comprises an image generator coupled to the ultrasonic energy receiver that generates an image. | 06-17-2010 |
20100168583 | ENHANCED ULTRASOUND IMAGING PROBES USING FLEXURE MODE PIEZOELECTRIC TRANSDUCERS - A method of generating an enhanced receive signal from a piezoelectric ultrasound transducer is described. The method comprises providing a piezoelectric ultrasound transducer comprising a piezoelectric element operable in flexural mode, receiving a acoustic signal by the piezoelectric element, applying a DC bias to the piezoelectric element prior to receiving the acoustic signal and/or concurrently with receiving the acoustic signal, and generating an enhanced receive signal from the piezoelectric element as a result of receiving the acoustic signal by the piezoelectric element. pMUT-based imaging probes using the above method are also described. | 07-01-2010 |
20100262014 | Ultrasound Scanner Built with Capacitive Micromachined Ultrasonic Transducers (CMUTS) - Ultrasonic scanners and methods of manufacturing ultrasonic scanners. One embodiment of a method includes integrating a flexible electronic device (e.g. an IC) and a flexible ultrasonic transducer (e.g. a portion of a circular CMUT array) with a flexible member. The IC, the transducer, and the flexible member can form a flexible subassembly which is rolled up to form an ultrasonic scanner. The integration of the IC and the transducer can occur at the same time. In the alternative, the integration of the electronic device can occur before the integration of the transducer. Moreover, the integration of the transducer can include using a semiconductor technique. Furthermore, the rolled up subassembly can form a lumen or can be attached to a lumen. The method can include folding a portion of the flexible subassembly to form a forward looking transducer. The flexible member of some subassemblies can include a pair of arms. | 10-14-2010 |
20100274140 | METHOD OF MOUNTING A TRANSDUCER TO A DRIVESHAFT - A method of mounting a transducer to a driveshaft which eliminates the need for a transducer housing, the improved method directly attaches the transducer to a rigid distal tip of a driveshaft which is part of a rotatable imaging core of a catheter assembly. The method contemplates heat treating the distal tip of the driveshaft to make it rigid, machining the distal tip to be dimensioned to hold the transducer, and attaching the transducer to the distal tip by clamping, crimping, or an adhesive. | 10-28-2010 |
20100280389 | CONNECTOR FOR SECURING ULTRASOUND CATHETER TO TRANSDUCER - An ultrasound system has an ultrasound transducer having a transducer housing and a horn provided at the distal end of the transducer housing, an ultrasound transmission member, a sonic connector that is connected to the horn and the proximal end of the ultrasound transmission member, and a catheter knob having a proximal end that is coupled to the distal end of the transducer housing. The catheter knob has a proximal bore that houses the sonic connector. The system also includes a nesting piece that is retained inside the proximal bore of the catheter knob. The nesting piece can be moved from a first position where the sonic connector is received inside the nesting piece to a second position where the sonic connector is separated from the nesting piece when ultrasound energy is being propagated through the ultrasound transmission member. | 11-04-2010 |
20110004105 | POWER PARAMETERS FOR ULTRASONIC CATHETER - An ultrasound catheter system and a method for operating an ultrasonic catheter at a treatment site within a patient's vasculature or tissue are disclosed. The ultrasound catheter system comprises a catheter having at least one ultrasonic element and a control system configured to generate power parameters that drive the at least one ultrasonic element to generate ultrasonic energy. The control system is configured to vary at least one of the power parameters and at least one physiological parameter by ramping the power parameter and the physiological parameter between two set of minimum and maximum values. | 01-06-2011 |
20110118607 | SELF-PROPELLED ROBOTIC DEVICE THAT MOVES THROUGH BODILY AND OTHER PASSAGEWAYS - A self-propelled robotic device moves through bodily and other passageways by inflating regions of an overlying bladder along the length of the robotic device in a sequence that imparts motion to the device. The regions of the overlying bladder are inflated by energizing a plurality of coils, which are surrounded by a ferrofluid, in a sequence. The ferrofluid responds to the magnetic field created by an energized coil by creating a bulge in the side wall of the overlying bladder. | 05-19-2011 |
20110172543 | Multipurpose Host System for Invasive Cardiovascular Diagnostic Measurement Acquisition and Display - An ultrasound catheter is described herein for insertion into a cavity such as a blood vessel to facilitate imaging within a vasculature. The catheter comprises an elongate flexible shaft, a capacitive microfabricated ultrasonic transducer, and a sonic reflector. The elongate flexible shaft has a proximate end and a distal end. A capacitive microfabricated ultrasonic transducer (cMUT) is mounted to the shaft near the distal end. The reflector is positioned such that a reflective surface redirects ultrasonic waves to and from the transducer. In other embodiments, the catheter comprises a plurality of cMUT elements and operates without the use of reflectors. In further embodiments, integrated circuitry is incorporated into the design. | 07-14-2011 |
20110237955 | Real Time Ultrasound Catheter Probe - An ultrasound catheter probe assembly capable of scanning a three-dimensional volume is provided. The ultrasound catheter probe assembly contains a plurality of ultrasonic transducers disposed along a central axis of the ultrasound catheter probe assembly. The plurality of ultrasonic transducers is disposed on a mechanism operable to reciprocally pivot the plurality of ultrasonic transducers enabling the plurality of ultrasonic transducers to scan a three-dimensional volume. A helically disposed electrical interconnection member may be disposed about a pivot axis of the plurality of ultrasonic transducers and may electrically interconnect the plurality of ultrasonic transducers to an ultrasound imaging system. The ultrasound transducer catheter probe assembly may be fluid-filled and contain bubble position control and fluid expansion compensation features. | 09-29-2011 |
20120108980 | CATHETER WITH SHAPE MEMORY ALLOY ACTUATOR - Actuators employable for oscillating movement of a load. An improved actuator may include at least a first shape memory member that is actuatable to affect at least a portion of the oscillating movement of the load. The actuator may further include a second shape memory member actuatable to affect at least a second portion of the oscillating movement of the load. The utilization of one or more shape memory members facilitates the realization of controllable and reliable oscillating movement of a load in a compact manner. Such actuators may be used in imaging catheters having an ultrasound transducer disposed for oscillating movement to scan across an internal region of interest. Such imaging catheters may be used in generating three dimensional and/or real-time three dimensional (4D) images. | 05-03-2012 |
20120165680 | CATHETER - A catheter includes a sheath insertable inside a body lumen and provided with a window portion permeable to inspection waves, a detection unit movable in the axial direction of the sheath inside the sheath and which detects the inspection waves, and a reinforcement tube positionable to cover the inner surface or the outer surface of the window portion and movable in the axial direction of the sheath. | 06-28-2012 |
20120190988 | PROBE WITH AN ADAPTIVE BENDING SECTION - When transesophageal echocardiography is used to obtain a transgastric short axis view of the left ventricle of the heart, the best place to position the transducer is in the fundus of the stomach, aimed up through the left ventricle. The probes disclosed herein facilitate placement of the transducer in the optimum position within the fundus, despite wide variations in the distance between the lower esophageal sphincter and the fundus among different subjects. In one preferred embodiment, the ultrasound probe uses a bending section with a series of vertebrae and stiffening that is more flexible proximally and less flexible distally, which causes the probe to bend relatively sharply at the point where the probe exits the lower esophageal sphincter. The flexibility of the proximal-most portion of the bending section is preferably greater than or equal to the flexibility of the interface between the bending section and the shaft. | 07-26-2012 |
20120209122 | Shape-Controllable Catheters and Catheter System - Shape-controllable catheters are provided that are versatile in application and that, in human-imaging applications, minimize or reduce patient discomfort. One such catheter is provided with at least one control wire that extends inside the catheter and a control mechanism for tensioning the control wire to produce in the catheter a humped shape or a cantilevered configuration. Hardness of the catheter may be varied along the length thereof to facilitate desired bending. For example, hardness may be reduced in bend areas. Hardness may be maintained or increased in other areas for performance reasons, for example to maintain planarity of an imaging array. | 08-16-2012 |
20130035597 | ANORECTAL PROBE ASSEMBLY AND METHOD - An anorectal probe assembly comprising an anorectal probe, a sonar penetration balloon mounted to said probe, said balloon arranged to receive water to inflate within the rectal cavity a sigmoidscope having a bore into which the probe and balloon have sliding engagement and an adaptor having an anus penetration portion for insertion into the anus and an external portion mounted to the penetration portion wherein the adaptor includes a conduit extending from the penetration portion to the external portion such that on penetration of the anus, the conduit provides fluid communication between the rectal cavity and the external portion, said conduit further connectable to a vacuum source. | 02-07-2013 |
20130137990 | ULTRASOUND ENDOSCOPE - An ultrasound endoscope includes an objective optical system, an illumination optical system, a distal end portion, an ultrasound transducer portion, a distal end cover, a through-hole formed in the distal end cover, a conductor wire portion, and a conductor wire portion passing portion formed in the distal end cover and configured to communicate with the through-hole and reach an outer circumference of the distal end cover, the conductor wire portion passing portion forming a region where the conductor wire portion passes from the through-hole to an outside of the distal end cover member when the ultrasound transducer portion is detached from the distal end portion. | 05-30-2013 |
20130218019 | Image Guided Catheters and Methods of Use - An interventional medical device is provided that incorporates a forward-directed ultrasound imaging system integrated into a single minimally invasive device. The medical device can be in the form of catheters and interventional devices having a tapered distal tip, particularly those suitable for minimally invasive direct introduction into the human or other mammalian body. The imaging system comprises one or more small ultrasound transducers that can be permanently integrated into the device or integrated into an interchangeable ultrasound transducer that may be inserted into and removed from the device to customize the device for a particular use. An ultrasound system can be provided in the device either alone or in combination with fiber optic imaging to provide a range of forward imaging and therapeutic capabilities of the device for direct access to a target site from the skin via an introducer needle. | 08-22-2013 |
20130261467 | METHOD FOR FORMING AN ULTRASOUND DEVICE, AND ASSOCIATED APPARATUS - A method and apparatus directed to formation of a connection with an ultrasonic transducer apparatus (UTA) comprising a transducer device having first and second electrodes is provided. The UTA is engaged with an interposer device surface. The interposer device is greater in at least one lateral dimension than and extends laterally outward of the UTA, and comprises at least two laterally-extending conductors. A conductive engagement is formed between the first and second electrodes and respective first ends of the conductors. A connection support substrate is engaged with the interposer device about second ends of the conductors, and includes at least two connective elements for forming a conductive engagement with the respective second ends of the conductors. The UTA is then inserted into a catheter member lumen such that the device plane of the UTA and the at least two connective elements extend axially along the lumen. | 10-03-2013 |
20130267853 | ULTRASOUND DEVICE, AND ASSOCIATED CABLE ASSEMBLY - An ultrasound device including an ultrasonic transducer device having a plurality of transducer elements forming a transducer array is provided. Each transducer element includes a piezoelectric material disposed between a first electrode and a second electrode. One of the first and second electrodes is a ground electrode and the other of the first and second electrodes is a signal electrode. The ultrasound device further includes a cable assembly having a plurality of connective signal elements and a plurality of connective ground elements extending in substantially parallel relation therealong. Each connective element is configured to form an electrically-conductive engagement with respective ones of the signal electrodes and the ground electrodes of the transducer elements in the transducer array. The connective ground elements are alternatingly disposed with the connective signal elements across the cable assembly, to provide shielding between the connective signal elements. | 10-10-2013 |
20130281864 | Method of Manufacturing a Rotational Intravascular Ultrasound Probe - A rotational intravascular ultrasound probe for insertion into a vasculature and a method of manufacturing the same. The rotational intravascular ultrasound probe comprises an elongate catheter having a flexible body and an elongate transducer shaft disposed within the flexible body. The transducer shaft comprises a proximal end portion, a distal end portion, a drive shaft extending from the proximal end portion to the distal end portion, an ultrasonic transducer disposed near the distal end portion for obtaining a circumferential image through rotation, and a transducer housing molded to the drive shaft and the ultrasonic transducer. | 10-24-2013 |
20140114195 | ULTRASOUND UNIT AND ULTRASOUND ENDOSCOPE - An ultrasound unit includes an ultrasound array that has a plurality of ultrasound elements, each of which has a first principal surface that is rectangular where a transmitting and receiving portion, a signal electrode terminal, and a ground electrode terminal are arranged in a longer side direction, longer sides of the ultrasound elements being coupled, one or more short-lines that are connected to a plurality of ground electrode terminals, a ground line that is connected to the short-line, and a plurality of signal lines, each of which is connected to one of the signal electrode terminals, and adjoining ultrasound elements of the ultrasound elements are coupled such that the signal electrode terminals are arranged alternately on opposite sides in the longer side direction of the transmitting and receiving portions that are rectangular. | 04-24-2014 |
20140187960 | Intravascular Ultrasound Imaging Apparatus, Interface, Architecture, and Method of Manufacturing - Sold-state intravascular ultrasound (IVUS) imaging devices, systems, and methods are provided. Some embodiments of the present disclosure are particularly directed to compact and efficient circuit architectures and electrical interfaces for an ultrasound transducer array used in a solid-state IVUS system. In one embodiment, an intravascular ultrasound (IVUS) device includes: a flexible elongate member; an ultrasound scanner assembly disposed at a distal portion of the flexible elongate member, the ultrasound scanner assembly including an ultrasound transducer array; an interface coupler disposed at a proximal portion of the flexible elongate member; and a cable disposed within and extending along a length of the flexible elongate member between the ultrasound scanner assembly and the interface coupler. The cable includes four conductors electrically coupling the ultrasound scanner assembly and the interface coupler. | 07-03-2014 |
20140200457 | RECONSTRUCTION OF CARDIAC ACTIVATION INFORMATION BASED ON ELECTRICAL AND MECHANICAL MEANS - An anatomical mapping system includes a plurality of mapping electrodes, a plurality of mechanical sensors, and a mapping processor associated with the plurality of mapping electrodes and mechanical sensors. The mapping electrodes are configured to detect electrical activation signals of intrinsic physiological activity within an anatomical structure. The mechanical sensors are configured to detect mechanical activity associated with the intrinsic physiological activity. The mapping processor is configured to record the detected activation signals and associate one of the plurality of mapping electrodes and mechanical sensors with each recorded activation signal. The mapping processor is further configured to determine activation times of the intrinsic physiological activity based on a correlation of corresponding electrical activation signals and mechanical activity. | 07-17-2014 |
20140213907 | 3D CATHETER-BASED ULTRASOUND ASSEMBLY WITH GIMBAL-MOUNT TRANSDUCER AND SINGLE-COIL DRIVE - Described are embodiments of devices and methods for imaging a body conduit, such as a blood vessel. In particular embodiments, the catheter has a chamber within which is a transducer mounted to a pivot mechanism. A coil provides a pivot force to the transducer. A magnet is attached to the transducer and is receptive of a torque applied by a magnetic field produced by energizing of the coil. A driving mechanism receives an impact from the pivot member and causes the pivot mechanism to rotate about a rotation axis. | 07-31-2014 |
20140243680 | MEDICAL IMAGING APPARATUS AND METHOD - A medical device is used to image a body cavity using a plurality of axially and angularly spaced imaging sensors. Each imaging sensor generates an image that is distinct from one another due to distinct fields of vision. Each image includes an overlapping zone with commonalties that are used to extrapolate a greater calibrated image. | 08-28-2014 |
20140257111 | MEDICAL TUBE AND CATHETER - A medical tube includes a first portion, a second portion, a third portion, and a fourth portion in this order from a proximal side to a distal side thereof. The first portion has a tubular resin layer, the second portion has a tubular inner layer and outer layer, the third portion as an inner layer and outer layer, and the fourth portion has a tubular resin layer. When flexural rigidity of the first portion, the second portion, the third portion, and the fourth portion is G1, G2, G3, and G4, respectively, the flexural rigidity of each portion being configured to have a relationship with each other portion based upon the following expression (1): | 09-11-2014 |
20150011891 | CABLE CONNECTION STRUCTURE, ULTRASONIC PROBE, AND ULTRASONIC ENDOSCOPE SYSTEM - A cable connection structure for connecting a plurality of cables to an electrode provided on a substrate includes an extended portion that is provided integrally with the plurality of cables, extends from the plurality of cables, and covers at least a connection part between the plurality of cables and the electrode. | 01-08-2015 |
20150065887 | ULTRASOUND PROBE - An ultrasound probe including a housing, a head part provided on the housing so as to enable expansion and contraction, an array provided in the housing and having one or more transducers, a rotary part provided at a rear surface of the array to rotate the array, a pressing part configured to expand the head part by applying pressure to the head part, and a control part, when the head part is inserted into a target object, configured to allow the array to control the pressing part such that the head part is expanded, and allow the array to be rotated in the expanded head part, by controlling the rotary part, thereby relieving pain involved with insertion of the ultrasound probe. | 03-05-2015 |
20150094594 | TRANSESOPHAGEAL ULTRASOUND PROBE WITH AN ADAPTIVE BENDING SECTION - When transesophageal echocardiography is used to obtain a transgastric short axis view of the left ventricle of the heart, the best place to position the transducer is in the fundus of the stomach, aimed up through the left ventricle. The probes disclosed herein facilitate placement of the transducer in the optimum position within the fundus, despite wide variations in the distance between the lower esophageal sphincter and the fundus among different subjects. In one preferred embodiment, the ultrasound probe uses a bending section with a series of vertebrae and stiffening that is more flexible proximally and less flexible distally, which causes the probe to bend relatively sharply at the point where the probe exits the lower esophageal sphincter. | 04-02-2015 |
20150320392 | SLEEVE FOR A TRANSESOPHAGEAL ECHOCARDIOGRAPHY PROBE - A device includes a switch and a housing. The switch is configured for manipulation by a user. The housing has an interior surface configured to receive an external feature of a handheld controller for a transesophageal ultrasound system. The housing has a plurality of switch positions. The switch is coupled to the housing at one position of the plurality of switch positions. | 11-12-2015 |
20150359432 | METHODS AND DEVICES FOR DETECTING NERVE ACTIVITY - Devices, systems and methods are described which are capable of producing vibrational energy within a lumen of a mammal and further including a measurement sensor capable of detecting, measuring and recording nerve activity in response to the vibrational energy. | 12-17-2015 |
20160015362 | INTRAVASCULAR DEVICES, SYSTEMS, AND METHODS HAVING MOTORS - Medical imaging devices and systems are provided. The medical imaging devices may include a transducer to transmit ultrasound signals (waves) and to receive the reflected ultrasound signals for imaging a vessel of interest. Embodiments may include disposing the transducer at a proximal end of the intravascular device and disposing a motor at a distal end of the intravascular device along with a rotatable acoustic mirror. The transducer may transmit and receive the ultrasound signals to and from the rotatable acoustic mirror via an acoustic lumen extending along the length of the device. Other embodiments may include disposing the transducer, the motor, and the rotatable acoustic mirror at the distal end of the medical imaging device. Further embodiments may include using a concentric layered structure to provide multiple conductors for transmitting signals to and receiving signals from components disposed at the distal end of the intravascular device. | 01-21-2016 |
20160022244 | MEDICAL PROBES HAVING INTERNAL HYDROPHILIC SURFACES - Medical probes having an inner fluidic path for flowing an internal liquid therein are disclosed, in which at least one internal surface in flow communication with the inner fluidic path is hydrophilic for the reduction of bubble adhesion thereto. In some embodiments, imaging probes are described, in which an internal surface in flow communication with an internal fluidic path, and through which imaging energy propagates, is coated with a hydrophilic layer that has a thickness and/or an acoustic impedance for reducing an impedance mismatch. Various configurations are described, including embodiments in which hydrophobic bubble trapping surface regions are included in addition to the hydrophilic surface regions. In some embodiments, a medical probe may have an inner lumen defined by an inner fluidic conduit, where at least a portion of the inner surface of the inner fluidic conduit is hydrophilic. | 01-28-2016 |
20160066882 | Intracardiac Ultrasound Imaging Delivery Catheter - An imaging catheter includes a delivery lumen and an imaging array. The imaging catheter is sized to be inserted within an introducer sheath. The delivery lumen facilitates insertion of a therapeutic device. An imager is arranged on an outside surface of a distal end of the imaging catheter. The imager collapses the distal end of the imaging catheter when the imager is within the introducer sheath. The distal end of the imaging catheter is allowed to expand when the imager exits the introducer sheath to facilitate delivery of the therapeutic device to a therapy site. | 03-10-2016 |
20160113622 | CATHETER FOR DETECTION OF ULTRASOUND AND PHOTOACOUSTIC SIGNALS AND ULTRASOUND/PHOTOACOUSTIC IMAGE ACQUISITION SYSTEM USING THE SAME - Provided are a catheter for detection of ultrasound and photoacoustic signals and an image acquisition system using the catheter. The catheter for detection of ultrasound and photoacoustic signals includes a lens optical fiber where a lens is attached to an end of an optical fiber, an ultrasound transducer, a catheter main body where the lens optical fiber and the cable are disposed to pass through an inner portion thereof, a catheter head which is connected to an end of the catheter main body, and a membrane which surrounds a surface of the catheter head. | 04-28-2016 |
20160151047 | Acoustic Array with a Shape Alloy for Medical Ultrasound | 06-02-2016 |
20190142371 | IMAGE GUIDED CATHETERS AND METHODS OF USE | 05-16-2019 |
20190142373 | IMAGE GUIDED CATHETERS AND METHODS OF USE | 05-16-2019 |
20190142376 | ULTRASOUND PROBE AND ULTRASOUND ENDOSCOPE | 05-16-2019 |
20190142631 | SYSTEMS AND METHODS FOR TREATING EYE DISEASES | 05-16-2019 |