Class / Patent application number | Description | Number of patent applications / Date published |
600375000 | Anchored | 23 |
20090221895 | BIPOLAR ELECTRODE THAT CAN BE IMPLANTED - A bipolar electrode ( | 09-03-2009 |
20100036228 | SUTURE SLEEVE AND A METHOD FOR IMPLANTING ONE OR MORE ELECTRICAL LEADS INTO A VEIN - In a suture sleeve and implantation method for one or more implantable leads, the suture sleeve is adapted to be inserted into a vein to secure and protect the one or more leads from damage when a suture thread is positioned and tied around the vein in the region over the suture sleeve to secure the suture sleeve and prevent bleeding from the vein. The suture sleeve has two or more lead receiving through holes into each of which a medical implantable lead may be inserted. The suture sleeve is formed such that at least all of the holes except one are provided with sealing means, which easily can be broken or removed when inserting a lead into the hole such that, when inserted into a vein, bleeding is prevented from a through hole of the sleeve by the sealing means even if no lead is positioned in the hole. The invention also relates to a method for implanting one or more electrical leads into a vein. | 02-11-2010 |
20100063375 | DEVICES, SYSTEMS AND METHODS FOR EPICARDIAL CARDIAC MONITORING SYSTEM - Devices, systems, and methods for remotely monitoring physiologic cardiovascular data are disclosed. At least some of the embodiments disclosed herein provide access to the external surface of the heart through the pericardial space for the delivery of the sensor to the epicardial surface of the heart. In addition, various disclosed embodiments provide for a memory device capable of receiving the physiologic cardiovascular data collected by the sensors and transmitting such data wirelessly to a remote location. | 03-11-2010 |
20100198041 | Apparatus and method for positioning and retention of catheter - A catheter for anchoring an electrode in a coronary sinus includes an elongate catheter body adapted to be inserted into a coronary sinus and at least one electrode on the catheter body. The elongate catheter body also includes at least one anchor movable between an undeployed configuration and a deployed configuration. When the anchor is in the undeployed configuration, the catheter may be introduced into and removed from the coronary sinus. When the anchor is in the deployed configuration, the anchor engages a tissue surface of the coronary sinus to inhibit movement between the catheter body and the coronary sinus, preferably without completely occluding the coronary sinus. The anchor may be a section of the catheter body having an expandable axial cross-section, an expandable member mounted on the catheter body, one or more wire anchors, or a flexible section of the catheter body. | 08-05-2010 |
20120004526 | SENSOR ASSEMBLIES FORMED OF SILICONE RUBBER FOR IMPLANTABLE MEDICAL ELECTRICAL LEADS - A sensor assembly, which may be incorporated by a medical electrical lead, includes an insulative body, formed from a biocompatible plastic, and a sensor mounted on a mounting surface of the insulative body. The mounting surface extends distally from a proximal portion of the insulative body in which first and second conductive inserts extend, being spaced apart and isolated from one another. The sensor is coupled to each of the first and second conductive inserts, and the first conductive insert includes a conductor-coupling end extending proximally from the proximal portion of the insulative body. The sensor assembly may further include an electrode extending around the sensor and the insulative body, wherein the electrode includes an aperture approximately aligned with an active surface of the sensor to expose the active surface. A mounting platform assembly for the sensor assembly may include the conductive inserts and the insulative body. | 01-05-2012 |
20120143030 | TRACKING SYSTEM USING FIELD MAPPING - In some aspects, a method includes (i) securing multiple sets of current injecting electrodes to an organ in a patient's body, (ii) causing current to flow among the multiple sets of current injecting electrodes to generate a field in the organ, (iii) in response to current flow caused by the multiple sets of current injecting electrodes, measuring the field at each of one or more additional electrodes, (iv) determining expected signal measurements of the field inside the organ using a pre-determined model of the field, and (v) determining a position of each of the one or more additional electrodes in the organ based on the measurements made by the additional electrodes and the determined expected signal measurements of the field. | 06-07-2012 |
20120190958 | SIGNAL TRANSMITTING AND LESION EXCLUDING HEART IMPLANTS FOR PACING, DEFIBRILLATING, AND/OR SENSING OF HEART BEAT - Devices, systems, and methods for treating a heart of a patient may make use of structures which limit a size of a chamber of the heart, such as by deploying a tensile member to bring a wall of the heart toward (optionally into contact with) a septum of the heart. The implant may include an electrode or other structure for applying pacing signals to one or both ventricles of the heart, for defibrillating the heart, for sensing beating of the heart or the like. A wireless telemetry and control system may allowing the implant to treat congestive heart failure, monitor the results of the treatment, and apply appropriate electrical stimulation. | 07-26-2012 |
20120271138 | BASKET STYLE CARDIAC MAPPING CATHETER HAVING A FLEXIBLE ELECTRODE ASSEMBLY FOR DETECTION OF CARDIAC RHYTHM DISORDERS - A system for sensing multiple local electric voltages from endocardial surface of a heart, includes: an elongate tubular member; a plurality of flexible splines having proximal portions, distal portions and medial portions therein between; an anchor for securably affixing the proximal portions of the splines; a tip for securably affixing the distal portions of the splines; and a polymeric member including opposed a first open end and a second open end defining an open lumen therein between and an inner member surface and an outer member surface, wherein at least one of the plurality of flexible splines is at least partially disposed within the lumen of the polymeric member; a flexible electrode assembly strip with one or more exposed electrodes disposed on at least a portion of the outer surface of the polymeric member. | 10-25-2012 |
20120271139 | BASKET STYLE CARDIAC MAPPING CATHETER HAVING SPLINE BENDS FOR DETECTION OF CARDIAC RHYTHM DISORDERS - A system a system for sensing multiple local electric voltages from endocardial surface of a heart, includes: a first elongate tubular member; a basket assembly including: a plurality of flexible splines for guiding a plurality of exposed electrodes, the splines having proximal portions, distal portions and medial portions therein between; a proximal anchor for securably affixing the proximal portions of the splines; the proximal anchor being secured at the distal end of the first elongate tubular member; a distal tip for securably affixing the distal portions of the splines wherein at least some of the splines in the radially expanded non-spherical shape contain a distal excurvate outward bend disposed at the distal portion of the spline at a location near to the distal tip of the basket assembly to bend the splines back towards the proximal anchor. | 10-25-2012 |
20120271140 | BASKET STYLE CARDIAC MAPPING CATHETER HAVING AN ATRAUMATIC BASKET TIP FOR DETECTION OF CARDIAC RHYTHM DISORDERS - A system for sensing multiple local electric voltages from endocardial surface of a heart, includes: a first elongate tubular member having a lumen, a proximal end and a distal end; and a basket assembly including: a plurality of flexible splines for guiding a plurality of exposed electrodes, the splines having proximal portions and distal portions; an anchor for securably affixing the proximal portions of the splines; the anchor being secured at the distal end of the first elongate tubular member; an encapsulated and filament-wrapped distal tip including an encapsulant and a filament for securably affixing the distal portions of the splines in a predetermined angular relationship at the distal tip; wherein the splines comprise a superelastic material; and wherein the basket assembly has a radially expanded non-cylindrical shape. | 10-25-2012 |
20120330122 | Cardiac Lead for Epicardial, Endocardial and Trans-Coronary Sinus Placement - A cardiac lead includes a half-domed, or semi-spherical shaped, or asymmetrical oval or circular distal assembly with or without an active fixation mechanism. The half-domed or semi-spherical or asymmetrical oval or circular shape provides directionality as to whether a flat side of the lead is facing the myocardial tissue and therefore the active fixation mechanism can be deployed safely into the myocardial tissue. Pacing/sensing electrodes may be constructed on the flat side of the lead to avoid the stimulation of the phrenic nerve. | 12-27-2012 |
20130102869 | BASKET STYLE CARDIAC MAPPING CATHETER HAVING A FLEXIBLE ELECTRODE ASSEMBLY AND AN ATRAUMATIC TIP FOR DETECTION OF CARDIAC RHYTHM DISORDERS - A system for sensing multiple local electric voltages from endocardial surface of a heart, includes: an elongate tubular member; a plurality of flexible splines having proximal portions, distal portions and medial portions therein between; an anchor for securably affixing the proximal portions of the splines; an atraumatic tip for securably affixing the distal portions of the splines; and a polymeric member including opposed a first open end and a second open end defining an open lumen therein between and an inner member surface and an outer member surface, wherein at least one of the plurality of flexible splines is at least partially disposed within the lumen of the polymeric member; a flexible electrode assembly strip with one or more exposed electrodes disposed on at least a portion of the outer surface of the polymeric member. | 04-25-2013 |
20130116529 | LEADLESS INTRA-CARDIAC MEDICAL DEVICE WITH BUILT-IN TELEMETRY SYSTEM - A leadless intra-cardiac medical device is configured to be implanted entirely within a heart of a patient. The device includes an intra-cardiac extension and a housing. The intra-cardiac extension includes a loop body having at least one loop segment retaining at least one coil group that is configured to one or both of receive and transmit radio frequency (RF) energy, wherein the loop body is configured to extend into a first chamber of the heart. The housing is in electrical communication within the loop body, and includes a transceiver, control logic and an energy source. The housing is configured to be securely attached to an interior wall portion of a second chamber of the heart, wherein the transceiver is configured to communicate with an external device through the RF energy. | 05-09-2013 |
20130331677 | BASKET STYLE CARDIAC MAPPING CATHETER HAVING A FLEXIBLE ELECTRODE ASSEMBLY FOR SENSING MONOPHASIC ACTION POTENTIALS - A system for sensing monophasic action potentials from endocardial tissue of a heart, includes: a plurality of flexible splines; an anchor for securably affixing the proximal portions of the splines; a tip for securably affixing the distal portions of the splines; and a polymeric member including opposed a first open end and a second open end defining an open lumen therein between, where at least one of the plurality of flexible splines is at least partially disposed within the lumen of the polymeric member; a flexible electrode assembly strip with two or more exposed electrodes oppositely disposed on at least a portion of the outer surface of the polymeric member. | 12-12-2013 |
20140128709 | METHODS FOR DETECTION OF CARDIAC RHYTHM DISORDERS USING BASKET STYLE CARDIAC MAPPING CATHETER - A method for sensing multiple local electric voltages from endocardial surface of a heart, includes: providing a system for sensing multiple local electric voltages from endocardial surface of a heart, including: a first elongate tubular member having a lumen, a proximal end and a distal end; a basket assembly including: a plurality of flexible splines for guiding a plurality of exposed electrodes, the splines having proximal portions, distal portions and medial portions therein between, wherein the electrodes are substantially flat electrodes and are substantially unidirectionally oriented towards a direction outside of the basket. | 05-08-2014 |
20140148675 | DETACHABLE ELECTRODE AND ANCHOR - A detachable electrode and anchor utilized with electrode leads and leadless medical implants that enable explantation of the electrode while leaving the anchor in place. The detachable electrode and anchor utilizes a detachable mechanism that detachably couples the electrode to the anchor. Embodiments do not require removal of existing scar tissue before explantation, which minimize chances of internal bleeding at the extraction site. Embodiments also minimize impact on the vein in which the electrode lead travels by eliminating use of a necessarily larger diameter sheath that is utilized around the electrode lead to remove the electrode lead and attached anchor. | 05-29-2014 |
20140206973 | DEVICES, SYSTEMS, AND METHODS FOR EPICARDIAL CARDIAC MONITORING - Devices, systems, and methods for remotely monitoring physiologic cardiovascular data are disclosed. At least some of the embodiments disclosed herein provide access to the external surface of the heart through the pericardial space for the delivery of the sensor to the epicardial surface of the heart. In addition, various disclosed embodiments provide for a memory device capable of receiving the physiologic cardiovascular data collected by the sensors and transmitting such data wirelessly to a remote location. | 07-24-2014 |
20140303469 | METHODS FOR DETECTION OF CARDIAC RHYTHM DISORDERS USING BASKET STYLE CARDIAC MAPPING CATHETER - A method for sensing multiple local electric voltages from endocardial surface of a heart, includes: providing a system for sensing multiple local electric voltages from endocardial surface of a heart, including: a first elongate tubular member having a lumen, a proximal end and a distal end; a basket assembly including: a plurality of flexible splines for guiding a plurality of exposed electrodes, the splines having proximal portions, distal portions and medial portions therein between, wherein the electrodes are substantially flat electrodes and are substantially unidirectionally oriented towards a direction outside of the basket. | 10-09-2014 |
20150289774 | SYSTEM FOR DETECTING CARDIAC ISCHEMIA AND IRREGULAR HEART RHYTHMS - A system for detecting acute ischemia includes at least two sensors configured for obtaining electrical signals from a patient's heart, analog-to-digital converter circuitry for digitizing the signal to produce data segments, and a processor configured to analyze data segments to determine if they represent an abnormal heart rhythm. Certain types of abnormal rhythm segments are also checked for acute ischemia. If enough of the abnormal heart rhythm segments manifest acute ischemia, a first type of alarm event is generated. If persistent abnormal heart rhythm segments do not manifest acute ischemia, a second type of alarm event is generated. | 10-15-2015 |
20150297099 | PARAMETRIC ELECTRIC IMPEDANCE TOMOGRAPHY OF THE CHEST - A method for determining values of a set of one or more geometric parameters of a patient's heart, the method comprising:
| 10-22-2015 |
20150313544 | METHOD, IMPLANTABLE MEDICAL DEVICE, AND SYSTEM FOR DETERMINING THE CONDITION OF A HEART VALVE - An implantable medical device has an impedance processor that determines impedance data reflective of the transvalvular impedance of a heart valve of a heart during a heart cycle. The determined impedance data are processed by a representation processor that estimates diastolic and systolic transvalvular impedance representations. A condition processor determines the presence of any heart valve malfunction, such as valve regurgitation and/or stenosis, of the heart valve based on the estimated diastolic and systolic transvalvular impedance representations. | 11-05-2015 |
20150320330 | DEVICE AND METHOD FOR POSITIONING AN ELECTRODE IN A BODY CAVITY - Electrical sensing/stimulation apparatuses for positioning at least one electrode within body tissue are provided. An electrical sensing/stimulation apparatus may comprise an elongate lead body having at least one internal lumen, at least one sensing/stimulation electrode, a deployable/retractable displacement member that moves or biases at least one electrode towards a prescribed direction by the user, a tissue attachment mechanism for affixing the distal segment of the device to body tissue, and an atraumatic distal lead body termination. In a retracted configuration, the attachment mechanism is positioned substantially within the distal segment of the lead body, and in the deployed configuration, the attachment mechanism extends from the axis of the lead body to engage body tissue. | 11-12-2015 |
20150359487 | SUPPORTING CATHETER FOR USE FOR PHRENIC NERVE PACING - A device, system, and method for providing support to a mapping catheter during mapping or pacing and for adjusting the diameter of a distal loop portion of currently available mapping catheters. A medical device support device includes an elongate body defining a wall and an at least substantially linear proximal portion and a distal portion being transitionable between an at least substantially linear configuration and an expanded configuration, the elongate body defining a lumen extending through the proximal portion and distal portion, the lumen being entirely surrounded by the wall in the proximal portion and being partially surrounded by the wall in the distal portion. For example, the lumen may be sized to receive a mapping catheter therein such that adjustment of the configuration or diameter of the distal portion of the elongate body will likewise modify the configuration or diameter of the distal portion of the mapping catheter. | 12-17-2015 |