Class / Patent application number | Description | Number of patent applications / Date published |
600339000 | Inserted in body | 32 |
20080287758 | Illuminator probe with memory device and method - An improved medical illuminator ( | 11-20-2008 |
20090156916 | CATHETER SYSTEMS WITH BLOOD MEASUREMENT DEVICE AND METHODS - Catheter systems with blood measurement device and methods are disclosed. An exemplary catheter system for use in positioning a distal end of a catheter body at a desired location in a patient's body may include a needle provided at the distal end of the catheter body to withdraw blood from the patient's body. The needle is fluidically connected to a proximal end of the catheter body. The catheter system may also include a measurement device provided at the proximal end of the catheter body. The measurement device is configured to receive blood withdrawn by the needle for measuring a blood gas value of the blood for use in positioning the distal end of the catheter body at the desired location in the patient's body. | 06-18-2009 |
20090292187 | Device for Assessing Ischemia in Nerve Root Tissue Using Oxygen Saturation - A retractor has an oximeter sensor at its tip, which allows measuring of oxygen saturation of a tissue being retracted by the retractor. The tip includes one or more openings for at least one source and detector. A specific implementation is a spinal nerve root retractor with an oximeter sensor. | 11-26-2009 |
20100030043 | IMPLANTABLE MEDICAL SYSTEM INCLUDING MULTIPLE SENSING MODULES - A medical system includes at least two sensing modules that each generate an optical signal that changes as a function of a physiological parameter of a patient. The sensing modules may be coupled to a common light source and a common receiver via an optically transmissive member. At least a first sensing module that is closest to the light source along a length of the optically transmissive member may include a waveguide to split the light emitted by the light source. A first portion of the light may be directed toward the first sensing module and a second portion of the light may be directed toward a second sensing module that is placed downstream of the first sensing module in a direction substantially along the direction of light flow through the optically transmissive member and away from the light source. | 02-04-2010 |
20110118577 | CATHETER SYSTEM HAVING AN OPTICAL PROBE AND METHOD FOR THE APPLICATION OF AN OPTICAL PROBE IN A CATHETER SYSTEM - A catheter system includes a flexible, elongated base body adapted to be applied to a vein central-venously and having a base distal end; a fibre-optic probe having a probe distal part; a fibre-optic lumen receiving the fibre-optic probe; and an attachment element configured to avoid a longitudinal displacement of the fibre-optic probe relative to the fibre-optic lumen and configured to detach so as to allow removal of the fibre-optic probe through the longitudinal displacement of the fibre-optic probe relative to the fibre-optic lumen. The attachment element has a connector piece firmly connected to the fibre-optic probe and a counter-piece firmly connected to the base body, wherein the connector piece is connectable to the counter-piece, the connector piece having a shaft piece adjustable lengthwise and disposed on the connector piece so as to vary a length of the connector piece. | 05-19-2011 |
20110213228 | ORAL DEVICE - An oral device for use with a person in which at least one non-toxic gas pulse is delivered to a predetermined location in the mouth via a device conduit. The oral device may be provided as a kit with at least one device for measuring the subject's responses and representing them as feedback to the subject/clinician. A method of creating a gas bolus pulse train, delivering it to a predetermined mouth area, and monitoring the subject's responses to it, is also shown. The oral device and method may be used as a diagnostic tool, or a therapeutic tool, in swallowing or speech rehabilitation of children and adults who have swallowing, speech, salivary, and/or oral sensorimotor impairments. | 09-01-2011 |
20110237915 | ELECTRONIC ENDOSCOPE SYSTEM AND PROCESSOR UNIT THEREOF, AND METHOD FOR OBTAINING BLOOD VESSEL INFORMATION - Ina special light mode, first to fourth special images are captured under first to fourth special light being narrow band light. A brightness ratio calculator extracts a blood vessel area containing a blood vessel from each special image. The brightness ratio calculator calculates first to fourth brightness ratios from the special images on every pixel within the blood vessel area. A depth and hemoglobin index calculator calculates the depth of the blood vessel and a hemoglobin index corresponding to the first and second brightness ratios, based on a correlation between the depth of the blood vessel and the hemoglobin index stored in advance. A depth and oxygen saturation calculator calculates an oxygen saturation level corresponding to the third and fourth brightness ratios, based on a correlation between the depth of the blood vessel and the oxygen saturation level stored in advance. | 09-29-2011 |
20120179013 | ENDOSCOPE SYSTEM AND PROCESSOR APPARATUS THEREOF, AND IMAGE GENERATING METHOD - An image of a target portion is captured while first light beams are applied thereto. Thereby, a first image signal is obtained. The first light beams are in a wavelength range in which an absorption coefficient varies in accordance with a change in oxygen saturation of hemoglobin in blood. An image of the target portion is captured while second light beams in a broadband wavelength range are applied thereto. Thereby, second and third image signals are obtained. Oxygen saturation is calculated from the first to third image signals. Reliability of the oxygen saturation is calculated from one of the first to third image signals. Color difference signals each corresponding to the oxygen saturation is obtained from a color table. Each of the color difference signals is corrected in accordance with the reliability. An oxygen saturation image is generated based on corrected color difference signals and displayed. | 07-12-2012 |
20120253158 | BLOOD INFORMATION MEASURING METHOD AND APPARATUS - In a special mode, a superficial layer wavelength set, a middle layer wavelength set, and a deep layer wavelength set are selected successively. Each wavelength set is composed of 3 different types of narrowband light applied successively to an internal body portion. A wavelength set table specifies the number of repetitions of each wavelength set. A controller controls a wavelength band switching element to apply every type of the narrowband light of each wavelength set, and to apply each wavelength set for the number of repetitions specified by the wavelength set table. A CCD captures images of the internal body portion under illumination of the narrowband light of the respective wavelength sets. A blood information calculation section calculates oxygen saturation levels of hemoglobin in blood vessels in the superficial, middle, and deep layers based on image signals, respectively. This provides information on cancer progression. | 10-04-2012 |
20120302847 | ENDOSCOPE SYSTEM AND METHOD FOR ASSISTING IN DIAGNOSTIC ENDOSCOPY - A first special image is produced by combining an overall bright normal light image with a blue-enhanced image in which blood vessels and their shapes are enhanced, and displayed on a display device. A suspected lesion such as a spot is detected in the first special image. When the suspected lesion is found, an oxygen saturation level of the suspected lesion is obtained. When the oxygen saturation level of the suspected lesion is in a hypoxic condition within a predetermined range, an oxygen saturation image representing the oxygen saturation level is displayed instead of the first special image on the display device. | 11-29-2012 |
20120316411 | Remote oximetry monitoring system and method - A medical monitoring system in which information related to ischemia or an oxygenation to be determined is transmitted by a sending unit ( | 12-13-2012 |
20130006078 | INTERJUGULAR CATHETER AND METHOD - A catheter for insertion into a vascular system of a patient and for directing fluid flow includes a catheter body having a longitudinal axis and longitudinally spaced proximal and distal catheter ends with an intermediate catheter portion defined therebetween. An intermediate catheter outlet in the catheter body is located in the intermediate catheter portion and is spaced longitudinally from the proximal and distal catheter ends. A first lumen is defined within the catheter body and has longitudinally spaced proximal and distal first lumen ends with a reversing bend located therebetween, the first lumen providing fluid communication between the proximal catheter end and the intermediate catheter outlet. The reversing bend is located longitudinally between the intermediate catheter outlet and the distal catheter end. The reversing bend directs fluid flow to turn approximately 180° as the fluid flows through the first lumen. A method of using the catheter is also described. | 01-03-2013 |
20130018242 | BLOOD INFORMATION MEASURING APPARATUS AND METHODAANM YAMAGUCHI; HiroshiAACI KanagawaAACO JPAAGP YAMAGUCHI; Hiroshi Kanagawa JPAANM Saito; TakaakiAACI KanagawaAACO JPAAGP Saito; Takaaki Kanagawa JP - In a blood information measuring apparatus, a plurality of types of light of a superficial layer wavelength set, a middle layer wavelength set, and a deep layer wavelength set are successively applied to a detected hypoxic region. A CCD captures an image under the light of each wavelength set, and an oxygen saturation image is produced independently from one wavelength set to another. A wavelength set determination section creates a histogram of each oxygen saturation image. The wavelength set determination section chooses one of the wavelength sets corresponding to the histogram having a maximum variance as an actual imaging wavelength set. Actual imaging operation is performed using the actual imaging wavelength set, and an oxygen saturation level of each pixel is calculated. The oxygen saturation level is reflected in the image, and the image is displayed on a monitor. | 01-17-2013 |
20130023744 | METHOD FOR SPECTROPHOTOMETRIC BLOOD OXYGENATION MONITORING OF ORGANS IN THE BODY - A method and apparatus for non-invasively determining a blood oxygen saturation level within an organ of a subject using direct application of a near infrared spectrophotometric sensor is provided. The method includes the steps of: a) transmitting a light signal directly into the subject's organ using the sensor; b) sensing a first intensity of the light signal and a second intensity of the light signal, after the light signal travels a predetermined distance through the organ of the subject; c) determining an attenuation of the light signal along multiple different wavelengths using the sensed first intensity and sensed second intensity; d) determining a difference in attenuation of the light signal between wavelengths; and e) determining the blood oxygen saturation level within the subject's organ using the difference in attenuation between wavelengths. | 01-24-2013 |
20130116522 | SYSTEM FOR IDENTIFYING THE LOCATION OF A DEVICE WITHIN A PATIENT'S BODY IN ORDER TO LOCATE THE FOSSA OVALIS FOR TRANS-SEPTAL PROCEDURES - A system and method for identifying the location of a medical device within a patient's body may be used to localize the fossa ovalis for trans-septal procedures. The systems and methods measure light reflected by tissues encountered by an optical array. An optical array detects characteristic wavelengths of tissues that are different distances from the optical array. The reflectance of different wavelengths of light at different distances from an optical array may be used to identify the types of tissue encountered, including oxygenated blood in the left atrium as detected from the right atrium through the fossa ovalis. | 05-09-2013 |
20130172703 | NON-INVASIVE MEASUREMENT OF BLOOD OXYGEN SATURATION - A method for non-invasive determination of oxygen saturation of blood within a deep vascular structure of a human or animal patient comprising locating on skin of the patient in a vicinity of the deep vascular structure of interest emitter and receiver elements of a light oximeter device, wherein optimal location of said elements is achieved through matching of a plethysmography trace obtained from the oximeter device to known plethysmography characteristics of the deep vascular structure of interest, wherein the emitter element emits light at wavelengths of from about 1045 nm to about 1055 nm and from about 1085 nm to about 1095 nm, and wherein oxygen saturation is determined from a ratio of light absorbed at these two wave-lengths by haemoglobin in blood within the vascular structure of interest. | 07-04-2013 |
20130245410 | ENDOSCOPE SYSTEM, PROCESSOR DEVICE THEREOF, AND EXPOSURE CONTROL METHOD - In a special observation mode, an oxygen saturation frame period, a normal frame period, and a vessel pattern frame period are repeatedly performed. A brightness detector detects the brightness of a latest frame image of an oxygen saturation video image, being a key video image. The intensity of light to be applied in the next oxygen saturation frame period is determined from the detected brightness. From the determined light intensity and a light intensity ratio among frames, the intensity of light to be applied in the next normal frame period and the next vessel pattern frame period is calculated. The exposure time of the next oxygen saturation frame period is determined from the detected brightness. From the determined exposure time and an exposure time ratio among frames, the exposure time of the next normal frame period and the next vessel pattern frame period is determined. | 09-19-2013 |
20130245411 | ENDOSCOPE SYSTEM, PROCESSOR DEVICE THEREOF, AND EXPOSURE CONTROL METHOD - When an endoscope system is put into a special mode, first and second frame periods for performing imaging under first and second measurement light to measure an oxygen saturation level, a third frame period for performing imaging under normal light, and a fourth frame period for performing imaging under vessel detection light to detect blood vessels in specific depth are repeated. An oxygen saturation image, a normal image, and a vessel pattern image are produced and displayed in a tiled manner on a monitor in the form of moving images. When a freeze button is pressed during display of the moving images, the light intensity and exposure time to be used in the first to fourth frame periods of a still image recording process are calculated using an image that is captured immediately before pressing the freeze button. Still images are obtained with the calculated light intensity and exposure time. | 09-19-2013 |
20130289372 | IMPLANTABLE OXIMETRIC MEASUREMENT APPARATUS AND METHOD OF USE - Embodiments provide an apparatus, system, kit and method for in vivo measurement of blood oxygen saturation (BAS). One embodiment provides an implantable apparatus for measuring BAS comprising a housing, emitter, detector, processor and power source. The housing is configured to be injected through a tissue penetrating device into a target tissue site (TS). The emitter is configured to emit light into the TS to measure BAS, the emitted light having at least one wavelength (LOW) whose absorbance is related to a BAS. The detector is configured to receive light reflected from the TS, detect light at the LOW and generate a detector output signal (DOS) responsive to an intensity of the detected light. The processor is operably coupled to the detector and emitter to send signals to the emitter to emit light and receive the DOS and includes logic for calculating a BAS and generate a signal encoding the BAS. | 10-31-2013 |
20130289373 | ENDOSCOPIC DIAGNOSIS SYSTEM - The endoscopic diagnosis system comprises an image sensor that receives reflected light from a subject illuminated with white light and first narrowband light to acquire a narrowband light image for blood vessel observation in a narrowband light observation mode, and receives reflected light from the subject illuminated with second narrowband light to acquire a narrowband light image for oxygen saturation level observation in an oxygen saturation level observation mode; a controller that controls such that the narrowband light images for blood vessel observation and oxygen saturation level observation are acquired alternately; an image processor that generates an oxygen saturation level image based on the narrowband light images for blood vessel observation and oxygen saturation level observation; and a display unit that simultaneously displays the narrowband light image for blood vessel observation and the oxygen saturation level image. | 10-31-2013 |
20130310669 | PULMONARY PULSE OXIMETRY METHOD FOR THE MEASUREMENT OF OXYGEN SATURATION IN THE MIXED VENOUS BLOOD - A method for obtaining diagnostic information relating to the lungs of a subject includes directing into tissue of the lungs of the subject light of a first wavelength and detecting part of the light that has passed primarily through microcirculatory tissue of the lungs and generating a signal which is a function of intensity of the detected light. The signal is then processed to derive a PPG curve for pulmonary microcirculatory arteries. The method is implemented using various locations for a light source and a detector, including various combinations of positioning on the thoracic wall, insertion into the esophagus, and in some cases, insertion of a probe through the thoracic wall to a position adjacent to the pulmonary pleura. Use of two different wavelengths allows derivation of mixed venous blood oxygen saturation. | 11-21-2013 |
20140012113 | ENDOSCOPE SYSTEM, PROCESSOR DEVICE THEREOF, AND METHOD FOR CONTROLLING ENDOSCOPE SYSTEM - In a special mode for imaging an oxygen saturation level of blood, an internal body portion is imaged under irradiation with special illumination light. A light amount evaluation section judges based on an obtained image whether or not a reflected light amount of the special illumination light is adequate for calculating the oxygen saturation level. When the reflected light amount is judged to be adequate, a normal image sensor captures an image under irradiation with the special illumination light. When the reflected light amount is judged to be low, a high-sensitivity image sensor is used. In using the high-sensitivity image sensor, a binning process is applied to an image signal in accordance with the reflected light amount of the special illumination light, in order to further sensitize the image signal. | 01-09-2014 |
20140058234 | DEVICE FOR DETECTING BLOOD-OXYGEN LEVEL ASSOCIATED WITH ONE OR MORE MUCOUS MEMBRANE REGIONS - A device adapted for insertion into one or more of an esophagus, a stomach, an intestine and a colon for detecting a blood-oxygen level associated with at least one mucous membrane region in said one or more of the esophagus, the stomach, the intestine and the colon is disclosed. The device includes a flexible and elongated main body, and a blood oxygen level detecting unit. The blood oxygen level detecting unit includes one or more blood oxygen level detecting modules disposed on the main body and capable of generating one or more signals associated with the blood oxygen level(s) of one or more mucous membrane regions nearby the blood oxygen level detecting module(s). | 02-27-2014 |
20140066733 | ENDOSCOPE SYSTEM, PROCESSOR DEVICE THEREOF, AND IMAGE PROCESSING METHOD - In imaging an oxygen saturation level of blood, measurement light having a wavelength of 450 to 500 nm, B light, G light, and an R light are sequentially taken out of broad band light BB emitted from a xenon lamp. An internal body portion is imaged under irradiation with the measurement, B, G, and R light to obtain image data B | 03-06-2014 |
20140155717 | ENDOSCOPE SYSTEM, PROCESSOR DEVICE, AND METHOD FOR OPERATING ENDOSCOPE SYSTEM - A color image sensor captures a reflected image of narrowband light having a wavelength range in which an extinction coefficient varies with a change in an oxygen saturation level of hemoglobin in blood. Thereby a first blue signal, a first green signal, and a first red signal are obtained. The color image sensor captures a reflected image of white light. Thereby a second blue signal, a second green signal, and a second red signal are obtained. Only an oxygen saturation level, out of two or more types of biological functional information including a blood volume and the oxygen saturation level, is obtained based on the first blue signal, the second green signal, and the second red signal. The oxygen saturation level is visualized to produce an oxygen saturation image. | 06-05-2014 |
20140275892 | PHYSIOLOGICAL SENSOR DELIVERY DEVICE AND METHOD - An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve. For example, such a device may be used to measure fractional flow reserve (FFR) across a stenotic lesion in order to assess the severity of the lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. Some distance back from the sensor and distal sleeve, the device separates from the guidewire to permit independent control of the sensor delivery device and the guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example. | 09-18-2014 |
20150065831 | Wireless Implantable Data Communication System, Method and Sensing Device - Disclosed herein is a wireless implantable communication system, method and sensing device, wherein an implantable data conversion module is adapted for operative coupling to a distinct or integrated implantable sensing device for the conversion of a characteristic signal for transmission thereof to an external receiver, e.g. by way of an inductive element. Upon positioning an external inductive element in the vicinity of the implanted device, a corresponding signal is induced within the external element allowing for reconstruction of the converted signal, and thereby allowing for recovery of the characteristic signal. Embodiments for the communication of data across a biological barrier, including communications from an external transmitter to an implanted receiver, an implanted transmitter to an external receiver, and an implanted transmitter/receiver pair are also disclosed. | 03-05-2015 |
20150080688 | SYSTEM FOR IDENTIFYING THE LOCATION OF A DEVICE WITHIN A PATIENT'S BODY IN ORDER TO LOCATE THE FOSSA OVALIS FOR TRANS-SEPTAL PROCEDURES - A system and method for identifying the location of a medical device within a patient's body may be used to localize the fossa ovalis for trans-septal procedures. The systems and methods measure light reflected by tissues encountered by an optical array. An optical array detects characteristic wavelengths of tissues that are different distances from the optical array. The reflectance of different wavelengths of light at different distances from an optical array may be used to identify the types of tissue encountered, including oxygenated blood in the left atrium as detected from the right atrium through the fossa ovalis. | 03-19-2015 |
20150126833 | TECHNIQUES FOR MITIGATING MOTION ARTIFACTS FROM IMPLANTABLE PHYSIOLOGICAL SENSORS - Disclosed techniques include monitoring a physiological characteristic of a patient with a sensor that is mounted to an inner wall of a thoracic cavity of the patient, and sending a signal based on the monitored physiological characteristic from the sensor to a remote device. | 05-07-2015 |
20150366444 | ENDOSCOPE SYSTEM, LIGHT SOURCE DEVICE, OPERATION METHOD FOR ENDOSCOPE SYSTEM, AND OPERATION METHOD FOR LIGHT SOURCE DEVICE - An endoscope system includes a light source unit, a band limiting unit, a light source control unit, an imaging sensor, an imaging control unit, and an oxygen saturation image generation unit. The light source unit includes a V-LED that emits violet light, a B-LED that emits blue light, a G-LED that emits green light, and an R-LED that emits red light. The band limiting unit generates measurement light having a specific wavelength band for measuring the oxygen saturation from the blue light. The light source control unit switches the control of the light source unit between a first light emission mode, in which the observation target is irradiated with the violet light, the measurement light, the green light, and the red light, and a second light emission mode, in which the observation target is irradiated with the measurement light. | 12-24-2015 |
20160058348 | LIGHT SOURCE DEVICE FOR ENDOSCOPE AND ENDOSCOPE SYSTEM - A band limiter comprises an optical filter, which has first and second filter sections, and a filter moving mechanism for moving the optical filter to place the first or second filter section in a light path of blue light. A passband where transmittance of the first filter section is greater than or equal to half a peak value thereof is defined as a first transmission band. The first transmission band includes a peak wavelength, at which an absorption coefficient of hemoglobin is at its peak. A passband where transmittance of the second filter section is greater than or equal to half a peak value thereof is defined as a second transmission band. The second transmission band does not include an isosbestic wavelength (in the order of 450 nm), at which an absorption coefficient of oxyhemoglobin equals or crosses an absorption coefficient of deoxyhemoglobin. | 03-03-2016 |
20160174886 | ENDOSCOPE SYSTEM, PROCESSOR DEVICE FOR ENDOSCOPE SYSTEM, OPERATION METHOD FOR ENDOSCOPE SYSTEM, AND OPERATION METHOD FOR PROCESSOR DEVICE | 06-23-2016 |