Class / Patent application number | Description | Number of patent applications / Date published |
600378000 | Electrode in brain | 58 |
20090221896 | Probe For Data Transmission Between A Brain And A Data Processing Device - The invention relates to a probe for data transmission between a brain and a data processing device. Said probe has a support with electrodes fitted thereto. Said electrodes can be made to electromagnetically interact with neurons of the brain for the purpose of detecting neuronal activity and/or the transmission of stimuli and can be coupled to the data processing device. The shape of the support can be adapted to an inner surface of the brain to such a degree that it can be inserted into the interior of a sulcus of the brain. | 09-03-2009 |
20090253977 | INTRACRANIAL NEURAL INTERFACE SYSTEM - In some preferred embodiments, without limitation, the present invention comprises an implantable, intracranial neural interface node which is an integrated and minimally invasive platform system and supports cross-modal neural interfaces to the cerebrum and other associated structures in the central nervous system. The neural interfaces comprise electrical and chemical interfaces for neural recording, electrical stimulation, chemical delivery, chemical sensing, chemical sampling, cell delivery, genetic material delivery and/or other functions of interest. | 10-08-2009 |
20090299166 | MEMS FLEXIBLE SUBSTRATE NEURAL PROBE AND METHOD OF FABRICATING SAME - A method of fabricating a MEMS flexible substrate neural probe is provided. The method can include applying an insulation layer on a substrate, and depositing a plurality of metal traces on the insulation layer and electroplating each of the plurality of traces. The method also can include encapsulating the insulation layer and metal traces deposited thereon with an insulation layer. Additionally the method can include etching the insulation layer to form a plurality bond pad sites and probes to form a flexible ribbon cable having a plurality of bond pad sites disposed on a surface of the flexible cable and a plurality of neural probes extending from the flexible cable. The method further can include separating the substrate from the insulation layer and depositing insulation on each of the neural probes, each probe comprising insulated portion and exposed metallic tip. Moreover, the method can include cutting each of the exposed metallic tips, and plating each of the exposed metallic tips and each of the plurality of bond pad sites. | 12-03-2009 |
20100130844 | Thin-Film Micro Electrode Array And Method - A thin-film microelectrode array tailored for long-term, minimally invasive cortical recording or stimulation and method are provided. The microelectrode array includes a flexible element that is movable between a first contracted configuration and a second expanded configuration. An array of contacts is provided on the flexible element. The contacts are engagable with a cortical surface with the flexible element in the expanded configuration. A link operatively connects the array of contacts to a control module. The link is capable of transmitting at least one of cortical recordings and cortical stimulation signals thereon. | 05-27-2010 |
20100145176 | Universal Electrode Array for Monitoring Brain Activity - Methods of monitoring brain activity signals in a patient are described, including the steps of identifying a lobe or lobes of the patient's brain in which the patient's seizures originate; selecting an electrode array from a plurality of predetermined dispersed electrode patterns based on the identified lobe or lobes of the brain; implanting the electrode array within the patient's cranium to place the electrodes in contact with the identified lobe or lobes of the brain; and coupling the electrodes to an seizure advisory system. Also described is a seizure advisory system that includes an electrode array having fewer than 32 electrodes in a predetermined dispersed radial pattern, adapted to be implanted through a single opening in the skull, and to be deployed in the predetermined dispersed radial pattern to detect a brain activity signal. The system also includes a communication assembly and an external assembly. | 06-10-2010 |
20100217108 | SENSOR SYSTEM FOR MEASURING, TRANSMITTING, PROCESSING AND DISPLAYING A BRAIN PARAMETER - A sensor system is used for measuring, transmitting, processing and displaying a brain parameter. The sensor system has at least one implantable brain parameter sensor with a wireless transmission unit for measuring the brain parameter. At least one receiving unit with an antenna is in wireless signal connection with the latter. At least one data read module is in signal connection with the antenna and a data processing and display device is in turn in signal connection with said data read module. The sensor system also has a head cap or a head hood, on which the receiving unit is fixed to predetermine a relative position relative to the transmitting unit. A sensor system is the result, the use of which remains comfortable for the patient even over a relatively long measuring period. | 08-26-2010 |
20100274115 | LEAD EXTENSION WITH PHYSIOLOGICAL DATA RECORDER - A lead extension is provided that includes a physiological data recorder configured to store physiological data from the patient. A first extension segment may electrically and physically couple an implantable medical lead to the physiological data recorder, and a second extension segment may electrically and physically couple an implantable medical device (IMD) or a secondary lead extension to the physiological data recorder. The physiological data recorder may include a processor that collects the physiological data derived from sensed electrical signals from the medical lead and a memory to store the physiological data. The physiological data recorder may also wirelessly transmit the physiological data to an external programmer, or be explanted for data retrieval. In some examples, the physiological data recorder may be powered by electrical signals generated by the IMD, which may be either signals intended solely for charging, or signals intended for stimulation therapy. | 10-28-2010 |
20110046470 | INTRACRANIAL NEURAL INTERFACE SYSTEM - In some preferred embodiments, without limitation, the present invention comprises an implantable, intracranial neural interface node which is an integrated and minimally invasive platform system and supports cross-modal neural interfaces to the cerebrum and other associated structures in the central nervous system. The neural interfaces comprise electrical and chemical interfaces for neural recording, electrical stimulation, chemical delivery, chemical sensing, chemical sampling, cell delivery, genetic material delivery and/or other functions of interest. | 02-24-2011 |
20110184269 | IMPLANTABLE PROBE - An implantable probe for acquiring neural signals or for electrically stimulating neurons, the probe comprising: a support (ES) of flexible polymer material; an inorganic substrate (S′) fastened to said support and having thickness that is sufficiently small to present flexibility comparable to that of the support; at least one electrode (EL) carried by said substrate; and a layer (NC) of conductive material deposited by high temperature growth on a surface of said or each electrode and suitable for improving at least one property thereof selected from: electrical properties; biocompatibility properties; and biostability properties. A method of fabricating such a probe, including making electrodes on said inorganic substrate, thinning it, depositing said conductive layer thereon by growth at high temperature, and subsequently transferring the thinned substrate carrying the coated electrodes onto the support of flexible polymer material. | 07-28-2011 |
20110208031 | NEUTRAL PARTICLE NANOPATTERNING FOR NONPLANAR MULTIMODAL NEURAL PROBES - A neural probe includes a probe, wherein a tip of the probe is tapered; an insulating layer covering the probe, and one or more metallic traces, wherein the metallic traces are provide along the length of the probe. The probe also includes one or more contacts provided on the tip of the probe, wherein each of the one or more metallic traces terminates at the one or more contacts, and the one or more contacts provide an array of nanosized metallic pillars. The neural probe may also incorporate a lightguide. The lightguide may include an insulating layer providing a first cladding layer on the probe, a core layer provided on top of the first cladding layer, wherein the metallic traces and contacts are provided in the core layer with a core material, and a second cladding layer provided on top of the core layer. | 08-25-2011 |
20110218417 | BRAIN PROBE ADAPTED TO BE INTRODUCED THROUGH A CANULA - A bio-probe having a base and a tip and also including a set of at least four conductors extending longitudinally along the bio-probe, the conductors being coated with dielectric material. Also, at least four of the conductors define a spot where the dielectric material has been removed, thereby defining an electrical contact site. In addition, the bio-probe is less than 2.5 mm thick in its greatest transverse dimension along a longitudinal portion extending from the tip to a point 6 cm proximal of the tip. | 09-08-2011 |
20110313270 | NEURAL PROBE WITH MODULAR MICROELECTRODE - The present disclosure relates to a neural probe system comprising: a carrier, at least one planar microelectrode attached to the carrier, the planar microelectrode comprising a set of two or more conductive segments, the set being confined in an area of from 15 μm | 12-22-2011 |
20120041294 | Individually Adjustable Multi-channel Systems in vivo Recording - In vivo multi-channel recording is a powerful tool in exploring the real time neural activity associated with specific behavioral outputs. A prominent strength of this technique is that a large number of neurons can be, in theory, simultaneously recorded such that the activity of a small neural circuitry can be formulated and assessed. The present application provides for a new, adjustable multi-electrode system (AMES). Electrodes in this AMES, once installed into the brain, can be individually adjusted such that each electrode can be independently protruded until it reaches an optimal position to acquire neuronal signals. Thus, every electrode within the multi-electrode system is able to acquire valid signals. This adjustable multi-electrode system substantially improves the efficacy of signal acquisition and offers an unprecedented power for in vivo recordings. | 02-16-2012 |
20120101356 | Optical Stimulus Probe with Reflecting Surface - An optical stimulation probe has a probe body inserted into a subject, an electrode formed on the probe body and collecting a response signal from the subject, a light irradiator attached to the probe body and irradiating an optical signal and a reflecting surface formed on the probe body on the path of the optical signal. The reflecting surface changes the course of the optical signal irradiated from the light irradiator to the direction where the electrode faces by reflecting the optical signal. The electrode may be formed on a side portion of the probe body such that it faces a direction perpendicular to a length direction of the probe body, and the optical signal reflected by the reflecting surface may travel along a direction perpendicular to the length direction of the probe body, such that the direction where the electrode faces and the direction along which the reflected optical signal travels are parallel to each other. | 04-26-2012 |
20120123236 | APPARATUS AND METHOD FOR BRAIN FIBER BUNDLE MICROSCOPY - An intracranial implant to position a fiber bundle to a specified region of a brain of an animal. The implant may include a base support to be fixed to a skull of the animal over an orifice drilled in the skull, a hollow conduit arranged through the base support to guide the fiber bundle to the brain of the animal through the drilled orifice and a first locking member arranged on the base support, to cooperate with a ferrule of the fiber bundle, the first locking member configured to lock the fiber bundle to the specified region of the brain of the animal. | 05-17-2012 |
20120184837 | Brain Mapping Probe - The invention relates to a probe for stimulation and recording of neural activity in the brain, the probe comprising an axially extending shaft. In one embodiment, at least one stimulation electrode partially encircles the shaft besides at a gap, wherein one or more recording electrodes are located in the gap. | 07-19-2012 |
20120238855 | WIRELESS SYSTEM FOR EPILEPSY MONITORING AND MEASUREMENT - A wireless system for brain monitoring/mapping of neurological-disorder patients includes a plurality of electrodes each configured for surface abutment of brain tissue and main circuitry for placement outside a body of a patient and configured to transmit power at radio frequencies and send and receive data using infrared energy. Remote circuitry is provided for subcutaneous implantation in a head of the patient. The remote circuitry is connected to the plurality of electrodes and includes a multiplexer sampling signals from the plurality of electrodes. The multiplexer outputs electrode signals to an amplifier and A/D converter for transmission to the main circuitry. The remote circuitry is configured to (a) receive transmitted power at radio frequencies from the main circuitry, (b) capture and digitize full-bandwidth EEG signals from each of the electrodes, and (c) send data to and receive data from the main circuitry using infrared energy. | 09-20-2012 |
20120302856 | DISTRIBUTED, MINIMALLY-INVASIVE NEURAL INTERFACE FOR WIRELESS EPIDURAL RECORDING - A neural interface for measuring or stimulating brain neural activity, either as a standalone unit or as a part of a larger system of similar neural interfaces. The neural interface includes a bolt-shaped housing having a tool-engaging head and threaded shank with internal circuitry and at least one electrode. In use, the housing is threaded into a cranial bore such that the electrode contacts the outer surface of the meninges. The neural interface circuitry includes an SAR ADC that provides at least rail-to-rail operation to convert received signals from the electrode(s) into digital data that can be modulated and wirelessly transmitted by intra-skin or other suitable communication. | 11-29-2012 |
20120302857 | BRAIN SIGNAL MEASUREMENT SYSTEM AND MEASUREMENT SYSTEM - Proposed are a brain signal measurement system and the like, capable of carrying out in vivo placement of measurement units for measuring brain signals with a minimally invasive operation, as well as of easily adjusting the position of each measurement unit. The brain signal measurement device includes sensors to be provided in a space between a dura mater and an arachnoid mater, and a holding unit for holding the sensors. The sensors are connected by a shape-memory unit. The sensors are inserted through a hole penetrating through the scalp and so on, into a space between the dura mater and the arachnoid mater. The diameter of the hole can be equal to or smaller than 1 cm. By electrical heating, the shape-memory unit changes its shape to change positions of the sensors, and thus subdural electrodes can be placed with a minimally invasive operation. | 11-29-2012 |
20130030276 | Method and device for displaying predicted volume of influence with patient-specific atlas of neural tissue - This document discusses, among other things, brain stimulation models, systems, devices, and methods, such as for deep brain stimulation (DBS) or other electrical stimulation. In an example, volumetric imaging data representing an anatomical volume of a brain of a patient can be obtained and transformed to brain atlas data. A patient-specific brain atlas can be created using the inverse of the transformation to map the brain atlas data onto the volumetric imaging data and a volume of influence can be calculated using the patient-specific brain atlas. In certain examples, the volume of influence can include a predicted volume of tissue affected by an electrical stimulation delivered by an electrode at a corresponding at least one candidate electrode target location. | 01-31-2013 |
20130072775 | Conformable Actively Multiplexed High-Density Surface Electrode Array for Brain Interfacing - Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein. | 03-21-2013 |
20130072776 | CEREBRAL LOCAL PORTION COOLING PROBE AND CEREBRAL FUNCTION MAPPING DEVICE - A cerebral local portion cooling probe is composed so that a handheld module includes a Peltier device and a coolant liquid circulating part arranged so as to contact with the Peltier device and wirings, conduits and a heat radiating part are connected to this handheld module. Circulation of coolant liquid and operation of the Peltier device are implemented by means of a control unit, then the tip end of the handheld module is caused to contact with a cerebral local portion to be cooled and a state of the cerebral local portion is monitored in accordance with responses to the cooling. A cerebral function mapping device comprises a mapping module in which a plurality of cooling modules are arranged, each cooling module including a Peltier device and a coolant liquid circulating part in a manner similar to that of the cerebral local portion cooling probe. | 03-21-2013 |
20130079616 | DETECTING AND TREATING NERVOUS SYSTEM DISORDERS - Some embodiments of a mapping device may be capable of passing through cerebral veins and other cerebrovascular spaces to provide electrophysiological mapping of the brain. These embodiments of the device may also be capable of providing, simultaneously or separately, ablation energy or other treatments to targeted brain tissue. In such circumstances, a user may be enabled to analyze an electrophysiological map of a patient's brain and, at the same time or within a short time period before or after the mapping process, may be enabled to apply ablation energy for treatment of a central nervous system disorder. Such treatment may be accomplished without the use of invasive surgery in which the brain is accessed through an opening in the patient's cranium. | 03-28-2013 |
20130085362 | METHOD FOR IDENTIFYING STIMULATION TARGET - A method for identifying a stimulation target is provided, which uses microelectrode recording and electrical impedance tomography techniques together in a composite probe. The composite probe includes at least a microelectrode recording sensor and a plurality of microelectrodes, so that after the composite probe is guided and implanted to a depth suitable for the stimulation target based on microelectrode recording signals, tissue structures surrounding the composite probe are delineated by using the plurality of microelectrodes, and the boundary of the stimulation target and the precise location of the composite probe within the stimulation target are determined. Accordingly, the present invention provides a quick and accurate direction for surgeons, eliminating the problem of not knowing the exact location of the implanted probe within the stimulation target as in the case during deep brain stimulation surgeries. | 04-04-2013 |
20130096408 | IMAGING EPILEPSY SOURCES FROM ELECTROPHYSIOLOGICAL MEASUREMENTS - An example includes a method of imaging brain activity. The method includes receiving signals corresponding to neuronal activity of the brain. The signals are based on a plurality of scalp sensors ( | 04-18-2013 |
20130116530 | PROCESS FOR MANUFACTURING AN ELECTRODE FOR MEDICAL USE, AND ELECTRODE OBTAINED - A method of manufacturing an electrode for medical use, such as an intracerebral electrode ( | 05-09-2013 |
20130123599 | MICRO PROBE AND MANUFACTURING METHOD THEREOF - The micro probe according to an embodiment of the present disclosure includes: a probe portion made of a rigid material and serving as a portion inserted into the brain; a flexible portion connected to a distal end of the probe portion and made of a flexible material; a soluble portion coated on at least one surface of the flexible portion and made of a material which is dissolved by a solution in the cranium; and a body portion connected to the other end of the flexible portion whose one end is connected to the probe portion. | 05-16-2013 |
20130123600 | Multimodal Brain Sensing Lead - A medical lead with at least a distal portion thereof implantable in the brain of a patient is described, together with methods and systems for using the lead. The lead is provided with at least two sensing modalities (e.g., two or more sensing modalities for measurements of field potential measurements, neuronal single unit activity, neuronal multi unit activity, optical blood volume, optical blood oxygenation, voltammetry and rheoencephalography). Acquisition of measurements and the lead components and other components for accomplishing a measurement in each modality are also described as are various applications for the multimodal brain sensing lead. | 05-16-2013 |
20130131482 | FABRICATION, METHODS, APPARATUSES, AND SYSTEMS FOR ULTRA-COMPLIANT PROBES FOR NEURAL AND OTHER TISSUES - Methods, systems and apparatuses of ultra-miniature, ultra-compliant probe arrays that allows for design flexibility to match the stiffness of the tissue it is being applied to, such as the brain tissue, in all three axes (x, y and z), with interconnect cross section smaller than cell dimensions. Stiffness matching requires specific geometric and fabrication approaches, commonly leading to ultra-thin probe wires. Sizing of the electrodes for specific cell dimensions reduces glial formation. Further reduction in stiffness is obtained by incorporating different geometric features to the electrode, such as meandering the electrode wires. The small thickness and geometric features of the wires commonly result in very high compliance. To enable effective insertion of the probes to the tissue, the present invention uses stiff biodisolvable and/or biodegradable polymers, including single use or combinations of carboxymethyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, maltose, other sugar molecules, polylactic acid and its co-polymers. | 05-23-2013 |
20130150696 | HYBRID MULTIELECTRODE ARRAYS - A method of forming a multielectrode array includes forming an alignment plate having at least two openings, forming an array bottom plate having at least two openings corresponding to the at least two openings of the alignment plate, temporarily fixing the array bottom plate to the alignment plate, inserting one or more probes or array sub-assemblies into the at least two openings, fixing the probes or array sub-assemblies to the array bottom plate, and removing the array bottom plate from the alignment plate to form a multielectrode array. | 06-13-2013 |
20130172716 | IDENTIFYING AREAS OF THE BRAIN BY EXAMINING THE NEURONAL SIGNALS - The present invention relates to a method of identifying a region of the brain by measuring neuronal firing and/or local field potentials by recording discharges from at least one implanted electrode and analyzing the recording of the discharges within the beta frequency band range to determine an area of beta oscillatory activity. Once the region of the brain is identified, this region may be stimulated to disrupt the beta oscillatory activity thereby treating a movement disorder. | 07-04-2013 |
20130172717 | NEURAL INTERFACE DEVICE AND INSERTION TOOLS - An implanted neural micro interface device is provided. The device comprises microfilaments of various materials and forms embedded within a body. The microfilaments form interaction sites with surrounding neural tissue at their exit points from the implantable body. The body and filaments are configurable in a multitude of positions to provide increased engagement of a given neural tissue section as well as interaction and closed loop feedback between the microfilament sites. Such configurations allow for a range of recording, stimulating, and treatment modalities for the device within research and clinical settings. | 07-04-2013 |
20130172718 | METHOD FOR IMPROVING IMAGING RESOLUTION OF ELECTRICAL IMPEDANCE TOMOGRAPHY - The present disclosure provides a method for improving imaging resolution of electrical impedance tomography (EIT). More specifically, the present disclosure forms virtual electrode(s) using an electric current steering technique, which is used to improve imaging resolution of an EIT system without physically increasing a number of conducting electrodes. The EIT system of the present disclosure may includes a plurality of conducting electrodes, at least one signal generator, at least one signal receiver and at least one electric current steering device. In other words, the present disclosure applies both the electric current steering technique and the virtual electrode technique to EIT. Consequently, imaging resolution of EIT can be improved without physically increasing the number of conducting electrodes. | 07-04-2013 |
20130184552 | BI-HEMISPHERIC BRAIN WAVE SYSTEM AND METHOD OF PERFORMING BI-HEMISPHERICAL BRAIN WAVE MEASUREMENTS | 07-18-2013 |
20130281811 | METHOD FOR THE DETECTION AND TREATMENT OF ABERRANT NEURAL-ELECTRIC ACTIVITY - An apparatus for detection of ANEA comprising an introducer having at least one lumen. The introducer is introduced into brain tissue through an opening in the skull. A reference electrode is positioned at an introducer distal portion. A plurality of electrode members are advanceable within the at least one lumen with each member having an insulated portion and an exposed distal portion. The members have a non-deployed state in the introducer and a deployed state when outwardly advanced out of the introducer. In the deployed state, the members are substantially orthogonal to each other with the exposed distal portions defining a detection volume capable of determining an electric field vector produced by the ANEA and the direction of foci of the ANEA. | 10-24-2013 |
20140058239 | FAULT-TOLERANT MULTIELECTRODE ARRAY FOR BRAIN IMPLANTABLE DEVICE - A multielectrode array with fault-tolerance for use in conjunction with a brain implantable device includes a sensor grid composed of a plurality of sensors, the plurality of sensors including primary sensors and spare sensors. The multielectrode array also includes signal processing circuitry associated with the plurality of sensors and a control system associated with the sensor grid for replacing faulty primary sensors with spare sensors. | 02-27-2014 |
20140081114 | METHOD AND APPARATUS FOR MEASURING BIOPOTENTIAL AND MAPPING EPHAPTIC COUPLING EMPLOYING A CATHETER WITH MOSFET SENSOR ARRAY - This invention relates generally to electro-anatomical mapping method and an apparatus using a catheter and more particularly to a mapping catheter having an embedded MOSFET sensor array for detecting local electrophysiological parameters such as biopotential signals within an excitable cellular matrix geometry, for determining physiological as well as electrical characteristics of conduction path and its underlying substrate within the endocardial and epicardial spaces, the arterial structure and in ganglionic plexus. The apparatus with its MOSFET sensor is geometrically configured as a decapolar linear array and optionally with an 8×8 sensor matrix placed on a balloon-like structure. | 03-20-2014 |
20140094674 | IMPLANTABLE WIRELESS NEURAL DEVICE - Systems and methods for providing an electrical interface to a body are provided. In one embodiment, an implantable module is disclosed, comprising: an implantable electrode array, implantable within a body and capable of providing a plurality of communication channels for communicating electrical signals detected in a body; an amplifier circuit for processing electrical signals received from the electrode array; a wireless transceiver for sending and receiving telemetry data between the amplifier circuit and a wireless receiver located outside of the body; and a sealed enclosure that houses the amplifier circuit and the wireless transmitter and is biocompatible with surrounding tissue, the enclosure having a window that is transparent to a wireless medium used by the wireless transceiver. In another embodiment, a wireless transceiver and amplifier is detachably coupled to a transcutaneous attachment device, and the implantable electrode array is electrically coupled to the interface board via the transcutaneous attachment device. | 04-03-2014 |
20140142407 | ELECTRODES AND METHODS OF USE - Disclosed are methods and devices for simultaneous recordings of neuronal electrical activity and their immediate chemical environment on subsecond timescales. Due to its sub-300 micron size, the device can be used in chronic recordings in higher mammals (particularly primates) with minimal resulting tissue damage, allowing studies of the relationship between brain chemistry, neuronal activity and behavior in complex tasks as they evolve over time. | 05-22-2014 |
20140194720 | INSERTION OF MEDICAL DEVICES THROUGH NON-ORTHOGONAL AND ORTHOGONAL TRAJECTORIES WITHIN THE CRANIUM AND METHODS OF USING - An elongated device adapted for insertion, including self-insertion, through the body, especially the skull is disclosed. The device has at least one effector or sensor and is configured to permit implantation of multiple functional components through a single entry site into the skull by directing the components at different angles. The device may be used to provide electrical, magnetic, and other stimulation therapy to a patient's brain. The lengths of the effectors, sensors, and other components may completely traverse skull thickness (at a diagonal angle) to barely protrude through to the brain's cortex. The components may directly contact the brain's cortex, but from there their signals can be directed to targets deeper within the brain. Effector lengths are directly proportional to their battery size and ability to store charge. Therefore, longer angled electrode effectors not limited by skull thickness permit longer-lasting batteries which expand treatment options. | 07-10-2014 |
20140200431 | Integrated Optical Neural Probe - In certain embodiments, a neural probe comprises a substrate comprising elongated shanks for penetrating neural tissue, each comprising a proximal end and a distal end; at least one optical source integral to the neural probe for illuminating the neural tissue; and microelectrodes located proximate the distal end of the elongated shanks for monitoring neuronal activity. In certain embodiments, a method of monitoring neuronal activity comprises implanting the neural probe into a test subject such that the elongated shanks protrude into neural tissue of the test subject; illuminating the neural tissue with the at least one optical source; and measuring neuronal activity in response to illuminating the neural tissue. In certain embodiments, a device comprises a semiconductor chip; at least one optical source integral to the semiconductor chip; and sensor elements integral to the semiconductor chip for collecting data responsive to light emitted from the at least one optical source. | 07-17-2014 |
20140249396 | IL-1 RECEPTOR ANTAGONIST-COATED ELECTRODE AND USES THEREOF - The present invention provides an electrode designed for implantation into the central nervous system (CNS) of a mammal, wherein said electrode is substantially coated with interleukin-1 receptor antagonist (IL-1ra) or a coating composition comprising it, and the IL-1ra actively inhibits scarring on or around the surface of the electrode when implanted into the CNS. The electrode of the invention may be used for brain recording and/or stimulation, and can thus be used for treatment of a brain dysfunction, a brain disease or disorder, or a brain injury, as well as for brain computer interface, brain machine interface, or electrotherapy. | 09-04-2014 |
20140296680 | DETECTING AND TREATING NERVOUS SYSTEM DISORDERS - Some embodiments of a mapping device may be capable of passing through cerebral veins and other cerebrovascular spaces to provide electrophysiological mapping of the brain. These embodiments of the device may also be capable of providing, simultaneously or separately, ablation energy or other treatments to targeted brain tissue. In such circumstances, a user may be enabled to analyze an electrophysiological map of a patient's brain and, at the same time or within a short time period before or after the mapping process, may be enabled to apply ablation energy for treatment of a central nervous system disorder. Such treatment may be accomplished without the use of invasive surgery in which the brain is accessed through an opening in the patient's cranium. | 10-02-2014 |
20140378807 | SEIZURE SENSING AND DETECTION USING AN IMPLANTABLE DEVICE - Systems, methods and devices are disclosed for directing and focusing signals to the brain for neuromodulation and for directing and focusing signals or other energy from the brain for measurement, heat transfer and imaging. An aperture in the skull and/or a channel device implantable in the skull can be used to facilitate direction and focusing. Treatment and diagnosis of multiple neurological conditions may be facilitated with the disclosed systems, methods and devices. | 12-25-2014 |
20150018659 | PROCESSABILITY OF POLYMERIC SUBSTRATES AND RELATED METHODS - The invention described herein consists of a process that enables increased adhesion of thin film materials (such as metals, metal oxides, carbon nanotubes or other materials) to solvent and temperature sensitive, and non-planar, polymer substrates and the fabrication of softening electronics. Importantly, this process can be used to create exceptional embodiments of the disclosed flexible electronic devices having dynamic properties that make them suitable for implantation in the human body. | 01-15-2015 |
20150038822 | SYSTEMS, METHODS AND DEVICES FOR A SKULL/BRAIN INTERFACE - Systems, methods and devices are disclosed for directing and focusing signals to the brain for neuromodulation and for directing and focusing signals or other energy from the brain for measurement, heat transfer and imaging. An aperture in the skull and/or a channel device implantable in the skull can be used to facilitate direction and focusing. Treatment and diagnosis of multiple neurological conditions may be facilitated with the disclosed systems, methods and devices. | 02-05-2015 |
20150045642 | Wireless Recording and Stimulation of Brain Activity - Subdural arrays transmit electrocorticogram recordings wirelessly, across the patient's skull, allowing the craniotomy used for surgical placement of the arrays to be completely closed. In various embodiments, the arrays also respond to commands, applying signal patterns to the patient's brain for diagnostic and treatment purposes. | 02-12-2015 |
20150080695 | Conformable Actively Multiplexed High-Density Surface Electrode Array for Brain Interfacing - Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein. | 03-19-2015 |
20150133761 | THREE-DIMENSIONAL NEURAL PROBE MICROELECTRODE ARRAY AND METHOD OF MANUFACTURE - A three-dimensional neural probe electrode array system is described. Planar probes are microfabricated and electrically connected to flexible micro-machined ribbon cables using a rivet bonding technique. The distal end of each cable is connected to a probe with the proximal end of the cable being customized for connection to a printed circuit board. Final assembly consists of combining multiple such assemblies into a single structure. Each of the two-dimensional neural probe arrays is positioned into a micro-machined platform that provides mechanical support and alignment for each array. Lastly, a micro-machined cap is placed on top of each neural electrode probe and cable assembly to protect them from damage during shipping and subsequent use. The cap provides a relatively planar surface for attachment of a computer controlled inserter for precise insertion into the tissue. | 05-14-2015 |
20150297106 | METHODS OF DECODING SPEECH FROM BRAIN ACTIVITY DATA AND DEVICES FOR PRACTICING THE SAME - The present disclosure provides methods of decoding speech from brain activity data. Aspects of the methods include receiving brain speech activity data from a subject, and processing the brain speech activity data to output speech feature data. Also provided are devices and systems for practicing the subject methods. | 10-22-2015 |
20150297892 | AN INTERFACE MEANS, ESPECIALLY AN INTERFACE MEANS FOR A MEDICAL DEVICE - The present invention relates to an interface means, especially an interface means for a medical device, comprising at least one or more lines, whereby the lines are configured such that each line has at least one specific functionality and/or is able to connect a first connection means with a second connection means, and at least one grouping and/or redistributing means, wherein the at least one grouping and/or redistributing means is configured such that the lines can be grouped and/or redistributed onto one or more lines and/or the functionality of lines can be grouped and/or redistributed onto one or more lines, preferably onto at least one single line. Furthermore, the present invention relates to a method for communicating a plurality of signals, in particular power and/or data signals and/or control signals, over a plurality of lines. | 10-22-2015 |
20150305643 | NEURAL INTERFACE - Technology for a neural interface is described. The neural interface can include an intracranial electrode grid operable to detect neural activity. The neural interface can include a subcutaneous microelectronic signal processing unit operable to process the neural activity in order to obtain digital neural activity information. The neural interface can include a cable connecting the intracranial electrode grid and the subcutaneous microelectronic signal processing unit. The neural interface can include a wired connector attached to the subcutaneous microelectronic signal processing unit that is operable to transmit the digital neural activity information from the subcutaneous microelectronic signal processing unit to an external signal processing device. | 10-29-2015 |
20150335258 | SILICON MICROSYSTEMS FOR HIGH-THROUGHPUT ANALYSIS OF NEURAL CIRCUIT ACTIVITY, METHOD AND PROCESS FOR MAKING THE SAME - Provided herein are multi-electrode probe/microsystem designs that readily allow recording with multiple electrodes simultaneously, and of two spatially distinct brain regions at the same time. Also provide are methods and processes for manufacturing the probes. | 11-26-2015 |
20150374973 | TREATMENT OF LANGUAGE, BEHAVIOR AND SOCIAL DISORDERS - Methods of treating language, behavioral and social disorders are described, including methods of treating language disorders associated with electrographic abnormalities in the primary or associative language cortex of persons with autism spectrum disorders, pervasive developmental delay or acquired epileptic aphasia. A language, behavioral and social disorder may be treated by detecting epileptiform activity or an electrographic seizure for a subject's brain and applying neurostimulation to a language cortical region of the subject's brain (e.g., a primary or associative language cortical region). Detection of epileptiform activity or an electrographic seizure and stimulation of language cortex may be performed by a sensing and/or stimulation electrode that is inserted into a subject's brain and connected to one or more neurostimulation devices for monitoring and/or stimulating the language cortex. | 12-31-2015 |
20160029916 | INTRACRANIAL SENSING & MONITORING DEVICE WITH MACRO AND MICRO ELECTRODES - A cortical sensing device for contact with the surface of the brain is provided that includes a support member, at least one macroelectrode sensing element secured with respect to the support member and at least one microelectrode sensing element secured with respect to the macroelectrode. The support member is substantially thin and made from flexibly-conformable material to accurately and safely place the sensing device upon the brain surface. The microelectrode sensing element is surrounded by the macroelectrode brain-contact surface of the macroelectrode sensing element. The first surface of the support member, the macroelectrode brain-contact surface and the microelectrode brain-contact surface are substantially co-planar to abut the surface of the brain for sensoring and monitoring. | 02-04-2016 |
20160128588 | Deep-brain Probe and Method for Recording and Stimulating Brain Activity - A probe suitable for deep-brain recording and stimulation is provided. The probe comprises a wire bundle that includes a plurality of wires, an integrated circuit having a plurality of electrodes, and an interposer that joins the wire bundle and the integrated circuit such that each of the plurality of electrodes is electrically connected with a different wire of the plurality of wires. | 05-12-2016 |
20160128589 | NERVOUS SYSTEM INTERFACE DEVICE - A nervous system interface device can include a flexible active layer, a power coil, a communication module, and an antenna. More specifically, the flexible active layer can included a plurality of electrodes that are positioned to take neural measurements of the nervous system. The power coil can be electrically coupled to the flexible active layer and can be configured to receive wireless power from a power transfer device. The communication module can be electrically coupled to the flexible active layer and can be configured to receive power from the power coil. The antenna can also be adapted to wirelessly communicate neural measurement information to another device (e.g. an external computing device, receiver or the like). The nervous system interface device has two functional configurations which include a rolled and an unrolled configuration. In the rolled configuration the nervous system electrode device is rolled along a longitudinal axis for insertion into a hypodermic needle. In the unrolled configuration the nervous system electrode device is substantially flat. These nervous system electrode devices can dramatically improve access to brain function information, increase brain-machine interface functionality, and decrease foreign body response. | 05-12-2016 |
20160144078 | MULTILAYER STRUCTURE AND METHOD OF MANUFACTURING A MULTILAYER STRUCTURE - In some examples, a medical device system a thin film including at least one electrically conductive track extending between at least one electrode and at least one electrical contact, a first and second polymer layer; wherein, at a portion of the thin film between the at least one electrode and the at least one electrical contact, the first polymer layer and second polymer layer surround the at least one electrically conductive track; and at least one discrete ceramic member located between the first and second polymer layers at a portion of the thin film between the at least one electrode and the at least one electrical contact, wherein the at least one discrete ceramic member does not surround the at least one conductive track, and wherein the at least one discrete ceramic member is configured to increase adhesion between the first polymer layer and second polymer layer. | 05-26-2016 |